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Abstract: Mass spectrometry allows sensitive, automated and
high-throughput analysis of small molecules. In principle, tandem
mass spectrometry allows us to identify “unknown” small molecules
not in any database, but the automated interpretation of such data
is in its infancy. Some years ago, fragmentation trees have been
introduced for the automated analysis of the fragmentation pat-
terns of small molecules. We have recently presented a method for
the automated comparison of such fragmentation patterns, based
on aligning the compounds’ fragmentation trees. This method en-
ables us to cluster compounds based solely on their fragmentation
patterns, and resulting clusterings show a good agreement with
known compound classes. We also show that fragmentation pattern
similarities are strongly correlated with the chemical similarity of
molecules. Finally, we presented a tool for searching a database
for compounds with fragmentation pattern similar to an unknown
sample compound. Our method allows fully automated computa-
tional identification of small molecules that cannot be found in any
database.

Extended abstract of Rasche et al., Anal. Chem., 84(7):3417–3426,
2012 [RSH+12].

1 Introduction

Mass spectrometry (MS) is a key analytical technology for detecting and
identifying small molecules such as metabolites [CLH+08]. It is orders of



magnitude more sensitive than nuclear magnetic resonance (NMR). Sev-
eral analytical techniques have been developed, most notably gas chro-
matography MS (GC-MS) and liquid chromatography MS (LC-MS). LC-
MS is usually combined with a gentle ionization, that results in minimal
fragmentation of the adduct ions formed. Molecules can be further an-
alyzed using tandem MS: Molecules are mass-selected, fragmented, and
the mass-to-charge ratios (m/z) of the resulting fragments recorded.

Fragmentation in LC-MS experiments (usually collision-induced dissocia-
tion (CID)) is less reproducible than fragmentation by electron ionization
for GC-MS. Even the time-consuming manual analysis of such data, as
well as searching in spectral libraries, are major problems. Apart from
a few pioneering studies, there are few computational methods for the
automated analysis of tandem MS data from small molecules.

For decades, MS experts have manually determined fragmentation path-
ways to explain tandem MS data and determine the molecular structure.
In 2008, Böcker and Rasche [BR08] presented an automated and swift
method for annotating tandem MS data using a hypothetical fragmenta-
tion tree (FT). Tree nodes are annotated with the molecular formulas of
the fragments and the edges represent (neutral or radical) losses. Com-
puting FTs does not require databases of compound structures or of mass
spectra. Neither does it require, apart from lists of common and im-
plausible losses, expert knowledge of fragmentation. Expert evaluation
suggests that the FTs are of very good quality [RSM+11]. Similar FTs
can be identified using visual comparison, which indicates some similarity
in the structure of the underlying compounds. Unfortunately, “manual
comparison of FTs is also laborious and time-consuming” [RSM+11].

In [RSH+12], we presented an automated method for comparing the FTs
of two compounds. This allows us to use FTs in applications such as
database searching, where we replace the direct comparison of mass spec-
tra by the comparison of the (annotated and more informative) FTs. Our
method is based on local tree alignments, generalizing local sequence align-
ments. We assume that structural similarity is inherently coded in the
CID spectra fragments. FT similarity is defined by its edges, which rep-
resent losses and nodes, representing fragments. The local tree alignment
contains those parts of the two trees where similar fragmentation cascades
occurred.

Aligning FTs when the molecular structure of one compound is known can
help elucidate the structure of the unknown compound. In [RSH+12], we
presented three workflows based on similarity scores. First, we compute
pairwise tree alignments for all compounds and so generate a pairwise



similarity matrix. We then cluster the compounds based solely on this
similarity measure. We find that the resulting clusters agree well with
the structural properties of the compounds. Second, we showed that FT
similarities and structural similarities (Tanimoto scores) are strongly cor-
related. Third, we determine the similarities of a fragmentation tree from
an unknown compound with all trees in a database, to search for related
compounds. To filter out spurious hits, we presented a statistical evalu-
ation based on decoy database searching. We named this approach frag-
mentation tree basic local alignment search tool or FT-BLAST for short.
Finally, as a proof of principle we showed how biological samples from
Icelandic poppy (P. nudicaule) can be analyzed in this framework.

