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In a recently published paper [GK12] we describe a new fast and mem-
ory efficient string graph-based sequence assembler: Readjoiner. In this
extended abstract, we summarize the background, methods and results.

Background

The amount of data delivered by next-generation DNA sequencing tech-
nologies challenges the current generation of de novo sequence assemblers
based on De Bruijn graphs.

An alternative framework of growing interest is the assembly string graph
[Mye05]. As the classical overlap graph, the string graph represents se-
quencing reads by vertices and overlaps between reads by edges: however,
in the string graph only irreducible suffix-prefix matches are considered.

The string graph combines the strengths of the classical overlap-layout-
consensus paradigma with a compact representation suitable for the next-
generation sequencing datasets. The main advantage over the De Bruijn
graph is that it does not require to artificially split the reads into k-
mers, thus improving the assembly of sequences containing short repeats.
Furthermore, the string graph is more compact than the De Bruijn graph,
thus allowing to efficiently handle larger datasets.

To construct the string graph, fast and space efficient algorithms for the
computation of all suffix-prefix matches are required. Previous approaches
use a suffix array (Edena, [HFFT08]) or an FM-index (SGA, [SD12]) or a
compact representation of the overlap graph (Leap, [DR11]).



Methods

We developed efficient methods for the construction of a string graph
from a set of sequencing reads. We use suffix sorting and scanning meth-
ods to compute suffix-prefix matches; furthermore, transitive edges are
recognized early in the process and excluded from the graph.

The first step of our assembly approach is to eliminate reads that are
prefixes or suffixes of other reads: these are recognized by lexicographically
sorting all reads and their reverse complements, using a modified radixsort
for strings [KR09].

In the following step, suffix-prefix matches longer than ¢,,;, are computed,
where £,,;, is an user-defined parameter. The method consists of two main
algorithms. The first algorithm identifies and lexicographically sorts all
SPM-relevant suffizes: these are suffixes of reads, sharing a prefix of length
k < lpn with some read in the readset. Here k is a parameter allowing
for time / space tradeoffs in the computation. The second algorithm
enumerates the suffix-prefix matches given a sorted list of SPM-relevant
suffixes.

SPM-relevant suffixes are sorted using a strategy borrowed from the count-
ing sort algorithm [CLR90]. An efficient solution is achieved by combining
the use of sorted buffers for the elements to be counted/inserted, a filter
based on substrings of the initial k-mers of the reads and a partitioning
strategy considerably reducing the space peak of the implementation.

The suffix-prefix matches are computed using an algorithm based on a
bottom-up traversal of the lcp-inverval tree. This is obtained by process-
ing the buckets of SPM-relevant suffixes with a variant of the algorithm
presented in [AKOO04], additionally delivering the leaf edges of the virtual
lcp-interval tree.

In order to only output irreducible suffix-prefix matches, we maintain
an additional trie-data structure and exploit a novel characterization of
transitive suffix-prefix matches.

The assembly string graph is constructed from the list of all irreducible
suffix-prefix matches, as described in [Mye05]. Heuristically, bubbles and
short dead-end paths likely arising from sequencing errors, are option-
ally removed from the graph. Finally, the sequence corresponding to all
unbranched paths in the graph is output as a collection of contigs.



Results and Conclusion

We implemented our methods in a new open source sequence assembler,
called Readjoiner, as part of the GenomeTools [GEN] genome analysis
suite. Readjoiner is freely available at http://www.zbh.uni-hamburg.
de/readjoiner.

We extensively evaluated our assembler on simulated error-free sequencing
read sets based on human genomic sequences. We compared the perfor-
mance of Readjoiner with that of the previous string graph-based tools:
Edena [HFFT08], SGA [SD12] and Leap [DR11]. The results were eval-
uated using metrics developed by the Assemblathon project [EBSJ*11]
and using the Plantagora assessment tool [BMRY11].

Our tests show that Readjoiner is faster and more space efficient than
previous string graph-based tools. Readjoiner was 13 — 14x faster than
Edena, 19 — 20x faster than SGA and 1.6 — 1.8 faster than LEAP. Fur-
thermore it uses about 9.1 —9.3x less memory than Edena, 1.1 —1.2X less
memory than SGA and 1.6 — 3.0x less memory than LEAP. Furthermore,
it scales well for large datasets. For example, a 40 x coverage human
genome dataset (100 nt reads for a total of 115 Gb) can be assembled on
a single core in 51 hours using 52 Gb RAM.

Readjoiner is actively developed and improvements over the version de-
scribed in [GK12] have been achieved. For example, suffix-prefix matches
derived from independent parts of our data structures are computed in
threads. We plan to integrate an error correction algorithm and incorpo-
rate mate pairs information during the assembly phase.

We would like to remark that our paper, published less than a month ago,
attracts considerable interest: besides acquiring the “Highly accessed”
designation by the publisher (BioMed Central), the paper was, as of May
31th, the most viewed paper for BMC Bioinformatics during May 2012
[BMC12].
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