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Dynamic modeling resolves complex hormonal
crosstalk in infected plants

Muhammad Naseem, Dominik Schaack and Thomas Dandekar
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dandekar@biozentrum.uni-wuerzburg.de

Abstract

Owing to their multi faceted interactions analysis of the combined out-
put of plant hormones is always a challenge. Hormonal crosstalk plays a
pivotal role in successful system protection or plant vulnerability. We de-
veloped a dynamical model and analysed the impact of individual plant
hormones in an interactive way. We first established a network combin-
ing available interaction data and then used this molecular interaction
network as a substrate for dynamic simulations on hormonal aspects of
plant immunity. Our analysis revealed that plant hormones such as SA,
GA and CK promote immunity against the infection of Pst DC3000 in
Arabidopsis. On the other hand JA, Auxin and ABA promote vulnera-
bility of Arabidopsis. These findings are in line with current literature,
old and new experiments. Dynamic modelling can be applied to investi-
gate antagonism and synergism between hormonal pathways in plants. It
allows to study infections and host-pathogen interactions and in general
the molecular events during organismic interactions.

1 Introduction

Plant hormones are shared weaponry in pathogen infections. Pathogenic attack
causes hormonal imbalances in plants. Depending upon the trophic nature of
pathogen, either SA (Salicylic Acid) or JA/ET (Jasmonic acid / Ethylene) me-
diated defense pathways are operative in plants [Gra9]. Antagonism between
JA and SA and synergism between ET and JA has long been elucidated (re-
viewed by: [Rob11]. Furthermore, growth regulatory hormones such as auxin
promote JA responses and suppress the SA pathway of resistance [Wan7]. Sim-
ilarly, ABA (Abscisic Acid) antagonizes SA mediated defense signalling while
SA abolishes ABA responses [Rob11]. On the contrary, GA (Gibberellic Acid)
reinforces SA accumulation [Gra9]. It is worth mentioning that Pst DC3000
also promotes in-planta levels of auxin and ABA. Furthermore, it is injecting
a JA mimicry to suppress SA mediated defense. Taking these pathways care-
fully into account, we established a plant immune defence network [Nas12] and
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performed dynamic simulations on various aspects of plant immunity. Here we
highlight key connections in this network (Figure 1) and discuss the implications
of various hormones in plant immune defence.

2 Results and Discussion

We analyzed the impact of phytohormones on immune defense using a Boolean
model. Boolean network models have an advantage over ODE-based kinetic
models in complex networks including immune and pathogen responses. In
contrast to ODE models Boolean network models can also work when kinetic
information is scarce and many nodes are involved [Sch11]. SQUAD (Standard-
ized Qualitative Dynamical Systems; [Phi9]) is a powerful modelling package
which combines Boolean and ODE models. It creates a system of exponential
functions that allows interpolation between the step function of Boolean models
according to the sum of activating and inhibitory input [Phi9]. To generate a
network we integrated hormonal nodes with protein regulatory molecules in the
cell according to the Boolean logic of their interactions (Figure 1; see [Nas12] for
detailed Network topology). To model the impact of plant hormones on plant
immunity, we performed SQUAD simulations by taking individual hormones
as input activating nodes. The activation of PR-1 over time was used as an
index of plant immunity (for detailed methodology see [Nas12]). We found in
the simulations that the three hormones ET, SA and GA activate PR-1 (Fig-
ure 2 D, E, H). These hormones further enhance the signal of the activity of
PR-1 in the presence of Pst, while JA, auxin and ABA diminish even the resid-
ual activity of PR-1 manifested by Pst alone (Figure 2 A). Contrary to the
immunity promoting effect of SA and GA, we saw that auxin, JA and ABA me-
diate susceptibility of Arabidopsis against infection by Pst DC3000. Moreover,
our modelling suggests a promoting role of cytokinin against infection by Pst

DC3000 in Arabidopsis (Figure 2 G). These simulation results are in line with
literature and own new experimental data and thus qualify analysis of Boolean
models [Nas12] as a step forward to investigate plant regulatory and signalling
networks. Boolean models specifically resolve here hormonal crosstalk during
complex host-pathogen interactions in plants.

3 Conclusion

During host pathogen interactions in plants, Pst DC3000 uses effectors to mod-
ulate endogenous levels of phytohormones to mediate susceptibility of the Ara-

bidopsis plant. Our simulations successfully predicted responses when hormone
levels were changed and compared the uninfected plant to the plant infected with
Pst DC3000. Modelling suggests that plant hormones such as SA and GA pro-
mote resistance against infection by Pst DC3000, while JA, auxin and ABA en-
hance susceptibility for infection of the plant. These predicted hormonal effects
are similar to own and previous experimental results. Furthermore, our simu-
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lations suggested promoting effects of cytokinin on plant immunity against the
infection by Pst DC3000 which again could be verified by experiment. Crosstalk
of cytokinins as well as other hormones under different conditions in plants and
other organisms can advantageously be explored with the methods of dynamic
modelling outlined here.
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Figure 1: Logical connections in the plant pathogen hormone interaction
network tested.
Infection with Pst DC3000 (shown with flagellae) in Arabidopsis. Connectivity among nodes is

based either on activation (→) or inhibition (�).We give here only the most central backbone

of interactions. For the detailed network topology modeled please see [Nas12]. PR-1 is a

well-known key marker node for immunity against the infection of Pst in Arabidopsis.
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Figure 2: Modelling the impact of plant hormones on immune defense in
Arabidopsis against by Pst DC3000.
Activity of PR-1 over arbitrary units of time (y-axis) is shown as immune output of the

plant over time (x-axis). Activated nodes of Pst and plant hormones as activating input

signal change the state of immunity in the host. Modelling of hormonal response for: A)

Virulent Pst DC3000 infection and plant immune response B) Pst DC3000 infection after the

application of plant hormone ABA C) auxin D) ethylene E) Gibberellic Acid F) Jasmonic Acid

G) Cytokinin and H) Salicylic Acid. Experimental results qualitatively verified trajectories

and shapes.
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Abstract: NAD+ has gained increased attention during recent
years due to its involvement in cellular signalling and regulation
and changes in NAD metabolism are associated with ageing, di-
abetes and neurodegenerative diseases. Here we review the key
findings of our two recent studies on the theoretical investigation
of NAD metabolism. In the first [dFGZS11], we used elementary
flux mode analysis and revealed unexpected fluxes including futile
cycles and NAD+ signalling without net consumption of NAD+.
We furthermore identified essential enzymes such as NAD+-kinase
(NADK), converting NAD+ into NADP+, and the mononucleotide
adenylyl transferase (NMNAT). The second study [GZP+12], in-
vestigated the phylogeny of this pathway and revealed that the two
NAD salvage pathways exist simultaneously in some species and
that the first enzyme of this pathway in higher eukaryotes (Nam-
phosphoribosyltransferase (NamPT)) seems to have been lost sev-
eral times during evolution. Both analyses successfully combine
bioinformatic approaches with biochemical expertise.

1 Introduction

NAD+ is a key metabolite as it participates in a vast number of redox reac-
tions. Over the past decades it gained additional attention as it is involved
in many signalling reactions that play a role in cell regulation. Changes
in NAD+ metabolism have been found during aging and in metabolic dis-
ease such as diabetes. NAD+ depending signalling reactions include the
consumption of NAD+ and require a constant replenishment of cellular
NAD+ pools. This can be done either by salvaging the product of these
reaction, nicotinamide (Nam), or by synthesising NAD+

de novo from the
amino acids aspartate or tryptophan. As a systematic analysis of NAD
metabolism has not been performed before, we first analysed the under-
lying metabolic network using elementary flux mode (EFM) analysis. As
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NAD+ can be synthesised and degraded by multiple routes, EFMs help to
decompose the network and identify possible metabolic routes and anal-
yse the effect of enzyme deletions. As human and yeast are by far best
investigated organisms regarding NAD metabolism, but show remarkable
differences in their NAD related enzyme composition, we initially recon-
structed the NAD metabolism of these two species as a basis for our
EFM-analysis [dFGZS11].

