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Lehrstuhl für Bioinformatik, Friedrich-Schiller-Universität Jena, Ernst-Abbe-Platz 2, 07743 Jena,
Germany, sebastian.boecker@uni-jena.de

Abstract. In computational phylogenetics, supertree methods provide a way to reconstruct
larger clades of the Tree of Life. The supertree problem can be formalized in different ways,
to cope with contradictory information in the input. In particular, there exist methods based
on encoding the input trees in a matrix, and methods based on finding minimum cuts in
some graph. Matrix representation methods compute supertrees of superior quality, but
the underlying optimization problems are computationally hard. In contrast, graph-based
methods have polynomial running time, but supertrees are inferior in quality.
In this paper, we present a novel approach for the computation of supertrees called FlipCut
supertree. Our method combines the computation of minimum cuts from graph-based
methods with a matrix representation method, namely Minimum Flip Supertrees. Here, the
input trees are encoded in a 0/1/?-matrix. We present a heuristic to search for a minimum
set of 0/1-flips such that the resulting matrix admits a directed perfect phylogeny. We then
extend our approach by using edge weights to weight the columns of the 0/1/?-matrix.
In our evaluation, we show that our method is extremely swift in practice, and orders of
magnitude faster than the runner up. Concerning supertree quality, our method is sometimes
on par with the “gold standard” Matrix Representation with Parsimony.1
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1 Introduction

When studying the relationship and ancestry of current organisms, discovered relations
are usually represented as phylogenetic trees: These are rooted trees where each leaf
corresponds to a group of organisms, called taxon. Inner vertices represent hypothetical
last common ancestors of the organisms located at the leaves of its subtree. Supertree
methods assemble phylogenetic trees with non-identical but overlapping taxon sets, into a
larger supertree that contains all taxa of every input tree and describes the evolutionary
relationship of these taxa. Constructing a supertree is easy if no contradictory information
is encoded in the input trees [1]. The major problem of supertree methods is dealing with
incompatible data in a reasonable way. It is understood that incompatible input trees are
the rule rather than the exception in application.

Current supertree methods can roughly be subdivided into two major families: matrix
representation (MR) methods, and graph-based methods with polynomial running time.
The former encode inner vertices of all input trees as partial binary characters in a matrix,
which is then analyzed using an optimization or agreement criterion to yield the supertree.

1 A preliminary version of this paper appeared under the title “FlipCut Supertrees: Towards Matrix
Representation Accuracy in Polynomial Time” in the Proceedings of the 17th International Computing
and Combinatorics Conference, COCOON 2011, in: LNCS, vol. 6842, Springer, pp. 37–48.
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In 1992, Baum [2] and Ragan [28] independently proposed the matrix representation with
parsimony (MRP) method as the first matrix representation method. MRP is by far the
most widely used supertree method today, and constructed supertrees are of comparatively
high quality. Other variants have been proposed using different optimization criteria,
such as matrix representation with flipping (MRF) [10] and matrix representation with
compatibility [33]. All MR methods have in common that the underlying optimization
problems are NP-hard [10,12,14,33]. Heuristic search strategies have to be used, but still,
running times of MR methods can be prohibitive for large datasets. Weighted MRP [31]
appears to outperform MRP with regards to supertree quality, but requires even higher
running times [38]. Recently, Ranwez et al. [30] presented SuperTriplets, a local search
heuristic based on triplet dissimilarity and triplet matrix encoding.

A particular matrix representation supertree method is “matrix representation with
flipping”: Here, the rooted input trees are encoded in a matrix with entries ‘0’, ‘1’, and
‘?’ [10]. Utilizing the parsimony principle, MRF seeks the minimum number of “flips” 0→ 1
or 1→ 0 in the input matrix that make the resulting matrix consistent with a phylogenetic
tree, where ‘?’-entries can be resolved arbitrarily. Evaluations indicate that MRF is on par
with the “gold standard” MRP [9].

Graph-based methods make use of a graph to encode the topological information given
by the input trees. This graph is used as a guiding structure to build the supertree
top-down from the root to the leaves. The first graph-based supertree method was the
Build algorithm [1] and its phylogenetic variant OneTree [8]. These algorithms are only
applicable to non-conflicting input trees, and, thus only of limited use in practice [3]. This
led to the development of the MinCut (MC) supertree algorithm [35] and a modified
version, Modified MinCut (MMC) supertrees [25]. In fact, MinCut supertrees have
already been been suggested by Gasieniec et al. [15, 16] back in 1997. MC and MMC
construct a supertree even if the input trees are conflicting. All these methods share the
advantage of polynomial running time, what results in swift computations in applications.
On the downside, supertrees constructed by both MC and MMC are consistently of inferior
quality compared to those constructed using MR methods [7].

Another graph-based method is PhySIC [29], a so-called veto supertree method. A
drawback of veto methods is that they tend to produce unresolved supertrees in case of
highly conflicting and/or poorly overlapping input trees. PhySIC IST [34] tries to overcome
this drawback by computing non-plenary supertrees: The supertree does not necessarily
contain all taxa from the input trees. The Build With Distances algorithm (BWD) [40]
is the first graph-based method that uses branch length information from the input trees
to build the supertree. It also generalizes the Build algorithm but uses branch lengths
to find better vertex partitions in the Build graph. Simulations indicate BWD supertrees
are of much better quality than MC and MMC supertrees, but results are not on par with
MRP [7].

