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Abstract The identification of compounds from mass
spectrometry (MS) data is still seen as a major bottleneck
in the interpretation of MS data. This is particularly the case
for the identification of small compounds such as metabolites,
where until recently little progress has been made. Here we
review the available approaches to annotation and identifica-
tion of chemical compounds based on electrospray ionization
(ESI-MS) data. The methods are not limited to metabolomics
applications, but are applicable to any small compounds
amenable to MS analysis. Starting with the definition of
identification, we focus on the analysis of tandem mass and
MSn spectra, which can provide a wealth of structural
information. Searching in libraries of reference spectra
provides the most reliable source of identification, especially
if measured on comparable instruments. We review several
choices for the distance functions. The identification without
reference spectra is even more challenging, because it
requires approaches to interpret tandem mass spectra with
regard to the molecular structure. Both commercial and free
tools are capable of mining general-purpose compound
libraries, and identifying candidate compounds. The holy
grail of computational mass spectrometry is the de novo

deduction of structure hypotheses for compounds, where
method development has only started thus far. In a case
study, we apply several of the available methods to the three
compounds, kaempferol, reserpine, and verapamil, and
investigate whether this results in reliable identifications.
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Introduction

For a long time the established textbooks on MS have
included a computer as part of the analytical setup. Initially,
the computer replaced the photo platters to display the
spectrum, and to save or print the peak lists. Nowadays,
with the advent of high-throughput experiments, the
complexity of their tasks has grown tremendously, and this
is where computational mass spectrometry enters the field.

The signal processing of today’s hyphenated MS setups
such as GC-MS, LC-MS, or CE-MS requires two-dimensional
feature finding and peak picking, which will not be covered
here. For a review, see, e.g., [1]. To compare the abundances of
the measured compounds in different samples, an alignment
step is required, because both the chromatographic retention
time and (usually to a lesser degree) the mass to charge ratio
(m/z) may drift across measurements. Again, this has been
covered elsewhere, see, e.g., [2–4].

Often, efficient solutions to the challenges in data
analysis exist in the realm of mathematics and algorithm
engineering, but researchers in those fields are often not
familiar with mass spectrometry, and the problems have to
be translated first: an earlier review [5] touched on several
aspects of mathematical modeling in mass spectrometry.
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At the American Society for Mass Spectrometry
(ASMS) conference 2009, a survey among the 600
participants revealed that the identification of compounds
was perceived as the bottleneck in interpretation of
metabolomics data.1

What is identification? At first glance, the question might
appear naïve, because there exist a vast number of
publications in the field that claim to “identify” compounds
using MS data, presenting a list of compounds that were
present in some sample. Yet, these “identifications” are
often backed by vastly differing levels of evidence.

As an example, consider the work of Iijima et al. [6]: The
authors annotated approximately 870 metabolites in tomato
(Solanum lycopersicum) and calculated molecular formulas
based on recalibrated accurate masses obtained by LC-ESI-
FTICR-MS. About 500 of these molecular formulas were not
found in metabolite databases such as DNP, KNApSAcK, or
MotoDB and are claimed to be novel metabolites.

More laborious, but also more informative is the approach
taken by, e.g., Böttcher et al. [7]. Here, the calculation of
elemental compositions with ultrahigh resolution Fourier
transform ion cyclotron resonance (FTICR)-MS is accompanied
by extensive tandem mass and pseudo-MS3 spectra on a
CapLC-QTOF instrument. Beyond the purely spectral informa-
tion, the authors also compare the abundance of the compounds
in different Arabidopsis thaliana pathway mutants, to make
sure the molecular structures are consistent with their role as
substrates and products of known enzymes.

A different approach to a highly reliable identification is the
combination of both MS and NMR analysis, as done by
Glauser et al. [8]. Though a lack of sensitivity has always been
touted as a major disadvantage of NMR, modern high-field
instruments equipped with cryo-probes or capillary NMR,
allow structure elucidation and require only microgram
amounts of the compound.

The Metabolomics Standards Initiative (MSI) has published
several guidelines for the publication of metabolomics experi-
ments. One of these covers the “proposed minimum reporting
standards for chemical analysis” [9], which define confidence
levels for the identification (or validation) of non-novel
chemical compounds, ranging from level 1 for a rigorous
identification based on independent measurements of authentic
standards, to unidentified signals at level 4, see Table 1 for a
summary. The characterization of novel compounds usually
requires extraction and purification of the substance, and the
use of analytical methods beyond mass spectrometry, including
1D and 2D NMR measurements.