The results from this initial study showed that the vast majority of NAD+

biosynthesising enzymes are present in yeast and human. However, the
number of NAD+-consuming enzymes differs substantially between the
two species and there are some routes that are present in either hu-
man or yeast. This differences in the NAD metabolism called for the
reconstruction of the evolutionary history of NAD metabolism. Previ-
ous studies for prokaryotes have shown that neither de-novo synthesis
nor salvage of NAD+ are universal and occur via modules of different
genes [GSC+09]. However little is known on how the complexity of NAD
metabolism evolved over time in higher organisms. Therefore, we have
analysed the phylogenetic distribution of NAD metabolism related en-
zymes in 45, mainly higher eukaryotic species [GZP+12].

2 Major findings

We first reconstructed a metabolic network of NAD+ biosynthesis in hu-
man and yeast. These were combinde to create a generalised model that
comprises 113 EFMs. These are metabolic routes that are stoichiomet-
rically and thermodynamically balanced and consists of a minimal set of
enzymes that can operate at steady state. 50 EFMs can be found in hu-
man and 100 in yeast but only 40 are shared. Several of these EFMs
constitute futile cycles, which are routes in the metabolic networks with
no net transformation except hydrolysis of ATP. Whether these futile cy-
cles are of physiological relevance depends on corresponding kinetics and
regulation mechanisms. The much larger number of possible routes found
in yeast is rather surprising. Another tendencies is that within the hu-
man network amidated forms are preferred, while yeast preferentially uses
deamidated forms. Moreover, in both species elementary modes were iden-
tified that allow NAD+ dependent signalling without net consumption of
NAD+. This was not known so far. Furthermore, Nam-mononucleotide
adenelyl transferase (NMNAT) was identified to be essential for NAD+

biosynthesis. This is consistent with experimental findings.
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The combined human-yeast model was used as a basis for the phylogenetic
analysis of NAD+ metabolism in eukaryotes. Looking across 45 mainly
eukaryotic species it becomes apparent that all investigated species are
able to synthesise NAD+ from at least one precursor and most species
have more than one NAD+ biosynthetic pathway. Some species lack the
possibility to synthesise NAD+

de-novo from aspartate or tryptophan and
must therefore live under conditions which provide a sufficient amount of
the NAD precursors nicotinic acid and Nam, commonly known as the vi-
tamin niacin. The enzymes NADK and NMNAT are found in all species
and can be considered to be essential for NAD metabolism supporting our
results from the EFM analysis. Furthermore, the Preiss-Handler pathway
is the most predominant NAD biosynthetic route among organisms sug-
gesting a universal role for the generation of NAD+.

The comparison between yeast and human showed that NamPT is an
enzyme which can be found in humans but not in yeast, while the enzyme
Nam-deaminase (NADA) is present in yeast but not in human. Both
enzyme use Nam and provide the first step for Nam recycling to NAD+ in
the respective species. However, NamPT clearly provides a more efficient
and economic route to NAD+. It had been speculated that those two
enzymes are mutually exclusive [RAGL03]. Surprisingly, the multispecies
comparison reveals a scattered distribution of both enzymes across the
animal kingdom. It rather suggests that NamPT enzymatic function got
lost several times during evolution while the loss of NADA happened once
and is common to all vertebrates. Interestingly, all species identified so
far that have both NADA and NamPT have aquatic habitats. Whether,
this has any physiological implications we do not know and we also do
not know whether the enzymes are indeed expressed simultaneously.

Looking at the relation between NAD+-consuming and Nam-recycling
enzymes we initially assumed that increase of NAD+-consuming enzymes
should be reflected in an increase in biosynthetic routes. This is surpris-
ingly not the case. In contrast we found a parallel phylogenetic appear-
ance of the enzyme Nam-N-methyltransferase which is marking Nam, the
product of NAD+-consuming reactions, for further degradation and thus
removing Nam from recycling to NAD+.

3 Conclusions and future perspectives

The decomposition of the NAD metabolic network has revealed unex-
pected fluxes including futile cycles and NAD+ signalling without net
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consumption of NAD+. The physiological relevance has to be shown ex-
perimentally. Furthermore, some reactions might not occur in the cell, as
our models currently neglect compartmentalisation. The investigation and
integration of the subcellular localisation and the identification of metabo-
lite transporters is therefore crucial to understand NAD metabolism. As
furthermore not all routes identified will be feasible under physiological
conditions we are currently building a kinetic model to better understand
the kinetic constraints that limit NAD+-biosynthesis and -consumption.

The results from our phylogenetic analysis have revealed several inter-
esting aspects that raise important issues. For example, why do some
organisms encode both NADA and NamPT while many others do not? It
has been suggested that the lack of NADA in vertebrates is compensated
by gut microbiotic flora [GSC+09]. Therefore such an interplay between
organisms could serve as a pool for the entry metabolite of the Preiss
Handler pathway. It could also provide a possible explanation for the
concurrent existence of NADA and NamPT in some species.

Another question arising from our analysis is, why higher eukaryotes re-
quire an enzyme for Nam-degradation whereas species with a low NAD+-
consumption do not? Again the answer might be provided by kinetic
modelling as Nam is known to be a potent inhibitor of some NAD+-
consuming enzymes and might therefore interfere with NAD+-dependent
signalling.
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Image-based systems biology: A quantitative
approach to elucidate the kinetics of fungal
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Abstract: Aspergillus fumigatus and Candida albicans are the
major human-pathogenic fungi. There is a variety of experimen-
tal set-ups available to investigate the virulence and morpholo-
gies of both fungi. Imaging of these experiments using fluores-
cence microscopy yields vast amounts of image data which could
not be analysed manually. Therefore, we applied the approach
of ‘image-based systems biology’. It comprises the automated im-
age analysis with subsequent statistical feature analysis, followed
by mathematical modelling. Application of ‘image-based systems
biology’ to A. fumigatus phagocytosis assays and C. albicans epi-
thelial invasion assays reveals important factors of the virulence of
wild-type A. fumigatus and enables the quantitative description of
the morphological transition of C. albicans, during invasion of the
epithelium.

1 Introduction

Elucidation of communication and interplay between the fungal pathogens
and the human host is of great interest. The spatio-temporal resolu-
tion of host-pathogen interactions provides vast amounts of biological
data [Rit10]. For that, imaging technologies, such as fluorescence mi-
croscopy, are often utilised in microbiology [RC11, AKM+11]. Thus, ob-
servation of large amounts of cell assays is possible leading to additional
insights into biological processes which are, so far, not achievable with
‘omics’ data analysis alone. However, the very time-consuming and highly
error-prone manual analysis of the large amounts of data represents the
bottleneck of the analysis [JMK+07, NHL+06]. Therefore, an automated
approach is at need since systematic studies of comprehensive mutant
screenings cannot be performed otherwise. Automatic analysis of spatio-
temporal data sets provides morphological features, as well as spatial and
temporal dynamics of observed systems [RGH+10]. These observations
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represent a useful source for verifying or driving new hypotheses and,
thus, can be incorporated into system models [CGT+08]. Integration of
image analysis is the key of the ‘image-based systems biology’ approach.
The gained quantitative and morphological features of the system under
consideration, as well as interactions in the communication between host
and pathogen during fungal infections are further statistically analysed
to determine important characteristics of the system. Subsequently, the
quantitative features are used to build and test mathematical models of
certain processes. In this paper the application of the quantitative ap-
proach ‘image-based systems biology’ is highlighted on two different fun-
gal experiments: (i) Aspergillus fumigatus phagocytosis assays [MTG+11]
and (ii) Candida albicans epithelial invasion assays [MWL+].