To build even larger portions of the tree of life, a promising approach is the use of
supertree methods as part of divide-and-conquer meta techniques, as pioneered by the
disk-covering method [22, 23, 32]. Here, we break down a large phylogenetic problem into
smaller subproblems that are computationally easier to solve, because of the lower number
of taxa and the smaller evolutionary distance between them. The subproblem results are
combined using a supertree method. The supertree can then be improved upon using local
search heuristics and the complete dataset. By using preferably fast (polynomial-time)
and accurate supertree methods “a divide-and-conquer strategy promises gains in both
accuracy and speed compared to a conventional phylogenetic analysis” [4].
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In this paper, we concentrate on the matrix representation with flipping framework.
Recall that the problem is NP-hard [10], and only little algorithmic progress has been made
towards its solution. We can test whether an MRF supertree instance admits a perfect
phylogeny without flipping in time O(mn log2(m + n)) [26]. The MRF supertree problem
is W[2]-hard and has no constant factor approximation unless P = NP [5]. Chen et al. [9]
present a heuristic for MRF supertrees based on branch swapping. Chimani et al. [11]
introduce an Integer Linear Program to find exact solutions, which is limited to relatively
small and “simple” instances that do not require too many flips.

Our contributions. Here, we present a novel algorithm, named FlipCut, based on
minimizing the number of 0/1-flips in the matrix representation. Our algorithm constructs
the phylogenetic tree top-down, minimizing in each step the number of required flips.
Running time of our algorithm is comparable to that of the MinCut algorithm: For n
taxa and m internal nodes in the input trees, running time is O(mn3). We show that
our method usually outperforms all other polynomial supertree methods with regards to
supertree quality. In contrast to MinCut supertrees, our results are interpretable in the
sense that we try to minimize a global objective function, namely the number of flips in the
input matrix. We argue that this will allow us to further improve the quality of supertrees
constructed using the FlipCut algorithm in the future.

2 Preliminaries

Let n be the number of taxa in our study; for brevity, we assume that our set of taxa
equals {1, . . . , n}. In this paper, we assume all trees to be rooted phylogenetic trees: The
leaves of the trees are (labeled with) taxa from {1, . . . , n}, no taxon appears twice in a
a tree, and there exist no vertices with out-degree one. If there are unrooted trees in the
input set, each such tree has to be rooted using an outgroup. In this case, branch lengths
(see Sec. 5) of edges incident to the root can be ignored. We are given a set of input trees
T1, . . . , Tl with leaf set L(Ti) ⊆ {1, . . . , n}. We assume

⋃
i L(Ti) = {1, . . . , n}. We search

for a supertree T of these input trees, that is, a tree with leaf set L(T ) = {1, . . . , n}. For
Y ⊆ L(T ) we define the induced subtree T |Y of T where all internal vertices with degree
two are contracted. Some tree T refines T ′ if T ′ can be reached from T by contracting
internal edges. We say that a supertree T of T1, . . . , Tl is a parent tree if T |L(Ti) refines Ti,
for all i = 1, . . . , l. In this case, T1, . . . , Tl are called compatible.

To cope with incompatibilities in the input, we employ the framework of Flip Supertrees:
We encode the input trees in a matrix M with elements in {0, 1, ?}, where rows correspond
to taxa. Each inner vertex (except the root) in each input tree is encoded in one column of
the matrix: Entry ‘1’ indicates that the corresponding taxon is a leaf of the subtree rooted
in the inner node, whereas all other taxa in the tree are encoded ‘0’. The state of taxa
that are not part of the input tree is represented by a question mark (‘?’). Columns of the
matrix are called characters, and we assume that the set of characters equals {1, . . . ,m}.
See Sec. 3 for details.

The classical perfect phylogeny model [41] assumes that the matrix M is binary, and
that there exists an ancestral species that possesses none of the characters, corresponding
to a row of zeros. This is sometimes referred to as directed perfect phylogeny. Further
it is assumed that each transition from ‘0’ to ‘1’ happens at most once in the tree: An
invented character never disappears and is never invented twice. According to the perfect
phylogeny model, M admits a perfect phylogeny if there is a rooted tree with n leaves
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corresponding to the n taxa, where for each character u, there is an inner node w of the
tree such that M [t, u] = 1 holds if and only if taxon t is a leaf of the subtree below w,
for all t. Given an arbitrary binary matrix M , we may ask whether M admits a perfect
phylogeny. Gusfield [18] shows how to check if a matrix M admits a perfect phylogeny and,
if possible, constructs the corresponding phylogenetic tree in time Θ(mn). There exist
several characterizations for matrices that admit a perfect phylogeny, see for example [26].
One particularly important characterization is that any two characters (columns) of the
matrix must be compatible: Let A be the set of all taxa with entry ‘1’ in the first character
column, and let B be the set of all taxa with entry ‘1’ in the second character column,
then A ⊆ B or A ⊇ B or A ∩B = ∅ must hold.

We now ask whether a matrix with ‘?’-entries allows for a perfect phylogeny, where
‘?’-entries can be arbitrarily resolved to ‘0’ or ‘1’. Interestingly, this can also be decided
in Õ(mn) time [26]. (As usual, the Õ(·) notation suppresses all poly-log factors, see also
Lemma 2 below.) To resolve incompatibilities among the input trees, the Flip Supertrees
model assumes that the matrix M is perturbed. We search for a perfect phylogeny matrix
M∗ such that the number of entries where one matrix M,M∗ contains a ‘0’ and the other
matrix a ‘1’, is minimal. This is the number of flips required to correct the input matrix
M , also referred to as the cost of the instance.

Minimum Flip Supertree (MFST) problem. Given a matrix M with entries in
{0, 1, ?} and an integer k ≥ 0, decide whether M allows for a perfect phylogeny with
at most k flips, where ‘?’-entries can be arbitrarily resolved to ‘0’ or ‘1’.

Unfortunately, this is an NP-complete problem, even for an input matrix without ‘?’-
entries [10]. When ‘?’-entries can be present in the input matrix, the problem is W[2]-hard
and has no constant factor approximation unless P = NP [5].

