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ABSTRACT

Motivation: Single Nucleotide Polymorphisms (SNPs) are believed to

contribute strongly to the genetic variability in living beings, and SNP

and mutation discovery are of great interest in today’s Life Sciences.

A comparatively newmethod to discover such polymorphisms is based

on base-specific cleavage, where resulting cleavage products are

analyzed by mass spectrometry (MS). One particular advantage of

this method is the possibility of multiplexing the biochemical reactions,

i.e. examiningmultiplegenomic regions inparallel.Simulationscanhelp

estimating the performance of a method for polymorphism discovery,

and allow us to evaluate the influence of method parameters on

the discovery rate, and also to investigate whether the method is well

suited for a certain genomic region.

Results: We show how to efficiently conduct such simulations for

polymorphism discovery using base-specific cleavage and MS.

Simulating multiplexed polymorphism discovery leads us to the pro-

blem of uniformly drawing a multiplex. Given a multiset of natural

numbers we want to uniformly draw a subset of fixed cardinality so

that the elements sum up to some fixed total length. We show how

to enumerate multiplex layouts using dynamic programming, which

allows us to uniformly draw a multiplex.

Contact: boecker@minet.uni-jena.de

1 INTRODUCTION

The completion of the Human Genome Project provides researchers

with a reference sequence of the human organism that covers >99%

of the gene-containing regions and is highly accurate (Interna-

tional Human Genome Sequencing Consortium, 2004). There are

several types of deviations from this reference sequence that an

individual can show, among them are polymorphisms such as

SNPs and mutations. SNPs (single nucleotide polymorphisms)

are believed to play an important role for disease predisposition

or drug side effect predisposition (International SNP Map Working

Group, 2001). Mutations, observed only in certain cells or cell types

of an individual, are believed to play an important role, e.g. in the

development of cancer. A large fraction of today’s SNP and

mutation discovery is still based on Sanger de novo sequencing

of the sample sequences of interest (Sanger et al., 1997; Altshuler

et al., 2000). There exist several other techniques for polymorphism

discovery, either biochemical or purely combinatorial (Buetow

et al., 1999), each one with certain advantages and limitations.

Recently, a new method for SNP and mutation discovery was

proposed, based on base-specific cleavage of DNA or RNA, and

mass spectrometry (MS) to acquire the experimental data (Rodi

et al., 2002). The experimental settings of this method have been

extensively studied in literature (see for example Hartmer et al.,
2003; Smylie et al., 2004). The method is commercially available

(Ehrich et al., 2004, www.sequenom.com) and is part of a pipeline

for mining disease susceptibility genes (Tang et al., 2004). Simu-

lating the method’s performance is essential because wet lab

experiments are costly and time-consuming. Simulations allow to

modify parameters such as amplicon lengths (length of the DNA

region amplified by PCR) to achieve desired discovery rates,

and can provide useful insight into other promising parameter

modifications. Stanssens et al. (2004) present results of computer

simulations to evaluate the method’s potential using a small set of

about 10 million SNP events.

In Ehrich et al. (2005) we consider the possibility of multiplexing

the above method, i.e. polymorphism discovery in parallel for

several amplicons. For example, in a three-plex we analyze three

regions of length 300 nt each together, instead of a single region of

length 900 nt. SNP discovery in eukaryotes is often targeted at

exonic regions plus flanking UTRs (untranslated regions), that

are rather short: 90% of all exons in the human NCBI database

(v34.1) have length < 325 nt. Here, multiplexing can dramatically

cut down reaction costs for polymorphism discovery.

Now, the question occurs whether multiplexing changes the

discovery potential of the method: Can we identify the same number

of polymorphisms in three 300 nt amplicons, as we can in one 900 nt

amplicon? Our simulation results clearly indicate that multiplexing

does not change polymorphism discovery rates (Ehrich et al., 2005).

To compare discovery rates in a k-plex we have to select k amp-

licons such that the amplicons’ length sum up to the desired total

length. Designing primers for multiplexed PCRs is a non-trivial

problem and often results in trial-and-error optimization of multi-

plexes. So, we ignore this step and assume that the sequences in a

multiplex where randomly selected from the database. For a precise

evaluation, it is important that multiplexes are drawn uniformly.