2 Fungal virulence and morphology

First, the host-pathogen interactions betweenA. fumigatus and macropha-
ges shortly after infection were investigated using phagocytosis assays of
different A. fumigatus strains. In the early stages of infection A. fumigatus

resides in its conidial form and is phagocytosed by macrophages. An au-
tomated image analysis algorithm was developed to successfully recognise
conidia and macrophages [MTG+11]. The subsequent feature analysis re-
vealed a decreased adhesion ratio for the pksP mutant compared to the
wild type. Furthermore, the phagocytosis ratio increased as well as the
formation of conidial clusters. We assume that due to the lack of the
outer cell wall layer (rodlet/ melanin layer) α and β1-3glucans are ex-
posed which enhance the recognition by macrophages and the increase in
the aggregation behaviour. Finally, we rigorously validated the segmen-
tation and classification algorithm, involving a quantitative comparison
with a manual analysis by experts. This showed high precision and sensi-
tivity scores and facilitated the adaptation to further experiments. Next,
we extended and applied the algorithm to epithelial invasion assays of
C. albicans [MWL+]. These assays were carried out hourly for the first
six hours of infection. During that time C. albicans is initially in its
yeast form and starts adhering to the epithelial surface. This is followed
by hyphae formation which triggers a tighter adhesion, thus facilitating
active penetration of the host surface or inducing endocytosis by the ep-
ithelium. To account for the different cell morphologies of C. albicans

the automated image analysis algorithm was extended to recognise spher-
ical and cylindrical cells. Following the ‘image-based systems biology’
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approach we statistically analysed the acquired features. The interpreta-
tion of these data was supported by two mathematical models, the kinetic
growth model and the kinetic transition model, that were developed in
terms of systems of ordinary differential equations. The kinetic growth
model describes the increase in hyphal length and revealed that hyphae
undergo mass invasion of epithelial cells immediately following primary
hypha formation. Based on the kinetic transition model, the route of
invasion was quantified in the state space of non-invasive and invasive
fungal cells depending on their number of hyphae. This analysis revealed
that the fungal decision to form primary hypha represents an ultimate
commitment to invasive growth and suggests that in vivo the yeast to
hypha transition must be under extremely tight negative regulation by
yet unknown mechanisms that avoid the transition from commensal to
invasive/pathogenic growth.

3 Conclusion

In this review we highlighted the findings of two investigations performed
recently on infection processes of human-pathogenic fungi [MTG+11, MWL+].
In this context, we applied the ‘image-based systems biology’ approach
for the first time. It comprises (i) analysis of large sets of microscopy
image data in an automated fashion, (ii) statistical quantification of char-
acteristic features on the basis of the high-throughput and high-content
screening of image data, and (iii) integration of acquired spatio-temporal
information into mathematical models. Our results are promising with
regard to complementing traditional systems biology approaches based
on gene-expression data and pave the way for new insights into fungal
infection processes.
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Abstract: Mass spectrometry allows sensitive, automated and
high-throughput analysis of small molecules. In principle, tandem
mass spectrometry allows us to identify “unknown” small molecules
not in any database, but the automated interpretation of such data
is in its infancy. Some years ago, fragmentation trees have been
introduced for the automated analysis of the fragmentation pat-
terns of small molecules. We have recently presented a method for
the automated comparison of such fragmentation patterns, based
on aligning the compounds’ fragmentation trees. This method en-
ables us to cluster compounds based solely on their fragmentation
patterns, and resulting clusterings show a good agreement with
known compound classes. We also show that fragmentation pattern
similarities are strongly correlated with the chemical similarity of
molecules. Finally, we presented a tool for searching a database
for compounds with fragmentation pattern similar to an unknown
sample compound. Our method allows fully automated computa-
tional identification of small molecules that cannot be found in any
database.

Extended abstract of Rasche et al., Anal. Chem., 84(7):3417–3426,
2012 [RSH+12].

1 Introduction

Mass spectrometry (MS) is a key analytical technology for detecting and
identifying small molecules such as metabolites [CLH+08]. It is orders of
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magnitude more sensitive than nuclear magnetic resonance (NMR). Sev-
eral analytical techniques have been developed, most notably gas chro-
matography MS (GC-MS) and liquid chromatography MS (LC-MS). LC-
MS is usually combined with a gentle ionization, that results in minimal
fragmentation of the adduct ions formed. Molecules can be further an-
alyzed using tandem MS: Molecules are mass-selected, fragmented, and
the mass-to-charge ratios (m/z) of the resulting fragments recorded.

Fragmentation in LC-MS experiments (usually collision-induced dissocia-
tion (CID)) is less reproducible than fragmentation by electron ionization
for GC-MS. Even the time-consuming manual analysis of such data, as
well as searching in spectral libraries, are major problems. Apart from
a few pioneering studies, there are few computational methods for the
automated analysis of tandem MS data from small molecules.

For decades, MS experts have manually determined fragmentation path-
ways to explain tandem MS data and determine the molecular structure.
In 2008, Böcker and Rasche [BR08] presented an automated and swift
method for annotating tandem MS data using a hypothetical fragmenta-

tion tree (FT). Tree nodes are annotated with the molecular formulas of
the fragments and the edges represent (neutral or radical) losses. Com-
puting FTs does not require databases of compound structures or of mass
spectra. Neither does it require, apart from lists of common and im-
plausible losses, expert knowledge of fragmentation. Expert evaluation
suggests that the FTs are of very good quality [RSM+11]. Similar FTs
can be identified using visual comparison, which indicates some similarity
in the structure of the underlying compounds. Unfortunately, “manual
comparison of FTs is also laborious and time-consuming” [RSM+11].

In [RSH+12], we presented an automated method for comparing the FTs
of two compounds. This allows us to use FTs in applications such as
database searching, where we replace the direct comparison of mass spec-
tra by the comparison of the (annotated and more informative) FTs. Our
method is based on local tree alignments, generalizing local sequence align-
ments. We assume that structural similarity is inherently coded in the
CID spectra fragments. FT similarity is defined by its edges, which rep-
resent losses and nodes, representing fragments. The local tree alignment
contains those parts of the two trees where similar fragmentation cascades
occurred.

Aligning FTs when the molecular structure of one compound is known can
help elucidate the structure of the unknown compound. In [RSH+12], we
presented three workflows based on similarity scores. First, we compute
pairwise tree alignments for all compounds and so generate a pairwise
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similarity matrix. We then cluster the compounds based solely on this
similarity measure. We find that the resulting clusters agree well with
the structural properties of the compounds. Second, we showed that FT
similarities and structural similarities (Tanimoto scores) are strongly cor-
related. Third, we determine the similarities of a fragmentation tree from
an unknown compound with all trees in a database, to search for related
compounds. To filter out spurious hits, we presented a statistical evalu-
ation based on decoy database searching. We named this approach frag-

mentation tree basic local alignment search tool or FT-BLAST for short.
Finally, as a proof of principle we showed how biological samples from
Icelandic poppy (P. nudicaule) can be analyzed in this framework.

2 Methods

We shortly recall the most important principle of our FT alignment method
introduced in [RSH+12], see there for all details. For the automated com-
parison of FTs we followed the paradigm of pairwise local alignments. We
defined a simple similarity measure on the edges (losses) and nodes (frag-
ments) of the two FTs. We generalized this similarity measure to trees
of identical topology and summed the similarity of tree edges. We also
allowed for the insertion and deletion of edges. We searched for subtrees
in the two FTs that maximized our similarity measure.