In this paper, we deal with three types of graph-theoretical objects: namely,
phylogenetic trees, graphs that we search for minimum cuts, and networks that we search
for maximum flows. For readability, vertices of a tree will be called nodes, whereas directed
edges of a network will be referred to as arcs.

To evaluate the quality of our supertrees, we use different measures: Each internal
node of a rooted tree T induces a cluster Y ⊆ L(T ). The Robinson-Foulds (RF) symmetric
distance between two trees T, T ′ is the number of clusters induced by one tree but not the
other, divided by the number of clusters induced by both trees. Another score between
trees T, T ′ is the maximum agreement subtree (MAST). This is a subset of leaves Y ⊆
L(T ) = L(T ′) of maximum cardinality such that T |Y = T ′|Y holds. The MAST distance
of T, T ′ then equals 1− |Y | / |L(T )|. In both cases, we are using the normalized variant.

3 Matrix representation of a phylogenetic tree

The MinCut algorithm [35] as well as the Modified MinCut algorithm [25] construct
supertrees by resolving conflicts in the input trees in a recursive top-down procedure. This
has been adapted from the Build algorithm [1] that returns a supertree only if the input
trees are compatible. A related algorithm was given by Pe’er et al. [26]. This algorithm tests
whether an MFST instance M allows for a perfect phylogeny without flipping, by resolving
all ‘?’-entries. We will see below that this problem is basically equivalent to testing whether
a set of input trees is compatible.

We can encode a tree T with taxa set {1, . . . , n} in the input trees in a matrix M(T )
with elements in {0, 1}: Each row of the matrix corresponds to one taxon. For simplicity
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we assume that there is some natural ordering of the taxa and, hence, the rows. Each inner
vertex except the root is encoded in one column of the matrix M(T ): Entry ‘1’ indicates
that the corresponding taxon is a leaf of the subtree rooted in the inner node, whereas all
other taxa are encoded ‘0’. Compare to Section 17.3.5 in [19]. It is easy to see that for
m non-root inner vertices in T , the matrix representation M(T ) has size m × n and can
be computed in O(mn) time, using a tree traversal and lists of taxa. The correspondence
between tree compatibility and their matrix representation follows from the next lemma:

Lemma 1. Let T and T ′ be two trees with L(T ) = L(T ′). Then, T ′ can be obtained from
T by contracting one of its interior edges if and only if M(T ′) can be obtained from M(T )
by deleting one of its columns (and potentially reordering the remaining ones).

We omit the simple proof. Hence, T refines T ′ if and only if M(T ′) can be obtained
from M(T ) by column deletion.

As indicated above, we can generalize the matrix encoding for a set of trees T =
{T1, . . . , Tl} with taxa sets L(Ti) ⊆ {1, . . . , n}: We encode the input trees in a matrix
M(T ) with elements in {0, 1, ?}. Again, each row of the matrix corresponds to one taxon.
Each inner vertex except the root in each input tree is encoded in one column of the matrix
M(T ): Entry ‘1’ indicates that the corresponding taxon is a leaf of the subtree rooted in
the inner node, whereas all other taxa of the input tree are encoded ‘0’. The state of taxa
that are not part of the input tree is unknown, and represented by a question mark (‘?’).
Recall that columns of the matrix are called characters, and that we assume that the set
of characters equals {1, . . . ,m}. Clearly, m ≤ l(n− 2). In detail, m is the total number of
non-root inner vertices in T1, . . . , Tl. From the construction of M(T ), we infer that each
column of the matrix contains a least one ‘0’-entry and at least two ‘1’-entries. Again,
M(T ) has size m×n and can be computed in O(mn) time, using a tree traversal and lists
of taxa.

Now, it is straightforward to show that T has a parent tree if and only if M(T ) is an
incomplete (directed) perfect phylogeny or, equivalently, an instance of the MFST problem
that does not require flipping. So, we can use the algorithm of Pe’er et al. [26] to decide
whether a set of input trees is compatible and, if so, construct the parent tree. This appears
to be the fastest algorithm for computing the parent tree of a set of (unrestricted) input
trees. For restricted cases such as binary input trees, faster algorithms are available [21].

Lemma 2. Given a collection of input trees T = {T1, . . . , Tl} with taxa sets L(Ti) ⊆
{1, . . . , n} for i = 1, . . . , l. Then, we can decide whether T is compatible and, if so, construct
a parent tree of T in time O

(
mn · log2(m+ n)

)
, where m is the total number of non-root

inner vertices in T1, . . . , Tl.

So, we have reduced the problem of finding a parent tree for a given set of trees, to
the MFST problem without flipping or, equivalently, the (directed) incomplete perfect
phylogeny problem. But the converse is also true: An input matrix M with m columns
can be transformed into m input trees, where each column c is transformed into a tree
containing all taxa t satisfying M [t, c] 6=?, having a single non-trivial clade with those taxa
t satisfying M [t, c] = 1. Hence, these two problems are basically equivalent.

4 The FlipCut algorithm

We now show how to apply the idea of finding minimum cuts to the algorithm of Pe’er
et al. [26]. For a subset S ⊆ {1, . . . , n} of taxa and a subset D ⊆ {1, . . . ,m} of characters,
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Fig. 1. Workflow of the FlipCut algorithm. From left to right: The input matrix M and its graph
representation, dotted lines correspond to ‘?’-entries; the corresponding FlipCut graph G with vertex
deletion costs; and the network N .

the FlipCut graph G(S,D) is a bipartite graph with vertex sets S and D, and edges as
follows: First, we build a graph such that an edge (t, c) is present if and only if M [t, c] = 1,
for t ∈ S and c ∈ D. A character vertex c ∈ D is semiuniversal (in S,D) if M [t, c] ∈ {1, ?}
holds for all t ∈ S. We immediately remove all semiuniversal character vertices from the
graph, as all ‘?’-entries can be resolved to ‘1’ without flipping [26]. The resulting graph is
denoted G(S,D).