Otherwise, overrepresented multiplexes can corrupt discovery rates

in an unpredictable fashion.

For the analysis of measured mass spectra from base-specific

cleavage experiments, we have provided computational methods

for discovering sequence polymorphisms in Böcker (2003). In

this paper, we show how to efficiently simulate polymorphism

discovery rates of the method. We recently conducted detailed

studies of the method’s potential using techniques described herein

where more than 275 billion SNP events were simulated (Ehrich

et al., 2005). Furthermore, we show how to uniformly draw a

multiplex with the desired conditions, to evaluate the performance

of multiplexed polymorphism discovery. This problem is equivalent

to drawing a subset of a multiset. Given a multiset M of natural

numbers, a multiplex level k and a total length n we want to uni-

formly draw a subset of cardinality k so that the elements sum up

to n. Here, we face the problem that drawing the individual elements

is stochastically highly dependent. We show how to enumerate
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these subsets using dynamic programming, which allows us to

uniformly draw such multiplexes.

2 EXPERIMENTAL SETUP AND SIMULATION
OF CLEAVAGE MASS SPECTRA

Suppose we are given a target DNA molecule (or sample DNA)

of length 100–2000 nt. We amplify and transcribe the sample DNA,

and cleave the resulting sequence with a base-specific RNAse,

such as RNAse A. After transcription in the presence of dCTP

(deoxycytidine triphosphate) instead of rCTP, this endonuclease

will cleave the sample sequence wherever rUTP was incorporated

(Rodi et al., 2002). Base-specific cleavage can also be achieved

using other RNAses (Hartmer et al., 2003), as well as biochemical

methods.

We then apply MALDI (matrix-assisted laser desorption

ionization) TOF (time-of-flight) MS to the products of the cleavage

reaction, and extract a list of signal peaks with masses and inten-

sities. We can repeat the above procedure, as well as the following

analysis steps using cleavage reactions specific to each of the four

bases, and we obtain up to four mass spectra, each corresponding

to a base-specific cleavage reaction (Fig. 1).

Often, experimentalists will not use four distinct cleavage reac-

tions to obtain cleavage patterns for all bases, but instead cleave two

bases on the forward strand and the same two bases on the reverse

strand. For example, we cleave base C or base T, both on the

forward strand and on the reverse strand, as shown in Figure 3.

Such cleavage can be achieved using RNAse A (Rodi et al., 2002).

The analysis and simulation of such cleavage is mainly identical to

analyzing cleavage reactions on the forward strand only, so we omit

the details for the sake of brevity.

Simulating the mass spectrum that results from a base-specific

cleavage experiment is relatively simple and can be compared with

simulating the mass spectrum of a trypsin-digested protein. To this

end, given a sample sequence s we sum up the masses of characters

until we reach cleavage character x. Then, we add the resulting

fragment mass to a list, and continue generating the next fragment

mass. Finally, we sort this peak list with respect to mass, joining

fragments of identical mass by generating a fragment with higher

intensity. We also take into account mass modifications resulting

from the utilized cleavage biochemistry. Unlike Peptide Mass

Fingerprint spectra of digested proteins, DNA/RNA mass spectra

from base-specific cleavage show very good agreement with those

predicted in silico, for example as shown in Figures 2 and 4 of

Ehrich et al. (2005). We can therefore safely ignore additional and

missing peaks in our simulations. A comparable mass spectra pre-

diction has been successfully used for the analysis of measured SNP

discovery mass spectra (Ehrich et al., 2004).

We can easily modify this procedure for partial cleavage, where

the cleavage biochemistry is modified in a way such that not all

cut bases but only a certain percentage will be cleaved, see

Böcker (2004) for details. In this case, we also generate fragments

that contain up to K uncleaved characters x, for some fixed

threshold K. We can do so in time O(KjSj) and since the output

size (the number of fragments) is of the same order, this simple

approach is optimal. In applications, runtime can be slightly

decreased by generating masses of complete cleavage fragments

first, then using these for computing partial cleavage fragment

masses. Doing so, we achieve a runtime of O(m + jSj) where m
is the size of the output peak list before merging peaks.