Similarity of subtrees was defined as the sum of similarities of edges which,
in turn, was chosen to reward identical losses and penalize distinct losses
and insertions or deletions. Edge similarities were modified based on the
number of non-hydrogen atoms contained. Similarity between fragments
(nodes) was also rewarded or penalized. We modified a known recurrence
for the problem in three ways. First, we also considered edge similarities.
Second, we computed local alignments for maximum subtree similarity by
adding a “zero-case” to the recurrence, corresponding to the leaves of the
subtree. Third, we scored join nodes where two losses were combined into
one, corresponding to the non-appearance of intermediate fragmentation
steps. Alignment scores will clearly be large for large trees and small for
small trees, so we normalized similarities by perfect match scores. To do
this we computed for each FT the alignment score against itself, then used
the minimum of the two scores, taken to the power of 0.5. We refrained
from using the similarity matrix directly. Instead, for each compound we
viewed its similarity matrix column as a fingerprint (or feature vector),
as is done with gene expression data. See Fig. 1 for an example.
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3 Discussion

To achieve the full potential of small molecule MS analysis and to over-
come limitations of spectral libraries, we need methods for the computa-
tional analysis of fragmentation spectra from unknown compounds. Rule-
based approaches for analyzing compound fragmentation spectra may suf-
fer from the tremendous number of rules, both known and unknown. In
addition, completely unknown compounds may not necessarily follow the

Figure 1: Optimal FT alignment for cystine (10 losses) and methionine
(6 losses). (b) Fragmentation mass spectra used for computing FTs. Molec-
ular structures of cystine (c) and methionine (d).
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known rules of fragmentation. Unfortunately, real fragmentation pat-
terns are extremely complicated, and new “rules” are constantly being
introduced. This makes manual compound classification and structure
elucidation cumbersome. In contrast, the approach presented here is fully
automated and “rule-free”, both when computing and aligning FTs. It
only requires sufficiently information-rich fragmentation spectra.

Clustering results in [RSH+12] show the potential of the method to differ-
entiate compound classes. In many cases, large compound classes formed
almost perfectly separated clusters; smaller compound classes were dis-
tributed among several clusters, but clusters contained few outliers. Hier-
archical clustering was applied as a proof-of-concept and to demonstrate
clustering results. Better results can possibly be achieved by other cluster-
ing methods and supervised Machine Learning. Nevertheless, our results
indicate how to deduce the compound class of an unknown when a rea-
sonable number of knowns are clustered simultaneously.

We found strong correlation between FT similarity and chemical similar-
ity. FT similarity must not be understood as a prediction of chemical sim-
ilarity in the sense of Machine Learning methods. However, FT similarity,
expert knowledge, and other sources of information can be combined to
permit the accurate prediction of chemical similarity.

Our method for searching spectral libraries (FT-BLAST) achieves a “larger
profit” than classical spectral comparison methods, as it searches for sim-
ilar, not identical, compounds. We achieved excellent search results for
most compounds: Even when FT-BLAST returned only a single hit it
was often meaningful. Cases where no hits or spurious hits were returned
could often be attributed to small FTs, low quality measurements, or the
absence of similar compounds from the database. FT-BLAST individ-
ually selects the size of the output for each query compound. For this
purpose, we proposed a method for generating a decoy database of FTs
that can be searched simultaneously [RSH+12]. Database searching by
spectral comparison has been in use for decades; but even today, no sensi-
ble methods for generating decoy databases for spectral comparisons have
been developed.

By applying FT-BLAST and clustering to an unknown sample from poppy,
we confirmed eight manual identifications and suggested compound classes
for some other unknowns, as they were unquestionably members of a well-
defined cluster. We also identified the biosynthetic precursor of several
alkaloids, which come from mixed biosynthetic pathways.

FT alignments open a way to a fast classification/identification of metabo-
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lites, limiting work spent on ubiquitously occurring “uninteresting” mol-
ecules. Areas of application include natural product discovery, dereplica-
tion, or even inferring biosynthetic pathways and metabolic networks.
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Abstract: KeyPathwayMiner is a method for extracting and vi-
sualizing disease-specific key pathways. We identify sub-graphs,
where most genes are dysregulated in a typical case-control study.
Therefore, we extract all maximal connected sub-networks where
all but K genes are differentially expressed/methylated/etc. in
all but L cases. This model yields a very high interpretability
of the results since K and L have real-world implications. We
will exemplarily demonstrate KeyPathwayMiner’s flexibility by an-
alyzing promoter methylation as well as gene expression assays
of complex diseases: Huntington’s disease and colorectal cancer,
respectively. Here, we identify biologically sound key pathways
that highly overlap with known disease-related genes (literature
research). Our KeyPathwayMiner implementation uses a combina-
tion of fixed-parameter, approximation and heuristic algorithms for
tackling the underlying NP-hard problem. It is available as a Cy-
toscape plugin and has been downloaded and installed ˜900 times
since its first release in Oct. 2011 (˜5x per day). Availability:
http://keypathwayminer.mpi-inf.mpg.de

1 Introduction and Overview

While combining networks with OMICS data (known as network enrich-
ment, for instance) is a long-standing problem in computational biology,
little attention has been paid to interpretability of the results. We usu-
ally seek to identify a densely connected sub-graph in a given PPI network
that is highly expressed in a given OMICS data set (typically a transcrip-
tomics study). For complex diseases, such as cancer, gold standard data
doesn’t exist, i.e. known key pathways with many relevant genes, such
that setting the parameters, thresholds, etc. for the underlying combined
statistics is tricky and still unsolved. When computing such statistics, we
need at least one such parameter that balances network density and cor-
relation in the expression data, even when we neglect modeling the noise
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Figure 1: Largest subnetwork found containing the BRAF gene for K=8 and
L=25. Red nodes represent exception nodes, triangle nodes are hypermethy-
lated genes that also show significant decrease in gene expression levels, and
nodes with a purple border are genes with promoters classified as CIMP.

levels in the two data types. We circumvent this problem by providing
the end user with an easy-to-interpret model that asks for two param-
eters with a strong real-world meaning: K and L. KeyPathwayMiner
computes all maximal connected sub-networks where all genes but K are
expressed/differentially expressed/methylated/active/etc. in all patients
but at most L. For the colorectal cancer data set, for instance, we find a
58-genes-key pathway (Figure 1) in the human interactome (approx. 10k
proteins, 40k interactions) where all genes but K=8 have a hypermethy-
lation event in the promoter in all 128 patients but at most L=25. In
another example we studied Huntington’s disease with gene expression
data (see Figure 2 for the corresponding key pathway). We applied Key-
PathwayMiner to many more data sets and compared it to similar tools
obtaining equal or better results (see [AFK+12, BFK+12]). Since our first
publication in Oct. 2011, the community downloaded and installed the
Cytoscape plugin ˜900x (˜5x per day).
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Figure 2: Huntington’s disease (HD) key pathway. Here, our KeyPathwayMiner
Cytoscape plug-in also used the human interactome network and genome-wide
gene expression studies for 38 HD patients (and 32 healthy persons in control
group) as input. The illustrated network is the maximal connected sub-network
where all genes/proteins but K=8 are differentially expressed in all 38 HD
patients but L=6. Red nodes represent exception genes, nodes with blue circles
are genes known to be HD-related (from literature).

2 Methods and Model Summary

We provide two slightly varying models for the above introduced problem
of finding key pathways:

1. INES: For all genes that have been measured in the case-control
study, the profile over all cases is attached. All genes that are not
dysregulated in all cases but L are considered ”exception genes”.
We find all maximal, connected sub-networks containing at most K
such ”exception-genes”.