The algorithm of Pe’er et al. proceeds as follows: We start with S ← {1, . . . , n} and
D ← {1, . . . ,m}. We then construct the FlipCut graph G(S,D). If this graph is connected,
the algorithm terminates, as there is no perfect phylogeny resolving M . Otherwise, we
recursively repeat for each connected component S′, D′ of the FlipCut graph with |S′| > 1.
In case the algorithm does not terminate early, then the sets S′ of taxa computed during
the course of the algorithm, define the rooted phylogenetic tree.

Assume that G(S,D) is connected at some point of the algorithm — how can we
disconnect the graph by means of modifying the input matrix M? Obviously, it does
not help to insert new edges in G(S,D). Removing an edge (t, c) from G(S,D) can be
achieved by two different operations: either flip M [t, c] from ‘1’ to ‘0’, or make character
c semiuniversal by flipping all entries satisfying M [t′, c] = 0 to ‘1’, for t′ ∈ S. Recall that
any semiuniversal character c is deleted immediately, resulting in the deletion of all edges
incident to c. This comes at the cost of w(c) := #{t ∈ S : M [t, c] = 0} flips in the
matrix. To disconnect G(S,D) we can use an arbitrary combination of these edge deletion
operations.

Formally, we assume all edges in G(S,D) to have unit weight, and that each character
vertex c has weight w(c). The weight of a bipartition of taxa vertices is the minimal cost of
a set of edge and vertex deletions, such that the two subsets of taxa vertices lie in separate
components of the resulting graph. We search for a bipartition of minimal weight.

Clearly, this problem is closely related to finding minimal cuts in an undirected graph.
For the later problem, numerous efficient algorithms have been developed in the last
years [6, 24]. Unfortunately, there exist two important differences here: First, we are not
searching for an arbitrary cut in the graph G(S,D) but instead, require that the set of
taxa vertices is partitioned. Second, these algorithms do not allow us to delete vertices.
We conjecture that the first modification is relatively easy to overcome. However, it is not
obvious how to include vertex deletions in these algorithms.

To this end, we drop back to an older approach for finding minimum cuts: We fix one
taxon vertex s, and for all other taxa vertices t we search for a minimum s-t-cut, allowing
vertex deletions. Among these cuts, the cut with minimal weight is the solution to the
above problem. To find a minimum s-t-cut with vertex deletions, we transform G(S,D)
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1: procedure FlipCut(set of taxa S ⊆ {1, . . . , n}, set of characters D ⊆ {1, . . . ,m})
2: Output taxa set S
3: if |S′| = 1 then return
4: Construct G := G(S,D) from M
5: if G is connected then
6: Construct weighted network N from G
7: for all t = 2, . . . , n do
8: Find maximum 1-t-flow in N
9: if maximum 1-t-flow is lighter than current minimum cut then

10: Construct cut-of-the-phase in G from maximum flow in N
11: Store cut-of-the-phase as the current minimum cut
12: end if
13: end for
14: Remove current minimum cut from G
15: end if
16: for all connected components of G with vertex set S′, D′ of G do
17: FlipCut(S′, D′)
18: end for
19: end procedure

Fig. 2. Algorithm FlipCut with input S,D and constant input matrix M over {0, 1, ?}.

into a directed network H(S,D) with capacities: Each taxa vertex t is also a vertex in
the network, each character vertex c is transformed to two vertices c− and c+ plus an arc
(c−, c+) in the network, and an edge (t, c) in G(S,D) is transformed to two arcs (t, c−) and
(c+, t) in the network. Arcs (c−, c+) have capacity w(c), all other arcs have unit capacity. By
the generalized min-cut max-flow theorem, finding a minimum cut in G(S,D) is equivalent
to computing a maximum flow in the network H(S,D) [13]. Note that for all taxa s, t, the
maximum s-t-flow in H(S,D) equals the maximum t-s-flow. See Fig. 1 for an example. We
reach:

Lemma 3. Let S ⊆ {1, . . . , n}, D ⊆ {1, . . . ,m}, and M ∈ {0, 1, ?}m×n. We construct the
network H := H(S,D) for the input matrix M . The minimum number of 0/1 flips required
in M to make the induced FlipCut graph G(S,D) disconnected, equals the minimum cost
of a minimum 1-t-cut in the network H, over all t = 2, . . . , n.

We now proceed in a recursive top-down procedure to construct the supertree, similar
to [25, 26, 35]. The pseudocode of our algorithm is depicted in Fig. 2; we initially call the
procedure as FlipCut({1, . . . , n}, {1, . . . ,m}). The subsets S ⊆ {1, . . . , n} that are output
during the course of the algorithm, form a hierarchy which can be transformed into the
desired supertree.

As the algorithm reproduces that of Pe’er et al. in case the input trees are compatible
or, equivalently, in case the input matrix allows for a perfect phylogeny without flipping,
we infer:

Lemma 4. In case the input matrix M allows for a perfect phylogeny without flipping,
then the FlipCut algorithm returns the perfect phylogeny tree.