Next, we have to take into account the mass range of the mass

spectrometer by discarding all peaks outside this mass range. We

may also want to include low intensity peaks in our simulation.

Random elongation during transcription adds one additional base to

the transcript and is responsible for up to four additional peaks.

Peaks can also be due to abortive cycling where the transcriptase

‘falls off’ after 1–20 bases at the beginning of the sequence, but this

effect is usually countered by reasonable primer design.

We have depicted a measured mass spectrum, together with

masses of simulated cleavage products in Figure 2. As one can

see, there is a high agreement between predicted and measured

mass spectrum, while measured peak intensities vary. Hence,

only the presence or absence of a peak is usually regarded as a

save indication of a sequence polymorphism.

3 MASS SPECTRA CHANGES FROM
SEQUENCE POLYMORPHISMS

Let s0 be a sequence with edit distance one from our original sample

sequence s. Now, we can compute the mass spectra of s0 for all

cleavage reactions, and compare those with the original spectra of s.
In the following, we indicate a faster way to compare the mass

spectra.

To this end, consider a certain cleavage reaction with cleavage

character x. Comparing sequences s and s0, there is a position j of

s such that character s in s is replaced by s0 6¼ s in s0 for s, s0 2
{A, C, G, T, e}, the latter corresponding to insertions and deletions.

Let i, i0 denote the largest (smallest) position before (after) position j
of s where the cleavage character x can be found. Now, it is suf-

ficient to simulate the mass spectrum from position i to i0 of s, with

and without the sequence polymorphism. We discard those peaks

with masses outside the mass range. For complete cleavage, if x 6¼
s, s0 then the polymorphism changes the mass of a single fragment;

if x ¼ s then two fragments are merged by the polymorphism; and

if x¼ s0 then one fragment is divided into two. For partial cleavage,

at most 3K + 3 fragments are affected by the polymorphism.

We repeat the above simulations for all cleavage reactions. Ulti-

mately, we join all mass spectra changes, keeping track of the

cleavage reaction that every peak stems from. In the following,

we assume that ‘reaction’ is simply a cardinal number. We call

the resulting list of peaks (with mass, intensity change and reaction)

the fingerprint of the polymorphism, as shown in Figure 3.
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Fig. 1. Distribution of exon lengths in NCBI database (v34.1). Solid line is

the number of sequences in the database (smoothed), dashed line is the

accumulated percentage of sequences.
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All peaks in a fingerprint would lead to the detection of the

polymorphism, in case peak intensities can be accurately predicted.

Unfortunately, the prediction of peak intensities in DNA MS is a

non-trivial problem as it is for peptide MS (Elias et al., 2004). So,

we usually regard only those peaks of a fingerprint as indications of

a polymorphism, where new peaks are generated when compared

with the reference sequence spectra, or peaks from these spectra are

missing. For example, in Figure 3 the rightmost peak in the fourth

reaction only changes in intensity. In addition, we face the problem

of silenced peaks, due to mass inaccuracies and resolution con-

straints. For ideal MS, we are able to distinguish between peaks

with arbitrarily small mass difference. In reality, we can measure

masses with some mass accuracy and if two peaks in a mass spec-

trum get too close (�2–10 Da for linear TOF MS), they merge into a

joined peak with higher intensity and mass in-between the masses of

the original peaks. So, a peak with mass m in the peak pattern can be

impossible to detect because of some peak with mass m0 ¼ m + d in

the reference mass spectrum. To exclude silenced peaks we have to

scan through the original peak list of size O(jSj).

For homozygous samples, only the polymorphism sequence s0 is

present in the sample. But for heterozygous samples, both s0 and the

original sequence s are present, so all peaks of s will be present in

the mass spectrum. In this case, only additional peaks indicate a

polymorphism, reducing the number of polymorphisms that can be

discovered.