2. GLONE: This is a slightly modified, alternative model. Now we
identify all maximal, connected sub-networks where all but at most
K nodes are expressed in all cases but in total (!) at most L, i.e.
accumulated over all cases and all nodes in a solution. While INES
tends to prefer solutions with many hub nodes as exception genes,
GLONE circumvents this potential drawback (see [BFK+12]).
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Since the underlying optimization problems are computationally hard, we
developed a set of three different algorithmic strategies: an exact fixed-
parameter algorithm (INES only, fast for K < 3), a greedy approximation
(INES only, fast but less accurate for higher values of K and L), as well
as two Ant Colony Optimization schemes (INES and GLONE, fast and
accurate for medium to high values of K, generally accurate for all tested
K and L values).

3 Conclusion

Overall, KeyPathwayMiner tackles the problem of finding biomedically
relevant pathways by directly combining biological networks with differ-
ent types of OMICS data. In contrast to existing methods, we ensure
interpretability and usability while still being robust, accurate and fast
on real world application cases. For details, please refer to the three cor-
responding papers: [AKW+11, AFK+12, BFK+12]
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Kenneth Haug1, Reza M. Salek1,2, Pablo Conesa1, Paula de Matos1,
Eamonn Maguire3, Tejasvi Mahendraker1, Philippe Rocca-Serra3,

Susanna-Assunta Sansone3, Julian L. Griffin2 and Christoph Steinbeck1,∗
1European Bioinformatics Institute, Wellcome Trust Genome Campus,
Hinxton, Cambridgeshire, CB10 1SD; 2Elsie Widdowson Laboratory,
Fulbourn Road, Cambridge, CB1 9NL, UK, University of Cambridge,

Department of Biochemistry, Cambridge CB2 1QW ; 3Oxford e-Research
Centre, University of Oxford, Oxford, UK.

∗steinbeck@ebi.ac.uk

Abstract: Exciting funding initiatives are emerging in Europe and
the US for metabolomics data production, storage, dissemination
and analysis. This is based on a rich ecosystem of resources around
the world, which has been build during the past ten year, including
but not limited to resources such as MassBank in Japan and the
Human Metabolome Database (HMDB) in Canada. Now, the Eu-
ropean Bioinformatics Institute (EBI) has launched MetaboLights
a database for metabolomics experiments and the associated meta-
data (http://www.ebi.ac.uk/metabolights). It is the first compre-
hensive, cross-species, cross-platform metabolomics database main-
tained by one of the major open access data providers in molecu-
lar biology. In October, the European COSMOS consortium will
start its work on Metabolomics data standardization, publication
and dissemination workflows. The NIH in the US is establishing
6-8 metabolomics services cores as well as a national metabolomics
repository. This paper reports about MetaboLights as a new re-
source for Metabolomics research, summarises the related develop-
ments and outlines how they may consolidate the knowledge man-
agement in this third large omics field next to proteomics and ge-
nomics.

1 Introduction

Metabolomics has become an important phenotyping technique for molec-
ular biology and medicine. It assesses the molecular state of an organism
or collections of organisms through the comprehensive quantitative and
qualitative analysis of all small molecules in cells, tissues, and body flu-
ids. Metabolic processes are at the core of physiology. Consequently,
metabolomics is ideally suited as a medical tool to characterize disease
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states in organisms, as a tool to assessment of organism for their suit-
ability in, for example, renewable energy production or for biotechnolog-
ical applications in general. In addition application of metabolomics in
environmental science, toxicology, food and medical industry is well es-
tablished, growing and documented. Metabolomics studies generate large
amounts of analytical data (Giga- to Terabytes depending on the size of
the study) and therefore impose significant challenges for biomedical and
life science e-infrastructures to cope with such data volumes and ensure
that the data is captured, stored and disseminated based on open and
widely accepted community standards. Years after the first standardi-
sation exercises [FRGea07, TFSea08], metabolomics is now reaching the
state of a mature analytical technique as indicated by the establishment of
6-8 Regional Comprehensive Metabolomics Resource Cores (RCMRCs) by
the NIH in the United States. In addition, we are now facing a rich ecosys-
tem of specialised metabolomics databases as well as the first general
metabolomics repositories and databases emerging. In Europe, the COS-
MOS consortium of 14 leading laboratories in metabolomics will begin its
work on standards, data management and dissemination in Metabolomics.
Here, we outline these developments and show how they may consolidate
the knowledge management in this third large omics field next to pro-
teomics and genomics.

2 MetaboLights – A cross-species repository for metabo-

lomics experiments

The European Bioinformatics Institute (EBI) has recently launched Me-
taboLights, a database for metabolomics experiments and the associated
metadata. It is the first comprehensive, cross-species, cross-platform
metabolomics database maintained by one of the major open access data
providers in molecular biology. MetaboLights lives at http://www.ebi.-
ac.uk/metabolights. For their convenience, users can also use metabo-
lights.org, metabolights.net and metabolights.eu. The EBI ensures long-
term stability and maintenance of the resource. Like all other EBI re-
sources, the MetaboLights database is completely open to the public,
including open access to the data. Data are made available in publicly
accepted open standards compliance with MIBBI (The Minimum Infor-
mation for Biological and Biomedical Investigations) [TFSea08]. The soft-
ware is open source and adheres to the promotion of open source file for-
mats, such as mzML and nmrML. One of the main submission channels
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for MetaboLights’ use is the ISA Tools Suite [SRSFea12]. MetaboLights
is not intended to replace specialist resources for Metabolomics. Rather,
it will build on prior art and collaborate. We are dedicated to close col-
laboration with all major parties involved in the creation of this prior art,
such as the Metabolomics Society, Metabomeeting and the Metabolomics
Standards Initiative (MSI). MetaboLights aims to agree on formal data
sharing agreements with major resources such as the Human Metabolome
Database, the Golm Metabolome Database and the Rikken Metabolomics
Platform. Currently we house selection of experimental raw data and
their associated metadata for different platforms such as NMR, GC-MS
and LC-MS.

Figure 1: MetaboLights general outline

3 Outlook

In October, the European COSMOS (COordination of Standards in Meta-
bOlomicS) consortium will start its work on Metabolomics data standard-
ization, publication and dissemination workflows. It is the aim of COS-
MOS to develop efficient policies to ensure that Metabolomics data is

1. Encoded in open standards to allow barrier-free and widespread
analysis.

2. Tagged with a community-agreed, complete set of metadata (mini-
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mum information standard).

3. Supported by a communally developed set of open source data man-
agement and capturing tools.

4. Disseminated in open-access databases adhering to the above stan-
dards.

5. Supported by vendors and publishers, who require deposition upon
publication

6. Properly interfaced with data in other biomedical and life science
e-infrastructures, such as

• ELIXIR (http://www.elixir-europe.org/),

• BioMedBridges (http://www.biomedbridges.eu/),

• EU-OPENSCREEN (http://www.eu-openscreen.de/) and

• BBMRI (http://www.bbmri.eu/).

During 2012, MetaboLights’ repository layer will be expanded by a refer-
ence layer with chemical, spectroscopic and biological reference informa-
tion about individual metabolites (Figure 1).