2 Methods

We shortly recall the most important principle of our FT alignment method
introduced in [RSH+12], see there for all details. For the automated com-
parison of FTs we followed the paradigm of pairwise local alignments. We
defined a simple similarity measure on the edges (losses) and nodes (frag-
ments) of the two FTs. We generalized this similarity measure to trees
of identical topology and summed the similarity of tree edges. We also
allowed for the insertion and deletion of edges. We searched for subtrees
in the two FTs that maximized our similarity measure.

Similarity of subtrees was defined as the sum of similarities of edges which,
in turn, was chosen to reward identical losses and penalize distinct losses
and insertions or deletions. Edge similarities were modified based on the
number of non-hydrogen atoms contained. Similarity between fragments
(nodes) was also rewarded or penalized. We modified a known recurrence
for the problem in three ways. First, we also considered edge similarities.
Second, we computed local alignments for maximum subtree similarity by
adding a “zero-case” to the recurrence, corresponding to the leaves of the
subtree. Third, we scored join nodes where two losses were combined into
one, corresponding to the non-appearance of intermediate fragmentation
steps. Alignment scores will clearly be large for large trees and small for
small trees, so we normalized similarities by perfect match scores. To do
this we computed for each FT the alignment score against itself, then used
the minimum of the two scores, taken to the power of 0.5. We refrained
from using the similarity matrix directly. Instead, for each compound we
viewed its similarity matrix column as a fingerprint (or feature vector),
as is done with gene expression data. See Fig. 1 for an example.



3 Discussion

To achieve the full potential of small molecule MS analysis and to over-
come limitations of spectral libraries, we need methods for the computa-
tional analysis of fragmentation spectra from unknown compounds. Rule-
based approaches for analyzing compound fragmentation spectra may suf-
fer from the tremendous number of rules, both known and unknown. In
addition, completely unknown compounds may not necessarily follow the
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Figure 1: Optimal FT alignment for cystine (10 losses) and methionine
(6 losses). (b) Fragmentation mass spectra used for computing FTs. Molec-
ular structures of cystine (c) and methionine (d).



known rules of fragmentation. Unfortunately, real fragmentation pat-
terns are extremely complicated, and new “rules” are constantly being
introduced. This makes manual compound classification and structure
elucidation cumbersome. In contrast, the approach presented here is fully
automated and “rule-free”, both when computing and aligning FTs. It
only requires sufficiently information-rich fragmentation spectra.

Clustering results in [RSH+12] show the potential of the method to differ-
entiate compound classes. In many cases, large compound classes formed
almost perfectly separated clusters; smaller compound classes were dis-
tributed among several clusters, but clusters contained few outliers. Hier-
archical clustering was applied as a proof-of-concept and to demonstrate
clustering results. Better results can possibly be achieved by other cluster-
ing methods and supervised Machine Learning. Nevertheless, our results
indicate how to deduce the compound class of an unknown when a rea-
sonable number of knowns are clustered simultaneously.

We found strong correlation between FT similarity and chemical similar-
ity. FT similarity must not be understood as a prediction of chemical sim-
ilarity in the sense of Machine Learning methods. However, FT similarity,
expert knowledge, and other sources of information can be combined to
permit the accurate prediction of chemical similarity.

Our method for searching spectral libraries (FT-BLAST) achieves a “larger
profit” than classical spectral comparison methods, as it searches for sim-
ilar, not identical, compounds. We achieved excellent search results for
most compounds: Even when FT-BLAST returned only a single hit it
was often meaningful. Cases where no hits or spurious hits were returned
could often be attributed to small FTs, low quality measurements, or the
absence of similar compounds from the database. FT-BLAST individ-
ually selects the size of the output for each query compound. For this
purpose, we proposed a method for generating a decoy database of FTs
that can be searched simultaneously [RSH+12]. Database searching by
spectral comparison has been in use for decades; but even today, no sensi-
ble methods for generating decoy databases for spectral comparisons have
been developed.

By applying FT-BLAST and clustering to an unknown sample from poppy,
we confirmed eight manual identifications and suggested compound classes
for some other unknowns, as they were unquestionably members of a well-
defined cluster. We also identified the biosynthetic precursor of several
alkaloids, which come from mixed biosynthetic pathways.

FT alignments open a way to a fast classification/identification of metabo-



lites, limiting work spent on ubiquitously occurring “uninteresting” mol-
ecules. Areas of application include natural product discovery, dereplica-
tion, or even inferring biosynthetic pathways and metabolic networks.
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Böttcher, and Sebastian Böcker. Computing fragmentation trees
from tandem mass spectrometry data. Anal Chem, 83:1243–1251,
2011.