For a fixed reaction and complete cleavage, we can compute a

fingerprint by identifying the fragments affected by a polymorph-

ism, then computing the masses of fragments if the polymorphism is

present. The time-consuming tasks in doing so are, first, identifying

the affected fragments and, second, dividing a fragment into two,

in case a new cleavage character results from the polymorphism.

But if we assume that we iteratively simulate polymorphisms for all

positions, then both of these tasks can be accomplished in constant

time, by updating divided fragment masses and eventually proceed-

ing with the next affected fragment. For partial cleavage and R
cleavage reactions we compute the O(K · R) peaks of the fingerprint

in O(K · R) time. Identifying silenced peaks using binary search

leads to an overall time complexity of O(K · R log jSj).

Fig. 2. Simulated and measured mass spectra. Peaks in simulated spectrum are indicated by dotted lines. Except for the low mass region, spectra show a

high agreement.
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4 RUNTIME HEURISTIC FOR UNIQUE MASS
FINGERPRINTS

In addition to the question whether a polymorphism can be dis-

covered, we usually also want to know whether we can uniquely

identify it: That is, is there another polymorphism with identical or

indistinguishable fingerprint? In this case, we can detect both poly-

morphisms but we cannot tell them apart. Assume that we have

already computed and stored the fingerprints of all N polymorph-

isms under consideration. Using pairwise comparisons we can find

unique fingerprints in time quadratic in N.

To speed up this part of the analysis, an obvious way to go is to

sort the fingerprints with respect to some order, then to search for

identical neighbors in the sorted list. This would improve the run-

time to O(N log N) but leaves us with the following problem: When

comparing two fingerprints F and F0, we again have to take into

account mass inaccuracies in the MS read. So, we say that a

fingerprint F0 covers a fingerprint F if for every peak in F with

mass m, there exists a peak inF0 with identical reaction and mass m0

such that jM � Mj < d� holds. Two fingerprints F ‚F0 are indistin-

guishable if F covers F0, and F0 covers F . Hence, we are counting

those fingerprints that are distinguishable from any other fingerprint.

We proceed as follows: We first collect all peak masses from all

fingerprints under consideration, and sort them regarding reaction

and mass. Next, we construct a map from these mass/reaction tuples

to indices, so that two peaks with same reaction and mass difference

below d also receive the same index. Still, two masses with identical

index may differ by more than d even for identical reaction. For one

reaction, the three masses 1000, 1001 and 1002 with d ¼ 1.5 are

mapped to the same index even though 1002 � 1000 ¼ 2 > d. Now,

we can map every fingerprint to the corresponding index fingerprint,

and the above implies that indistinguishable fingerprints also have

identical index fingerprints, while the converse is not necessarily

true.

We sort the fingerprints according to their index fingerprints, and

in the following step we check whether any two fingerprints with

identical index fingerprint are truly indistinguishable. The worst-

case runtime of this approach is unfortunately still quadratic,

because all fingerprint may show identical index fingerprints and

we are left with the pairwise comparisons of fingerprints mentioned

above. But for actual simulations using biological data the finger-

printing technique efficiently speeds up runtimes.

5 MULTIPLEXING AND LAYOUTS

Multiplexed polymorphism discovery using base-specific cleavage

and MS (Ehrich et al., 2005) allows to analyze several amplicons in

parallel, thereby reducing the cost per base of the experiments. The

experimental setup from Section 2 is modified such that not a single

amplicon, but two or more amplicons are amplified together, by

providing 2k PCR primers for the k amplicons. This mixture is then

cleaved and analyzed by MS, as in the case of a single-plex reaction.

Estimating the discovery rate for a multiplex can be done just as

in the case of a single amplicon, merging the peak lists of the

individual amplicons, for every reaction.

Now, the experimental setup requires primer design for a multi-

plexed PCR, where certain sets of amplicons are amplified together.

We may want to choose these amplicon multiplexes in a way that

maximizes discovery rates, but face the following problem:

although primer design for multiplexed PCRs is used broadly

for, say, high-throughput genotyping (Sharan et al., 2005), it still

remains a non-trivial problem (Chamberlain and Chamberlain,

1994; Edwards and Gibbs, 1994). In particular, multiplex primers

designed in silico have to be evaluated experimentally. Elnifro et al.
(2000) state that empirical testing and a trial-and-error approach

may have to be used, because there are no means to predict the

performance characteristics of a primer pair. We refer the reader to

the literature for more details on multiplex primer design issues.