The NIH in the US is establishing 6-8 metabolomics services cores as well
as a national metabolomics repository. Together with similar initiatives
in Australia, Japan and hopefully more emerging over time, this opens
the door for a global network of metabolomics data collection, exchange
and dissemination.
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Abstract: Nowadays, we have whole-genome sequences for more
than more than two thousand species available for download from
the NCBI databases. Ongoing improvement of DNA sequencing
technology will further feed this trend. However, the availability
of sequence information is only the first step in understanding how
cells survive, reproduce and adjust their behavior. The molecular
biological mechanisms, which control organized development and
adaptation of complex organisms still remain widely undetermined.
Transcriptional gene regulation is one of the key players here. The
direct juxtaposition of the total number of sequenced species to
the handful of model organisms with known regulations is aston-
ishing. Recently, we investigated how little we even know about
these model organisms. Our aim was to predict the sizes of the
whole-organism regulatory networks of seven species. In particu-
lar, we provided a statistical lower bound for the expected number
of regulations. For E. coli we estimate at most 37% of the expected
gene regulatory interactions to be already discovered, 24% for B.
subtilis, and < 3% for human respectively. We conclude that even
for our best-researched model organisms we still lack substantial
understanding of fundamental molecular control mechanisms, at
least on a large scale.

Pubmed: http://www.ncbi.nlm.nih.gov/pubmed/22585140
Web: http://dx.doi.org/10.1109/TCBB.2012.71

1 Introduction

In 2010, whole-genome sequences of more than 1200 microbes, 3600 viruses
and 39 eukaryotic species, as well as over 2400 sequences for eukaryotic
organelles were available for download at the web site of the National
Center for Biotechnology Information, NCBI [ea11]. The continuously
improving next-generation sequencing techniques will further increase the
number of sequenced species dramatically. The heavily reduced cost for
DNA sequencing by over two orders of magnitude allows us to utilize
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Figure 1: Overview: We aim to infer the size of the nature-given tran-
scriptional gene regulatory network (A) of a specific organism. Given is
a known subnetwork (B), which was sampled by biologists in laborato-
ries and stored in public databases (I). In order to study the reliability of
our prediction, we randomly sample (II) even smaller networks, subsub-
networks (C) and subsequently test if we can predict the known network
size and evaluate the robustness of the approach (III). After verifying the
estimator to be bias-free and robust, we are able to predict (IV) the size
of the nature-given network (A).

this technology as routine method for unraveling the genetic repertoire
of numerous species of varying complexity and ecological, economic and
medical significance [Met10].

However, the availability of genome sequences, even complete ones, is
only the first step towards a comprehensive understanding of how cells
survive, reproduce and adapt to changing environmental conditions. One
major molecular control mechanism of cells is transcriptional gene regu-
lation. Key players are the so-called transcription factors (TFs), proteins
that possess DNA-docking domains to bind certain regions within the
DNA sequence. Thereby they influence the expression of numerous target
genes (TGs) and control genetic programs like growth, survival, reproduc-
tion, digestion, immune responses, etc. Transcriptional gene regulatory
networks (GRN) emerge, with nodes corresponding to genes and directed
edges that represent regulatory interactions [PS92].

Understanding this fundamental molecular control mechanism on a large
scale is one of the most important goals in systems biology and a pre-
requisite for the subsequent modeling and analysis of cell response and
behavior [BWKT09]. However, our current knowledge is limited and the
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Organism ES �EN 95% Lo. Ratio Ratio CI

H. sapiens 3,902 165,807 130,326 2.35% 2.99%
M. musculus 1,730 190,359 157,251 0.91% 1.08%
R. norvegicus 804 421,819 313,890 0.19% 0.26%
A. thaliana

∗ 1,852 569,013 111,026 0.31% 1.67%
E. coli 3,946 15,399 10,562 25.63% 37.36%
B. subtilis 1,391 9,716 5,780 14.31% 24.07%
C. glutamicum 806 9,114 5,696 8.84% 14.15%

∗this is a slightly modified dataset. Please refer to the main paper for an exhaustive
discussion.

Table 1: The table shows a summary of our results for four species. Most
important are the last columns Ratio and Ratio CI, which give the fraction
of known regulatory interactions in relation to the predicted nature-given
network size �EN , i.e. an estimation of how much we have discovered
yet. In the column Ratio, we use the estimation �EN for the comparison,
whereas in Column Ratio CI the lower bound of the 95% confidence in-
terval was used (95% Lo.). The column ES gives the number of known
regulations for each species.

reconstruction of the gene regulatory networks is far from being complete.
Even for E. coli, the model organism with the largest currently available
experimentally validated data for any free-living organism, we have infor-
mation about the transcriptional regulation of only around one third of
the genes [S. 08].

With this short highlight paper, we briefly describe (1) a robust model
to estimate the expected size of transcriptional gene regulatory networks,
i.e. the number of edges, and (2) conclude that we actually know very
little about one of the most important mechanisms that controls genetic
activity.

2 Model and Results

Our estimator model essentially works on graph invariants. GRNs are
directed graphs with two types of nodes (genes): the transcription fac-
tors (TFs) and the target genes (TGs). With our network size prediction
model we account for the two types of nodes but also for three types of
regulatory interactions (edge types): (TF→TF) regulations between two
transcription factors, (TF→TG) regulations between a transcription fac-
tor and target gene and (TF-self) self regulations of transcription factors.
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Subsequently, for each species with a partially known GRN, we calculated
the three edge probabilities. As these probabilities form graph invariants,
we can use them to estimate the total size of the GRN. Two challenges
arise: (1) We lack a gold standard, i.e. a fully known GRN for at least
one organism, that we could use for validating our model. (2) We usu-
ally have only one reference database per species that describes the known
GRN of this organism. Thus assessing the variability of our method is not
straight forward. Figure 1 gives an overview about the utilized methodol-
ogy. For robustness assessment we use bootstrapping methods to receive
confidence intervals for our estimations. Finally, we were interested in
the lower bounds, i.e. how much of an organism’s GRN can we expect to
know in the very best case. We applied our model to seven species, among
them human, mouse, E. coli and B. subtilis. See Table 1 for our major
results for these four species. We found it quite astonishing that even for
E. coli only 37% of the expected GRN is known, in the best case. For
mammals our current knowledge is too limited to even give trustworthy
estimations.

For formal definitions and exhaustive description of the mentioned meth-
ods, please refer to the main paper’s method section [RRTB12].
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Abstract: While a large number of previous studies has explored
the link between the structure of metabolism and its regulation,
the extent to which transcriptional regulation controls metabolism
has not yet been fully elucidated. We address this problem by
integrating a large number of experimental data sets with a genome-
scale metabolic model of Escherichia coli metabolism. We find that
there is a strong connection between the extent of transcriptional
regulation in a metabolic pathway and the protein investment into
this pathway. While pathways associated to a low protein cost tend
to be controlled only in key steps, pathways associated to a high
protein cost are controlled by fine-tuned transcriptional regulatory
programs. These different strategies for the control of metabolic
pathways can be explained by a trade-off between the conflicting
requirements to minimize protein investment and to maintain the
ability to quickly respond to changes in environmental conditions.

1 Introduction

The increasing availability and decreasing prices of experimental tech-
niques have led to an explosion in the number of available experimental
data sets [LVW+07, BKG+09]. These data sets provide an increasingly
comprehensive view on the principles that influence the evolution of the
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regulatory network controlling metabolism [NTSP08]. In this submis-
sion we discuss the results of a previous work [WBG+11], in which we
have used different types of OMICs data sets in order to identify these
global principles of regulatory network evolution in the model organism
Escherichia coli.

2 Results

In order to understand to which extent transcriptional regulation con-
trols metabolism, we investigated the coexpression of enzymes within the
pathways of all biochemically annotated subsystems of E. coli metabolism.
This analysis was based on the concept of elementary flux patterns [KdFS09],
which allowed us to identify pathways in all subsystems of metabolism. By
mapping gene expression data to the corresponding pathways, we found
that pathways in many subsystems of metabolism show a large degree of
coexpression. However, pathways in the subsystems cofactor and pros-
thetic group biosynthesis, glycerophospholipid metabolism, murein recy-
cling, nucleotide salvage pathway and pentose phosphate pathway show
only weak coexpression of pathways. We call these subsystems with a
low coexpression of pathways “transcriptionally sparsely regulated sub-
systems”.