What is the running time of the above algorithm? At most n−1 minimum cuts have to
be computed in total, as this is the number of inner nodes in the resulting phylogenetic tree.
We reach a running time of O(n·T (m,n)) where T (m,n) is the time required for computing
all maximum 1-t-flows in the networks H(S,D) with at most m character vertices and n
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taxa vertices. The running time is dominated by the algorithm we use for constructing
maximum flows. For a network H = (V,E), Hao and Orlin [20] compute maximum flows
from one source to all other vertices in O

(
|V |·|E|·log(|V |2 / |E|)

)
time, using the maximum

flow algorithm of Goldberg and Tarjan. For a bipartite graph with vertex set V1 ∪ V2 and
|V1| ≤ |V2|, running time can be improved to O

(
|V1|·|E|·log(|V1|2 / |E|)

)
[20]. Our networks

H(S,D) are bipartite and have O(n+m) vertices and O(mn) edges, and we may assume
n ≤ m. So, a minimum cut with vertex deletions in G(S,D) can be computed in O(mn2)
time. We infer:

Lemma 5. Given an input matrix M over {0, 1, ?} for n taxa and m characters, the
FlipCut algorithm computes a supertree in O(mn3) time.

As presented here, the FlipCut algorithm may compute different solutions for the same
input: This is because there can be several co-optimal minimum cuts, and our algorithm
arbitrarily chooses one of these cuts. We can solve this by removing all edges and vertices
that are part of at least one minimum cut, similar to the MinCut algorithm [35]. We do
not have to actually enumerate all such minimum cuts, what can be a hard problem, to
find these edges and vertices [27]. In the following, we ignore this modification: We weight
all edges with real numbers, so the existence of several minimum cuts of identical weight
is practically impossible.

Steel et al. [37] list five desirable properties of a supertree method, and it is easy to see
that the FlipCut algorithm satisfies three of them: If the input trees are compatible then
the supertree is a parent tree (Lemma 4); the supertree can be computed in polynomial time
(Lemma 5); and no species is missing from the supertree. With the modification indicated in
the previous paragraph, we can also ensure that changing the order of input trees does not
change the resulting supertree; and that relabeling the input species results in the same
supertree with correspondingly relabeled species. We omit the simple technical details.
Hence, the modified FlipCut algorithm satisfies all five desirable properties from [37].

5 Using branch lengths

We use branch lengths in a straightforward fashion: We weight each column of the matrix
by the length of the branch that was responsible for generating the column. This can be
easily incorporated into the FlipCut graph, by weighting edges and character vertices.
In this way, flipping an entry is cheaper for those branches that are possibly wrong, and
harder for those branches that are most likely true.

In our evaluations, a different weighting called “Edge & Level” showed a better
performance: Each character vertex c corresponds to an internal edge e = (u, v) in one
of the input trees, inducing the corresponding column in the matrix M . We set the weight
of character c and, hence, the corresponding column in M to w(c) := l(e) · depth(v). Here,
l(e) is the length of branch e, and depth(v) is the number of edges on the path from the
root to v in the input tree.

The “Edge & Level” weighting does not cover all the information encoded in the input
trees: As suggested by Willson [40], if taxa t, t′ have a last common ancestor much more
recent than t, t′′ then, even if this is observed in different input trees, we can still infer that
t, t′ are more closely related to each other than to t′′. In the future, we will investigate how
to introduce this concept into the FlipCut framework, as better weightings will surely
improve the performance of our method.



FlipCut Supertrees: Towards Matrix Representation Accuracy in Polynomial Time 9

b f g c d

b c d ea f

3x

g

e

M =



1 1 ? ? ?
1 1 1 1 1
0 1 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 1 1 1
0 0 1 1 1



a
b
c
d
e
f
g

M∗ =



1 1 0 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 1 1 1
0 0 1 1 1



a
b
c
d
e
f
g

c d b fa ge

Fig. 3. The undisputed sibling problem. Left: Four input trees, the lower tree appears three times in the
input. Taxon ‘a’ appears only in the upper tree, and is a sibling of ‘b’. Middle left: The resulting matrix
representation M . Middle right: The optimal MRF solution M∗ with two flips. Right: The solution tree
for M∗. Taxa ‘a’ and ‘b’ are no siblings in this tree.

6 The undisputed sibling problem

Given a set of input trees, assume that some taxon x appears as a sibling of another taxon
y in all the input trees in which it is present at all. In other words, for all trees where
x is present, we also find y, and both are siblings. We call such x an undisputed sibling.
Then, it is reasonable to assume that x is also a sibling of y in the supertree, possibly
accompanied by other siblings. Unfortunately, Flip Supertrees does not necessarily enforce
this: Minimizing the number of flips, it is sometimes cheaper to separate x and y. This
is a seemingly rare but still undesirable effect of this objective function, see Fig. 3 for an
example.

We stress that for practically every known supertree method, there exist certain
pathological examples where the supertree method will produce results that are not in
accordance with what we would expect. This is generally no indication that the supertree
does not work well in practice. Instead, we see this as a possibility to improve upon the
method.

To counter the above effect, we use a data reduction rule that is applied to all input
trees before we compute FlipCut supertrees: If there is an undisputed sibling x of y, then
remove x from all input trees. We repeat this until we find no more undisputed siblings.
Note that by removing an undisputed sibling, we might produce new undisputed siblings.
After we have computed the supertree, we re-insert all undisputed siblings in reverse order.
If y has more than one undisputed sibling at the same time, we re-insert all siblings in one
node, resulting in a polytomy in the supertree.

There exist two possibilities to remove an undisputed sibling x: Either we simply
delete x from the input trees, resulting in a deletion of row x from the input matrix,
and subsequent deletion of all columns that have only a single ‘1’-entry. Or, we decide to
add the weight of x and y in those trees where x is removed. In the matrix, we then treat
0/1-entries to be weighted by a positive integer. In our implementation, we concentrate on
the first variant.

After running the FlipCut supertree algorithm, we re-insert all removed undisputed
siblings in reverse order. Here, we have to make sure that no superfluous internal edges are
inserted when two or more siblings are re-inserted to the same taxon of the supertree, we
omit the simple but tedious technical details.