In the absence of efficient computational methods for reliable

multiplex primer design, we assume that amplicon multiplexes

are not selected in a way that maximizes discovery performance

but instead, in a way that solely assures reliable multiplexed

PCR amplification. Reliable amplification and discovery perform-

ance are presumably uncorrelated processes, so we assume in our

simulations that every such multiplex is uniformly drawn from

the set of all multiplexes that have the required overall length.

Note that all multiplexes must be drawn with equal probability,

because overrepresented multiplexes may corrupt discovery rates

in an unpredictable fashion. Randomly drawing multiplexes can

be seen as a worst-case scenario for discovery rates because we

deliberately ignore (trial-and-error) optimization potential.

We now describe how to uniformly draw from the set of multi-

plexes. Formally, the problem is as follows: We are given a set S of

sequences and a multiplexing order k. We want to uniformly draw

a subset of k sequences such that the summed lengths of these

sequences equal the fixed total length. We cannot iteratively

draw the sequences because these drawings are highly dependent;

in particular, for the last sequence the previous sequences pinpoint

the exact sequence length. It should be understood that to uniformly

draw such multiplex of sequences we do not have to know the actual

sequences in S but instead, it suffices to know just the sequence

lengths.

To this end, we transform S into a multiset of natural numbers:

AmultisetM¼ ðM‚nÞ is formally represented by the setM together

with the multiplicity map n : M! N. For example, the multiset

M¼ f1‚2‚2‚3g is represented by M ¼ {1, 2, 3} and n(1) ¼ 1,

n(2) ¼ 2 and n(3) ¼ 3. We denote the sum of elements in a multi-

set M¼ ðM‚nÞ by
P
M : ¼

P
m2M m ¼

P
m2M nðmÞ ·m. A

multiplex or k-plex of M is simply a sub-multiset M0 �M of

cardinalityM0k. For a fixed total length L, the set of multiplexes to

draw from is

mpðM‚k‚LÞ ¼
�
M0 �M : M0k‚

X
M0 ¼ L

�
:

Now, the task of drawing a multiplex of sequences can be split

into two steps. First, we uniformly draw a multiplexM0 �M with

the desired properties from the above set. Second, we transform the

multiplexM0 ¼ ðM0‚n0Þ into a multiplex of sequences, by drawing

n0(l) sequences of length l for every l 2M0. To do so, we preprocess

the sequences in S by sorting them into buckets with respect to their

length. Then, drawing n0(l) sequences of length l can be done in time

O(n0(l)) using a hash table. In total, the

k ¼M0 sequence scan bedrawn in time OðkÞ:

So, the problem we are left with is to uniformly draw a multiplex

from M respecting the multiplicities of elements in M. To

simplify notations, we introduce the notion of layouts: a layout

x ¼ ðx1‚ . . . ‚xkÞ 2 N
k is a k-tuple of natural numbers satisfying

x1 � x2 � � � � � xk. Let x(l) denote the number of indices

S.Böcker
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j ¼ 1, . . . , k such that xj ¼ l. Every multisetM of natural numbers

can be mapped to a unique layout by sorting the numbers in M.

Clearly, every layout also corresponds to a unique multiset, so we

concentrate on layouts instead of multiplexes in the following.

Finally, we introduce the cardinality of multiplexes and

layouts. Reconsider the set of sequences S we started from, and

letM0 ¼ ðM0‚n0Þ be a multiplex of the corresponding multisetM.

How many sequence multiplexes S0 � S correspond to this

multiplex M0? For every length l 2 M0 there exist n(l) sequences

to draw from, so we can choose n0(l) sequences in

�
nðlÞ
n0ðlÞ

�
ways.