To provide an explanation for these distinct patterns of transcriptional
regulation, we constructed a simplified model of a linear metabolic path-
way that converts a substrate s via four intermediates into a product p.
Dynamic optimization was used to identify specific regulatory programs
(representing time-courses of enzyme concentrations) that allow the cell
to precisely adjust the concentration of the product in a changing en-
vironment while obeying a set of physiological constraints. As objective
function we used the minimization of the change of enzyme concentrations
from initial concentrations and protein costs.

The results of this optimization procedure showed that for a full control of
flux through a pathway, transcriptional regulation of initial and terminal
positions of a pathway is sufficient (sparse transcriptional regulation).
The role of the control of the first enzyme of a pathway is to regulate
the flux into the pathway and avoid the accumulation of intermediates.
In contrast, the control of the terminal reaction of a pathway allows the
cell to precisely adjust the rate of synthesis of the product. Performing
the same optimization for a large number of pathways with randomized
kinetic parameters, we found that these principles hold true regardless
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of kinetic parameters. Moreover, we found that with increasing cost of
enzymes of a pathway (i.e. increasing enzyme concentrations) there is a
shift from the sparse transcriptional regulation of a metabolic pathway
to the coordinated transcriptional control of all enzymes in a pathway
(pervasive transcriptional regulation).

We validated these predictions by an analysis of the position-specific fre-
quency of regulatory events in the pathways of transcriptionally sparsely
regulated subsystems. We confirmed that there is a significant increase
in the frequency of transcriptional regulation at the beginning and end of
pathways. Moreover, we found a significant increase of the frequency of
post-translational regulation at the beginning of pathways. Thus, the con-
trol at the initial positions of pathways is achieved through a combination
of transcriptional as well as post-translational regulation, while control
at the end of pathways is achieved through transcriptional regulation.
In other subsystems that were not identified as being transcriptionally
sparsely regulated by the expression analysis, we did not find this pattern
of transcriptional regulation, while the pattern of post-translational reg-
ulation prevailed. Investigating data of protein costs (defined as the total
mass of a particular protein in the cell) for different subsystems we found
that in particular subsystems with a small cost of proteins show a pattern
of transcriptional sparse regulation.

3 Discussion

Since we were able to confirm the predictions of the optimization, there
appears to be an evolutionary mechanism favoring sparse transcriptional
regulation in pathways with low-cost enzymes. We propose an evolution-
ary trade-off between the two conflicting objectives of the minimization of
protein investment and the minimization of response time. The optimal
strategy to reduce protein investment is to transcriptionally control pro-
teins and express them only if they are needed. However, response times
on a transcriptional level are usually very slow. Optimal response times
can be achieved through a constitutive expression of most enzymes in a
pathway and a transcriptional control of key steps. The interplay between
both objectives results in a pervasive transcriptional control of all enzymes
within a pathway if they are associated to a high cost. In pathways with
low-cost enzymes, transcriptionally sparse regulation prevails. In support
of these results, we found that even costly pathways such as the pen-
tose phosphate pathway, for which rapid response times are required, are
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sparsely regulated due to a strong advantage of a rapid response time. Fi-
nally, if there is only a small fitness advantage of both cellular objectives,
sparse transcriptional regulation is a minimum requirement to precisely
control the flux through a pathway.

These results demonstrate that, in contrast to the classical picture of
regulation, the control of key positions of metabolic pathways is sufficient
to achieve a full control over the flux through a pathway. Such a pattern
of sparse transcriptional regulation is useful if a higher fitness advantage
can be achieved through rapid response times in comparison to the fitness
advantage of a reduced protein cost.
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Readjoiner: a fast and memory efficient string
graph-based sequence assembler

Giorgio Gonnella and Stefan Kurtz
Center for Bioinformatics (ZBH), University of Hamburg
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In a recently published paper [GK12] we describe a new fast and mem-
ory efficient string graph-based sequence assembler: Readjoiner. In this
extended abstract, we summarize the background, methods and results.

Background

The amount of data delivered by next-generation DNA sequencing tech-
nologies challenges the current generation of de novo sequence assemblers
based on De Bruijn graphs.

An alternative framework of growing interest is the assembly string graph
[Mye05]. As the classical overlap graph, the string graph represents se-
quencing reads by vertices and overlaps between reads by edges: however,
in the string graph only irreducible suffix-prefix matches are considered.

The string graph combines the strengths of the classical overlap-layout-
consensus paradigma with a compact representation suitable for the next-
generation sequencing datasets. The main advantage over the De Bruijn
graph is that it does not require to artificially split the reads into k-
mers, thus improving the assembly of sequences containing short repeats.
Furthermore, the string graph is more compact than the De Bruijn graph,
thus allowing to efficiently handle larger datasets.

To construct the string graph, fast and space efficient algorithms for the
computation of all suffix-prefix matches are required. Previous approaches
use a suffix array (Edena, [HFF+08]) or an FM-index (SGA, [SD12]) or a
compact representation of the overlap graph (Leap, [DR11]).
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Methods

We developed efficient methods for the construction of a string graph
from a set of sequencing reads. We use suffix sorting and scanning meth-
ods to compute suffix-prefix matches; furthermore, transitive edges are
recognized early in the process and excluded from the graph.

The first step of our assembly approach is to eliminate reads that are
prefixes or suffixes of other reads: these are recognized by lexicographically
sorting all reads and their reverse complements, using a modified radixsort
for strings [KR09].

In the following step, suffix-prefix matches longer than �min are computed,
where �min is an user-defined parameter. The method consists of two main
algorithms. The first algorithm identifies and lexicographically sorts all
SPM-relevant suffixes: these are suffixes of reads, sharing a prefix of length
k ≤ �min with some read in the readset. Here k is a parameter allowing
for time / space tradeoffs in the computation. The second algorithm
enumerates the suffix-prefix matches given a sorted list of SPM-relevant
suffixes.

SPM-relevant suffixes are sorted using a strategy borrowed from the count-
ing sort algorithm [CLR90]. An efficient solution is achieved by combining
the use of sorted buffers for the elements to be counted/inserted, a filter
based on substrings of the initial k-mers of the reads and a partitioning
strategy considerably reducing the space peak of the implementation.

The suffix-prefix matches are computed using an algorithm based on a
bottom-up traversal of the lcp-inverval tree. This is obtained by process-
ing the buckets of SPM-relevant suffixes with a variant of the algorithm
presented in [AKO04], additionally delivering the leaf edges of the virtual
lcp-interval tree.

In order to only output irreducible suffix-prefix matches, we maintain
an additional trie-data structure and exploit a novel characterization of
transitive suffix-prefix matches.

The assembly string graph is constructed from the list of all irreducible
suffix-prefix matches, as described in [Mye05]. Heuristically, bubbles and
short dead-end paths likely arising from sequencing errors, are option-
ally removed from the graph. Finally, the sequence corresponding to all
unbranched paths in the graph is output as a collection of contigs.
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Results and Conclusion

We implemented our methods in a new open source sequence assembler,
called Readjoiner, as part of the GenomeTools [GEN] genome analysis
suite. Readjoiner is freely available at http://www.zbh.uni-hamburg.
de/readjoiner.

We extensively evaluated our assembler on simulated error-free sequencing
read sets based on human genomic sequences. We compared the perfor-
mance of Readjoiner with that of the previous string graph-based tools:
Edena [HFF+08], SGA [SD12] and Leap [DR11]. The results were eval-
uated using metrics developed by the Assemblathon project [EBSJ+11]
and using the Plantagora assessment tool [BMRY11].