One can easily implement the Undisputed Sibling preprocessing to run in O(ln2) time
for l input trees: We iterate over all trees. For each tree Ti we do a tree traversal to store the
sibling of each taxon in an array, for those taxa that have a sibling in Ti. If we encounter
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a conflict we label the taxon accordingly. For all taxa that do not have a conflict at this
stage, we again iterate over all trees, and check whether the sibling is not present in those
trees where it is not marked as such. If a taxon passes this test, it is an undisputed sibling
and can be merged. We repeat this until we find no more undisputed siblings.

7 Experiments

We want to evaluate the performance of the FlipCut supertree method in comparison
to Matrix Representation with Parsimony (MRP), Matrix Representation with Flipping
(MRF), Build With Distances (BWD), PhySIC IST, and SuperTriplets. Recall that MC and
MMC supertrees are of comparatively low quality, and consistently worse than BWD [7],
so we excluded these two methods from our study. We use simulated data in our evaluation
since here, the true tree (or model tree) is known. Thus, results of different methods can
be compared at an absolute scale. Our evaluation study proceeds in the usual fashion: A
model tree is generated, and gene sequences are evolved along the branches. Sequences at
the taxa of the model tree are used as datasets from which source trees for a supertree
method are inferred. Finally, the resulting supertree is compared to the model tree using
distance or similarity measures.

For our simulations, we used a dataset2 that was generated using the SMIDGen
protocol described in [38]. Compared to previous protocols, this protocol better reflects
data collection processes used by systematists when gathering empirical data. This includes
creation of densely-sampled clade-based trees as well as sparsely-sampled scaffold trees.
Model trees having either 100, 500 or 1000 taxa were generated with 30 replicates for the
100 and 500 taxon case, and ten replicates for the 1000 taxa case. We defer the details to
the appendix.

For the simulation study, we know that all branch lengths are computed under the same
model of sequence evolution, so a normalization as proposed in Sec. 5 is not necessary. This
can be seen as an optimal condition for the BWD and FlipCut algorithm. We defer the
evaluation on whether branch length normalization changes the quality of reconstructed
supertrees, to a later paper.

We implemented the FlipCut algorithm in Java as part of the EPoS framework [17].
In order to to illustrate the influence of branch-length to our approach, we use two different
weighting schemes for edges and character vertices in the graph model: First, unit costs,
where branch lengths are ignored. Here, the cost of deleting an edge is one, and the cost
of deleting a character vertex c is just the number of zeros in the corresponding column in
matrix M . Second, “Edge & Level”, where we make use of branch lengths. We multiply
deletion costs for character vertex c and all edges incident to c by w(c) = l(e) · depth(v).
Here, l(e) is the length of branch e = (u, v), depth(v) is the number of edges on the path
from the root to v, and c corresponds to v.

MRP supertrees were computed using PAUP* 4.0b10 [39] with TBR branch swapping
strategy, random addition of sequences, no limit on the maximal number of trees in memory,
and 100 replicates. MRF supertrees were generated using the implementation provided
by Duhong Chen3, also with the TBR branch swapping strategy. For 100 taxa model
trees, we used 30 replicates for the search, and in case of 500 and 1000 taxa model trees
only ten replicates, because on our cluster the implementation failed with more replicates.

2 http://www.cs.utexas.edu/~phylo/datasets/supertrees.html
3 http://genome.cs.iastate.edu/CBL/download/
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Model Scaff. MRP MRP MRF BWD PhySIC IST ST FlipCut
tree factor #TO avg* c = 0.5 c = 1 unit E&L

100 20% 19/30 18:47 3:01 ≈ 1 s 16:16 28:02 0:05 < 1 s < 1 s
taxa 50% 20/30 4:36 5:15 ≈ 1 s 17:04 10:57 0:05 < 1 s < 1 s

75% 14/30 16:47 5:40 ≈ 1 s 17:02 12:52 0:06 < 1 s < 1 s
100% 0/30 0:36 4:51 ≈ 1 s 5:54 08:33 0:06 < 1 s < 1 s

500 20% 30/30 – 45:37 20:41 – – 8:56 0:30 0:22
taxa 50% 30/30 – 18:36 29:49 – – 11:59 0:55 0:42

75% 30/30 – 16:36 33:30 – – 15:46 0:40 0:38
100% 30/30 – 34:14 31:54 – – 18:55 0:12 0:15

1000 20% 10/10 – – – – – – 8:21 2:28
taxa 50% 10/10 – – – – – – 15:42 4:41

75% 10/10 – – – – – – 13:23 6:59
100% 10/10 – – – – – – 1:51 1:50

Table 1. Running times (min:sec) of the different algorithms. MRP #TO is the number of timeouts of
MRP where computation was stopped after one hour, and MRP avg* is the average running time of those
runs that stopped before the time limit. ST is the SuperTriplets method. BWD computed four supertrees
for different distance models within the measured time.

BWD supertrees were constructed using the implementation by Stephen J. Willson.4 For
the PhySIC IST supertrees [34] we used the implementation provided by the authors.5

PhySIC IST offers a parameter to tune the method from “veto” to “voting-like”. In
our simulation, we used 0.5 and 1 as parameter settings. We computed SuperTriplets
supertrees [30] using the implementation provided by the authors.6

All computations were performed on a Linux cluster of AMD Opteron-2378, 2.4 GHz
CPUs, with 16 GB of memory.

8 Results

We first consider running times of MRP, MRF, BWD, PhySIC IST, SuperTriplets, and
the FlipCut algorithm presented here, see Table 1. For each instance, we use a running
time limit of one hour in case of 100 and 500 taxon model trees, and two hours in case of
1000 taxon model trees. Entries ‘–’ indicate that no instance was finished within the time
limit: Regarding MRP, PAUP* returns a consensus of the current trees in memory if the
time limit is exceeded. In contrast, the MRF implementation returns no tree. PhySIC IST
crashes for model tree sizes of 500 and 1000 taxa, and the SuperTriplets implementation
crashes for model tree sizes of 1000 taxa.