Multiplying over all l 2 M0 shows that there exist card
�
M0� ¼Q

l2M0

�
nðlÞ
n0ðlÞ

�
sequence multiplexes corresponding to the multi-

plex M0. Note that card
�
M0� > 0 if and only if n0(l) � n(l) holds

for all l 2 M0. Analogously, we define the cardinality of a layout

x ¼ (x1, . . . , xk) by

cardðxÞ :¼
Y

l2fx1‚...‚ xkg

�
nðlÞ
xðlÞ

�
: ð1Þ

The simplest way to uniformly draw a multiplex, is to lexicograph-

ically order the layouts, and for every layout x store the summed

cardinalities of all layouts smaller or equal to x. Then, uniformly

drawing a layout can be achieved by drawing a random number,

and looking it up in a sorted table. Unfortunately, there exist up to�
k þ maxM� 1

k

�
layouts of size k, so we do not want to store all

layouts in memory, see Section 7. Clearly, the number of layouts

also prohibits computation of layout cardinalities on-the-fly to draw

a layout.

6 ENUMERATING MULTIPLEXES

Let M¼ ðM‚nÞ be the multiset we want to draw from, and let

l� denote the largest integer inM. For the sake of readability, we

ignore the ‘total length constraint’ for the moment, and concentrate

solely on computing cardinalities of layouts. To this end, let D[l, j]
be the summed cardinality of all layouts (x1, . . . , xj) of size j that

start with x1 ¼ l. Let E[l, j] be the summed cardinality of all layouts

of size j that start with l0 � l, so E[l, j]¼D[l, j] + E[l + 1, j]. The main

finding of this section is that D, E can be easily computed using the

recurrence relation

D½l‚ j� ¼
Xj

i¼1

�
nðlÞ
i

�
E
�
lþ 1‚ j � i

�
ð2Þ

for l¼ l�, . . . , 2, 1. Initial values are E[l, 0]¼ 1 for all l¼ 1, . . . , l�, +
1, and E[l�, + 1, j] ¼ 0 for all j � 1. Note that E[l, j] ¼ D[l, j] +
E[l + 1, j] for l � l�, can be computed in constant time.

The proof of recurrence (2) is based on the observation that for

any layout x with x1 ¼ l, there exists an integer 1 � k0 � k such that

xj = l for j = 1, . . . , k0 and xj > l for all j > k0. So, the layout can be

constructed by concatenating k0 times l plus a layout of size k � k0

that starts with l0 > l. See the Appendix for an example. We can

compute the tables D, E in time O(k2 l�), as every step of the

summation in (2) takes only constant time, since

�
nðlÞ

1

�
¼ nðlÞ

and

�
nðlÞ
iþ 1

�
¼ nðlÞ � i

iþ 1

�
nðlÞ
i

�
.

We uniformly draw a layout using tables D, E as follows: Choose

a random integer r between 1 and E[1, k]. Find the largest l such that

r � E[l, k] holds. Now, x1 = l is the initial element of our layout,

but we have to find its multiplicity: Set r  r � E[l + 1, k].

We proceed along recurrence relation (2): For i = 1, . . . , k,

if r �
�
nðlÞ
i

�
E
�
lþ 1‚k � i

�
then break the loop; otherwise, set

r r �
�
nðlÞ
i

�
E
�
lþ 1‚k � i

�
and continue. Now, our layout starts

x1 ¼ x2 ¼ � � � ¼ xk�i ¼ l, and we have to find the remaining layout

xk�i+1, . . . , xk. This can be done iteratively, by searching for a

layout of size i starting with l0 > l. Finally, we output the concat-

enated layout. The complete process of drawing a layout can be

done in time O(k log l�) or O(k + l�), using binary search in E or

linear search in D, respectively.

Without length constraint, we can easily draw a sequence k-plex

by iteratively drawing k sequences from S, so there is no need to use

tables D, E for doing so. But we will see in the next section that the

above algorithm can be generalized to drawing multiplexes with

length constraint.

Now, we want to enumerate multiplexes with length constraints.

Let M¼ ðM‚nÞ be the multiset we want to draw from, and let

l� denote the largest integer in M. Now, we want to take into

account the length constraint and only draw multiplexes that sum

up to L�. Let F[l, j, L] be the summed cardinality of all layouts of

size j that start with l and sum up to L: F½l‚ j‚L� ¼
P

x2X cardðxÞ
where X is the set of layouts (x1, . . . , xj) satisfying x1 ¼ l andP

i xi ¼ L.