Our tests show that Readjoiner is faster and more space efficient than
previous string graph-based tools. Readjoiner was 13 − 14× faster than
Edena, 19− 20× faster than SGA and 1.6− 1.8× faster than LEAP. Fur-
thermore it uses about 9.1−9.3× less memory than Edena, 1.1−1.2× less
memory than SGA and 1.6−3.0× less memory than LEAP. Furthermore,
it scales well for large datasets. For example, a 40 × coverage human
genome dataset (100 nt reads for a total of 115 Gb) can be assembled on
a single core in 51 hours using 52 Gb RAM.

Readjoiner is actively developed and improvements over the version de-
scribed in [GK12] have been achieved. For example, suffix-prefix matches
derived from independent parts of our data structures are computed in
threads. We plan to integrate an error correction algorithm and incorpo-
rate mate pairs information during the assembly phase.

We would like to remark that our paper, published less than a month ago,
attracts considerable interest: besides acquiring the “Highly accessed”
designation by the publisher (BioMed Central), the paper was, as of May
31th, the most viewed paper for BMC Bioinformatics during May 2012
[BMC12].
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Footprints of modular evolution in a dense
taxonomic clade
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Abstract: True novelty, of any form, is rare. Most systems, includ-
ing a number of biological systems, can be reduced to a set of of core
units which are reused in varying contexts. These core units can be
seen as modules, and their harboring system as modular. Here, we
explore various aspects of modularity in protein evolution within
a dense clade of 20 arthropods. By employing a simple model of
protein evolution, we study how the rearrangements of domains -
the modules of protein evolution, structure and function - creates
novelty in few steps and at surprising speeds. We find that we can
explain between 64% - 81% of all novel protein domain arrange-
ments, and that arrangements that cannot be explained contain
curious patterns of domain repeats. Furthermore, we explore the
speed of module turnover - the frequency of domain gain and loss -
and find that while only few new domains occur, they spread swiftly
and seem associated with environmental adaptation.

1 Introduction

A primary factor in the evolution of proteins is the rearranging of protein

domains, their functional, structural and evolutionary modules. Using

modular rearrangement, functional diversification can occur without the

formation of novel domains, simply by adding, removing or rearranging

domains in proteins [MBE
+
08]. Previous studies have illustrated that,

in particular along the metazoan lineage, increased rates of domain rear-

rangement can be found [MBE
+
08]. Indeed, while the number of identified

domains grows very slowly, the number of combinations of these domains

continues to grow with no end in sight [Lev09].

As opposed to the often slow variation at the sequence level, events such

as gene fusion/fission or the shuffling of exons, which are among the ge-

netic protagonists driving modular domain recombination [BFB10], can

swiftly produce selectable phenotypes [RH12, PGWL10]. While a series
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of mutations can govern selectable phenotypes, a number of mutations re-

main unseen to the eye of selection. In contrast, large events such as the

fusion of two genes is likely to produce a phenotype, some of which may

even be favored by selection [RH12]. Autonomously functioning domains

used in a modular system, where functionalities can be recombined easily,

provide a powerful mechanism for evolutionary innovation.

From numerous previous studies we know that the dominant mechanisms

creating novel arrangements are gene duplication, fusion and terminal

losses [WBBB06]; that age, function and structure of a domain do not

influence their versatility [WMBB08] and that strings of domains are well

suited for designing algorithms for homology search [TGW
+
12].

While rare, evidence for novelty does exist e.g. in the large number of

orphan genes, many of which are presumed to be vital for species-specific

quirks [KHF
+
09]. Beyond genes, changes in domain content between

species, and species groups, can be observed [ZG11]. This indicates that

novel domains do emerge - albeit at low frequency. It seems plausible

that certain molecular innovation, such as required in the wake of strong

environmental shifts, may be out of reach by the rearrangement of existing

domains alone and may require the emergence of novel domains.

We have recently explored various aspects of modular evolution using a

small, well described clade of 20 arthropods. In this data set, we have

derived branch-specific rates of events in modular evolution and have as-

sessed the evolutionary dynamics and functional impact of changes at

the level of the domain repertoire. Beyond the exploration of various as-

pects of protein evolution, our approach illustrates the strength of domain-

based analysis: the great accuracy of HMMs in identifying homologous

sequences and the low rates of domain turnover helps capture functional

shifts and evolutionary dynamics at a rather coarse grained level and

across evolutionary long time scales of tens to hundreds of million years.

2 Results

Within the arthropods, a total of 30 domain are found to be emergent

(that is, occur only within this clade) [MBB12]. By functionally annotat-

ing all proteins which harbor an emerging domain (1,291 proteins across

20 arthropods), we assessed the functional impact of novel domains. Do-

mains that emerge within arthropods are found significantly more often in

terms related to environmental adaptation (e.g. response to heat, drought,

UV and other abiotic stresses), than expected by chance (see figure 1).
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Figure 1: TermLogo of functional groups with emerging domains. Over-
representation analysis of Gene Ontology terms from proteins which contain at
least one emerging domain. The size of the font corresponds to the strength of
obtained significance.

The majority of arrangements are unique to one, or very few species (Fig-

ure 2). The majority of arrangements are unique to one, or very few

species, facilitating a roughly bimodal distribution of shared arrange-

ments. This indicates that modular rearrangement is frequent enough

to create a large diversity of arrangements, even in evolutionarily small

timescales. Furthermore, while the largest proportion (∼80%) of arrange-

ments shared by all species are single domain proteins, species-specific ar-

rangements tend to be multi-domain indicating that older arrangements

tend to be single-domain, while newly formed arrangements are more

likely multi-domain.

After ancestral reconstruction of arrangement presence/absence states,

we derive rates of arrangement gain for all branches. We then, for each

new arrangement, investigate how new arrangements can be formed by

recombining ancestral arrangements (e.g a new arrangement (A,B,C) can

be formed by the fusion of the ancestral arrangements (A,B) and (C)). We

consider the fusion of two arrangements, the fission of an arrangement,

as well as the gain or loss of parts of arrangements. We find that we can

explain up to 81% of all new arrangements by a single-step event while

some new arrangements have conflicting solutions; a total of 64% of all

new arrangements have only possible solution.

The evolutionary dynamics of the events are intriguing: while fusion and

gain dominate early in the tree, fission and loss frequencies increase over

time. A possible interpretation concerns arrangement length: recombi-

nation events that give rise to novel (viable) arrangements are likely to

act between domains as to not disrupt functional domains. The smaller

the number of domains that are present in an arrangement, the lower the
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Figure 2: Unique arrangements and arrangement length in 20 pan-
crustacean species. Unique arrangements were grouped by the number of
species in which they can be found. The x-axis indicates the number of species
which share arrangements, the y-axis indicates the number of arrangements.
For each group of shared arrangements, the arrangement length measured as
the number of domains was determined and normalized to 100% (z-axis). The
red line plot illustrates that the distribution of unique arrangements is roughly
bimodal, with the majority of arrangements shared by either few or all species.

chance for successful fission or loss. In contrast, fusion and gain events

seem more likely detrimental the longer an arrangement gets.

New arrangements that cannot be explained by one of the considered

events contain complex, multi-domain repeat patterns (“supra-repeats”)

and are significantly enriched in domain-repeats. Such domain-repeats are

essential to protein-protein interaction and DNA-binding making them

key players in regulatory networks. Beyond the analysis of arthropods,

we find that the overall signals in plant species are similar [KBMG12].

In summary, our results provide a detailed account of the mechanisms with

which domain rearrangement events create novel proteins, and provide an

excellent starting point for further analysis ranging from mathematical

modeling to additional cross-species comparisons.
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