PAUP* often runs into timeouts even for the smallest instances containing only 100
taxa. Similarly, PhySIC IST can process only instances of this size. MRF, BWD, and
SuperTriplets can process instances with up to 500 taxa in less than one hour; for MRF,
this implies that the heuristic used to solve the underlying hard problem considers only
a smaller part of the search space. In contrast, our FlipCut method is several orders
of magnitude faster than any other method. Even large instances with 1000 taxa can be
processed in a matter of minutes. The “Edge & Level” version requires less than seven
minutes on average, for any of the parameter settings.

4 http://www.public.iastate.edu/~swillson/software.html
5 http://www.atgc-montpellier.fr/physic_ist/ with option ‘-c’
6 http://www.supertriplets.univ-montp2.fr/download.php
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Next, we investigate the accuracy of reconstructed supertrees. We use the Robinson-
Foulds (RF) distance and the MAST distance. Results are shown in Fig. 4 and 5. Recall
that PhySIC IST usually computes non-plenary supertrees: Here, we first restrict the model
tree to the taxon set of the supertree. This favors PhySIC IST for all distance measures
but the MAST distance, so PhySIC IST results must be interpreted with some caution.

For the RF distance, we see that for all model tree sizes, MRP supertrees are of the
best quality. For 100 taxa model trees, MRP, the PhySIC IST variants, and MRF show
the best performance, followed by FlipCut “Edge & Level”. For 500 taxa model trees,
performance from best to worst is: MRP, MRF, FlipCut “Edge & Level”, BWD, and
FlipCut unit costs. SuperTriplets performs good for small and large scaffold density. For
100 taxa model trees, performance from best to worst is: MRP, FlipCut “Edge & Level”,
and FlipCut unit costs.

We also investigated some FlipCut supertrees in detail, in particular those that show
a comparatively high RF distance to the model tree. We find that often, a single taxon is
wrongly separated from a larger clade at an early stage of the algorithm. This has strong
impact on the RF distance which counts common clades, as it usually affects a large number
of clades in the supertree, and all of these contribute to the RF distance.

The MAST distance is based on the size of the largest subtree that is common to
both the model tree and the supertree. For 100 taxa model trees, PhySIC IST 1 performs
significantly worse than all other methods. MRP outperforms the other methods only with
input tree sets with a scaffold density of 75% and 100%. Both FlipCut “Edge & Level”
and MRP compute supertrees such that the MAST between supertree and model tree
consistently contains more than half of the taxa. MRP, MRF, and FlipCut “Edge & Level”
perform almost on par. For 500 taxa model trees, we see three groups: MRP and MRF
perform best, closely followed by FlipCut “Edge & Level” and SuperTriplets. Performance
of FlipCut unit cost and BWD is much worse. Finally, for 1000 taxa model trees, MRP
performs best; FlipCut “Edge & Level” is on second place with similar performance except
for scaffold density 100%; and FlipCut unit cost is much worse. For the MAST distance,
we can see that the early separation of single taxa, as discussed above, does not have a big
impact: Cutting away single taxa early, removes only one taxon from the MAST.
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Fig. 4. Simulation results, quality of reconstructed supertrees. We plot the Robinson-Foulds distance
between the calculated supertree to the true model tree, averaged over all simulation replicates. From
left to right, model trees with 100, 500, and 1000 taxa.



FlipCut Supertrees: Towards Matrix Representation Accuracy in Polynomial Time 13

0.
5

0.
6

0.
7

0.
8

100 Taxa

M
as

t

20 50 75 100
0.

5
0.

6
0.

7
0.

8

500 Taxa

Scaffold Factor
20 50 75 100

0.
5

0.
6

0.
7

0.
8

1000 Taxa

20 50 75 100

Flip Unit Flip Edge BWD MRP MRF S−Triplet Physic 0.5 Physic 1.0

Fig. 5. Simulation results, quality of reconstructed supertrees. We plot the MAST distance between the
calculated supertree and the true model tree, averaged over all simulation replicates. From left to right,
model trees with 100, 500, and 1000 taxa.

We also investigated the resolution as well as the triplet type I and II errors of the
constructed supertrees. Results can be found in the appendix.

9 Conclusion

We have presented a novel supertree method named FlipCut supertrees. Our method
combines the intuition behind both Minimum Flip and MinCut supertrees. In every step of
the algorithm, we seek a cut in the FlipCut graph of minimum cost, and greedily proceed
with the resulting subgraphs. We have presented a preprocessing method, ensuring that
undisputed siblings will be present in the constructed supertree. The FlipCut supertree
method has polynomial running time and is extremely swift in practice. Regarding
supertree quality, performance of the FlipCut algorithm is sometimes even on par with
MRP.

Besides the much better performance in simulations, FlipCut supertrees offer a
fundamental advantage over MinCut supertrees: We have defined a global objective
function (the number of flips in the input matrix) that we want to minimize. Using this
objective function has been shown to result in supertrees of good quality [9]. Besides the
theoretical amenity of such an objective function, this also has practical implications: We
can compare the quality of different supertrees based on our objective function; and we can
also compare the quality of partial solutions. This allows us to compare solutions that are
build by a randomized version of our algorithm; and, we can do a beam search where we
keep several sub-optimal solutions “alive” when building the trees. We conjecture that these
modifications will further improve the quality of FlipCut supertrees, as it will address the
problem of greedily separating a single taxon early. Finally, we want to evaluate methods
for weighting the edges in the FlipCut graph. This includes using bootstrap values as
character weights, as well as inferring ancestry using branch lengths as introduced by
Willson [40]. The “Edge & Level” weighting presented here, is merely meant to demonstrate
the impact of weighting edges on the quality of constructed supertrees. As a nice side effect,
we stress that the weighted version of the FlipCut algorithm is consistently faster than
its unweighted counterpart.
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We note that the Undisputed Sibling preprocessing is not limited to the FlipCut
algorithm; in the future, we want to evaluate whether using this preprocessing in
conjunction with other supertree methods can improve their performance, both with
respect to running times and accuracy. In addition, it is quite obvious that the preprocessing
can be executed faster than O(ln2) time for l trees and n taxa.