Analogously to above, let G[l, j, L] be the summed cardinality of

all layouts of size j that start with l0 � l and sum up to L. These

matrices F, G can be computed using the recurrence relation

F
�
l‚ j‚L

�
¼

Xminfj‚L/lg

i¼1

�
nðlÞ
i

�
G
�
lþ 1‚ j � i‚L � i · l

�

G
�
l‚ j‚L

�
¼ F

�
l‚ j‚L

�
þ G

�
lþ 1‚ j‚L

� ð3Þ

for L ¼ 0, . . . , L�, j ¼ 1, . . . , k and l ¼ l�, . . . , 2,1. Initial values for

matrix G are G[l, 0, L]¼ 1 if L¼ 0 and G[l, 0, L]¼ 0 if L > 0, as well

as G[l� + 1, j, L] ¼ 0 for j � 1 and all L. The proof of recurrence (3)

is analogous to above. We can compute the tables F, G in time

O(k2l�L�) and need O(kl�L�) space to store them. We uniformly

draw a layout using these tables, taking into account the sum of

layout entries, in time O(k log l�) or O(k + l�), respectively.

For multiplexed polymorphism discovery, we must discard

multiplexes M0 where minM0 and maxM0 diverge too much,

because such amplicons cannot be amplified in a single PCR. We

omit the details.

7 COMPUTATIONAL RESULTS

To evaluate the polymorphism discovery performance of the

method, we randomly selected sequences of the desired length

from the 4 Mb genetic region around ApoE (Lai et al., 1998).

Then, we simulated four cleavage reactions for every potential

sequence variation, and checked whether the polymorphism can

be detected under a certain parameter setting. As indicated

above, both wild-type and polymorphism signals are present for

heterozygous polymorphisms, so only additional signals are used

to identify heterozygous polymorphisms and, hence, discovery rates

are better in the case of homozygous polymorphisms.

In Figure 4, we show simulation results for three different para-

meter settings. In the upper two figures, solid triangles indicate
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‘conservative’ parameter settings for complete cleavage, where

every peak silences the detection of other peaks in a broad area

of several Dalton, and intensity changes are not used for polymor-

phism discovery. Here, we assume a polymorphism to be detectable

if there is at least one additional peak (one additional or missing

peak, in the case of heterozygous samples on the right) present in at

least one of the mass spectra. That is, the peak is inside the admis-

sible mass range, and is not silenced by another peak. Solid

boxes indicate simulation parameter settings where, in addition,

intensity changes of >50% are accepted for polymorphism detec-

tion. In the lower two figures, solid triangles indicate ‘conservative’

parameter settings for partial cleavage, where we assume that

only partial cleavage fragments of first order K ¼ 1 can be detected

by the mass spectrometer. Finally, solid circles represent partial

cleavage with fragment order K ¼ 2. Outlined triangles, boxes

and circles indicate the percentage of polymorphisms that can be

uniquely identified from their mass fingerprint, see Section 4.

Figures on the left show results for heterozygous polymorphisms,

figures on the right homozygous polymorphisms. A more detailed

description of simulation parameters, together with additional

simulation results are in preparation.

Regarding the identification of unique fingerprints, the indexing

technique of Section 4 resulted in an overall speedup of simulation

runtimes by 65–80%, i.e. the runtime improved by a factor of 3-fold

to more than 5-fold (data not shown). With this optimization,

the total runtime for simulating a single SNP was �60 ms on a

UltraSparc III processor with 750 MHz, resulting in a runtime of

0.5 s for an amplicon of length 1000.

For the multiplexing study conducted in Ehrich et al. (2005), we

used all exons from the human NCBI database (v34.1) with 20 nt

flanking UTR regions on both sides. For a multiplex of total length

L, we discarded all sequences with length outside the interval

from ð1/
ffiffiffi
2
p
ÞL/k to

ffiffiffi
2
p

L/k. Our simulations show that there is no

significant difference in discovery rates between single-plexed and

multiplexed polymorphism discovery, see Ehrich et al. (2005) for

details.

For comparison, we also implemented the naı̈ve approach of

enumerating all layouts with summed cardinality. In both

approaches, the runtime for preprocessing as well as drawing a

multiplex is negligible compared with the MS simulations, so we

omit the details. On the contrary, memory requirements of the

approaches differ strongly, as expected, refer the details given

in Table 1. In fact, we did not draw multiplexes with exact total
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Fig. 4. Simulation results. Percentage of polymorphisms (y-axis) that can be discovered (solid points) and uniquely identified (outlined points) when sequence

lengths vary (x-axis). Heterozygous polymorphisms (left) and homozygous polymorphisms (right). Observe the different scalings of the y-axis in the figures.

See text for details on simulation settings.

Table 1. Memory requirements for drawing multiplexes of length L ¼ 1500

Multiplex level k ¼ 3 k ¼ 5 k ¼ 7 k ¼ 9

Amplicon lengths 354–707 213–424 152–303 118–235

No. of sequences 12 601 48 452 1 15 870 1 47 113

Naive approach 1.4 · 105 8.6 · 106 1.1 · 109 4.4 · 1010

DP approach 1.6 · 106 1.6 · 106 1.5 · 106 1.6 · 106

Number of entries that have to be stored in memory, for the naive approach (layouts)

and the dynamic programming approach (size of table). Exonic sequences from NCBI

database (v34.1) including 40 nt UTR.

S.Böcker
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length constraint L but instead used an admissible window of

�20 nt. In this case, memory requirements of the naı̈ve approach

grow linear with the window size, but do not change for our

dynamic programming approach.

8 CONCLUSION

We presented a method for simulating polymorphism discovery

rates for base-specific cleavage and MS. Such simulations are of

great interest to experimentalists in order to evaluate the potential

of this method for polymorphism discovery, to find promising

parameter modification and, finally, to estimate discovery rates

for a particular polymorphism discovery experiment. In particular,

simulations can help to maximize discovery rates for multiplexed

experiments, where multiplexed PCR primer design allows for

several ways of multiplexing sequences together.We have also

introduced an algorithm for uniformly sampling multiplexes with

length constraints. Our sampling method reduces space require-

ments to a point where its application is possible on any personal

computer. In addition, recurrences (2) and (3) can be adopted

for counting multiplexes when even more complex constraints

must be satisfied. We hope that the presented method is of use

for applications beyond the simulation of polymorphism discovery

rates.
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APPENDIX

Example of the layouts of a multiset

Consider the multiset M¼ f1‚1‚1‚2‚2‚2‚2‚3‚3‚3‚3‚3g with

n(1) ¼ 3, n(2) ¼ 4 and n(3) ¼ 5. In this case, there exist 10 layouts

and a total 220 three-plexes, as listed in the following table:

Hence, there exist 10 three-plexes with layout (3, ·, ·); 40 + 30 +
4 ¼ 74 three-plexes with layout (2, ·, ·) and 30 + L + 1 ¼ 136 three-

plexes with layout (1, ·, ·).

For three-plexes, the recurrence tables D, E for this example are

as follows (initial values in gray):

Compare column D[·, 3] with our above calculations.

Fixing a total multiplex length L� ¼ 7 only layouts (2, 2, 3) and

(1, 3, 3) have the correct sum, so F[3, 3, 7] ¼ 0, F[2, 3, 7] ¼ 30 and

F[1, 3, 7] ¼ 30 holds.

layout x 3,3,3 2,3,3 2,2,3 2,2,2 1,3,3

card (x) 10 40 30 4 30

layout x 1,2,3 1,2,2 1,1,3 1,1,2 1,1,1

card (x) 60 18 15 12 1

D[l, j] j ¼ 1 2 3

l ¼ 3 5 10 10

2 4 26 74

1 3 30 136

E[l, j] j ¼ 0 1 2 3

l ¼ 4 1 0 0 0

3 1 5 10 10

1 1 12 66 220
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