Acknowledgment. Additional implementation by Markus Fleischhauer.
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Appendix

A Generating simulated datasets using SMIDGen

Basically, a set of source trees for the supertree methods consists of one scaffold tree and
several clade-based trees. We describe only in brief how these sets are produced, see [38]
for details. First, model trees are generated under a pure birth process. Branch lengths are
perturbed from the ideal, ultrametric situation (no molecular clock). For each model tree,
DNA sequence data sets are simulated under the GTR+Γ+I model, which differ in the
taxa and genes used and whether they are scaffold or clade-based.

For the scaffold data sets, genes appearing at the root of a model tree are evolved along
the tree without going extinct. Five of these so called universal genes are evolved for each
model tree. A subset of taxa from the model tree is selected uniformly at random with a
fixed probability p, called the “scaffold factor”. This results in scaffold data sets having
p × n taxa on average, where n is the number of taxa in the model tree. The scaffold
data sets are generated using scaffold factors of either 0.2, 0.5, 0.75 or 1. For each of the
resulting scaffold data set, maximum likelihood trees are inferred using RAxML [36] in its
GTRMIX default setting.
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Genes for inferring clade-based source trees do not occupy the entire tree. For each of
these 100 genes, called non-universal genes, a single birth node as well as lineages for which
the given gene is lost, are determined using the process described in [38]. To choose clades
for each clade-based data set, the same process is used, whereby the selection is restricted
by setting bounds on the number of extant taxa in a clade to avoid selection of either very
small or very large clades. For each 100-taxon model tree, five clades are selected with a
clade size of at least 20. For each 500-taxon model tree, 15 clades with a clade size of at
least 30, and for each 1000-taxon model tree 25 clades ranging in size between 30 and 500
are selected. For each of the clade chosen, the three non-universal genes are selected that
cover the largest number of taxa in the clade. After these non-universal genes are chosen,
the taxa in the clade are restricted to those that have all three of the genes. As this process
could produce data sets with small numbers of taxa, any clade-based data set with fewer
than ten taxa is excluded.

Summarizing, a source tree set consists of one scaffold tree, that either covers 20%,
50%, 75% or 100% of the taxa from the corresponding model tree on average. Additionally,
a source tree set contains five clade-based trees for a 100-taxon model tree, 15 clade-based
trees for a 500-taxon model tree and 25 clade-based trees for a 1000-taxon model tree.
We exemplary calculated the average number of taxa for three cases: the 30 source tree
sets with 25% scaffold trees belonging to the 100-taxon model trees contain 41.17 taxa on
average, the 30 source tree sets with 50% scaffold trees belonging to the 500 taxon model
trees contain 86.17 taxa on average and the 10 source tree sets with 75% scaffold trees
belonging to the 1000-taxon model trees contain 113.73 taxa on average.

B Results for Triplet distance (Type I and Type II error)

Beside the RF distance and the MAST score, we also considered triplet-based type I and
type II errors. We iterate over all subsets Y ⊆ L(T ) = L(T ′) of cardinality |Y | = 3, and look
at the induced subtrees T |Y and T ′|Y . According to [25], triplets of T, T ′ can be partitioned
into five sets: S(T, T ′) andD(T, T ′), the triplets resolved in T and T ′ that have the same and
different topologies, respectively; R1(T, T

′), the triplets resolved in T but not resolved in T ′;
R2(T, T

′), the triplets not resolved in T but resolved in T ′; X(T, T ′) the triplets unresolved
in T and T ′. Given these five triplet sets and the according triplet rates s, d, r1, r2, x, the
type I error is defined as etI = (d + r2)/(d + s + r2). This corresponds to the proportion
of triplets that are in T ′ but not in T and is sometimes called false positive. Accordingly,
the type II error (sometimes called false negative) corresponds to the proportion of triplets
that are not in T ′ but in T , and is defined as etII = (d + r1)/(d + s + r1). We stress out
that the type II error rate is closely related to the triplet-fit similarity from [25], which is
defined as 1− etII . Results concerning the type I and type II error can be found in Fig. 6
and 7.

C Results for Resolution

Resolution was measured as the number of clades in the inferred supertree relative to the
total number of clades on a fully binary tree of the same size (n− 2 for an unrooted tree,
where n is the number of taxa). Resolution varies between 0 and 1, where 0 indicates a
unresolved bush and 1 indicates a binary supertree. Results concerning the resolution can
be found in Fig. 8
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Fig. 6. Simulation results, quality of reconstructed supertrees. We plot the triplet-based type II error
between the calculated supertree and the true model tree, averaged over all simulation replicates. From left
to right, the figure shows type II errors between the supertrees and 100, 500 and 1000 taxon model trees.
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Fig. 7. Simulation results, quality of reconstructed supertrees. We plot the triplet-based type I error between
the calculated supertree and the true model tree, averaged over all simulation replicates. From left to right,
the figure shows type I errors between the supertrees and 100, 500 and 1000 taxon model trees.
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Fig. 8. Simulation results, resolution of reconstructed supertrees. We plot the resolution of supertrees
averaged over all simulation replicates. From left to right, the figure shows resolution of supertrees belonging
to 100, 500 and 1000 taxon model trees.