Authors who publish their metabolomics experiments
should always strive to deliver the most convincing data to
support their findings. Although the MSI guidelines allow

level 1 or level 2 identifications2 based on a comparison of
“exact mass and isotope pattern”, more structural evidence
should be presented at these levels: even with the most exact
mass and isotope pattern the identification will be limited to
the elemental composition, and even for the known
metabolites in databases such as KEGG or PubChem,
dozens to hundreds of compounds share the same sum
formula. The MSI strongly discourages matching an elemental
formula to database hits as identification method alone.

For all other MSI levels, the “identification” usually
boils down to an annotation with lower levels of confi-
dence. If reference spectra from commercial or public
databases are used, authors should consider not only the
similarity (score) and the comparability of the analytical
setups, but also a possible bias in the database: whether a
compound class is represented by a large number of similar
compounds, or just by a few examples. It is easy to obtain a
wrong, but “unique” identification by chance if a spectrum
of a plant metabolite is searched against the Human
Metabolite Database (HMDB), which is dedicated to
human metabolites [10]. On the other hand, it is as easy
to miss the correct compound among many structurally
similar members of a large compound class present in the
database.

As the elemental composition is the basis of any further
identification, tools for their determination have long been a
part of most vendor software, and many of today’s
algorithms are known to perform well in practice. Despite
the quickly growing number of elemental compositions for
large masses, these methods are usually fast in practice,
some of them even for the chemically unrestricted case
[11]. Note that the monoisotopic mass of a compound is
usually not sufficient to determine its elemental composi-
tion, even for mass accuracies that surpass those of any
available MS instrument. Therefore the algorithms depend
on both the accurate mass and isotope patterns. In their
theoretical evaluation, Kind and Fiehn [12] showed that an
instrument with 3-ppm mass accuracy and 2% RIA (relative
isotope abundance) accuracy allows one to calculate a single
sum formula up to 300 Da. In another study [11], this was
confirmed experimentally, and for 68 out of 70 compounds
measured on an oa-TOF instrument (micrOTOFq, Bruker
Daltonik GmbH, Bremen, Germany), the correct solution
was ranked first. In KEGG, 81% of all compounds are below
500 Da. The used SIRIUS software is available freely, and
details of the statistical analysis have been published [11].
Extensive experimental determination (and optimization) of
the mass accuracy and RIA for oa-TOF instruments have

1 http://metabolomicssurvey.com/

2 The difference between level 1 and 2 is that the former requires the
comparison with authentic standards based on in-house data measured
under identical analytical conditions, whereas the latter allows one to
use literature values or external databases.
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been performed [13, 14]. For Orbitrap instruments, mass
accuracy and dependency upon ion intensities were recently
evaluated by Xu et al. [15]. Here, the mass accuracy was
characterized as less than 5 ppm with external calibration
(although much lower values have been reported elsewhere),
and RIA was found to be less than 20%.

The current FT-ICR-MS instruments with superconducting
12 Tesla (or stronger) magnets can easily exceed a resolution of
300,000 in routine measurements, and allow one to resolve the
isotopic fine-structure of the individual 13C, 15N for the first
isotope peak, or 18O and 34S isotopes. Deriving the elemental
composition is then much simplified, and can be achieved by
calculating the individual ratios to the monoisotopic peak
[16].

Although the correct formula will be among the top
ranks for most of these approaches, Matsuda et al. [17]
showed that the false discovery rate (FDR) of queries based
on exact masses and isotope ratio in databases widely
spreads between a few percent up to 100%, depending on
mass accuracy, fidelity of the isotopic intensities, and the
actual database (KEGG, KNApSAcK, and PubChem).

Structural information for a compound can be obtained
in different ways: by exploiting the in-source fragmenta-
tion, and/or by performing targeted collision-induced
dissociation (CID) MS experiments. They both allow one
to measure the mass of molecular fragments, in the latter
case after collision in a cell filled with an inert gas such as
argon or nitrogen. The compound structure and collision
energy determine the degree of fragmentation. It is also
possible to continuously increase the energy, e.g., from 5 to
60 eV during a single acquisition, essentially measuring a
combined spectrum. These are often termed RAMP spectra.
With multiple stages (MS3 and higher), individual frag-
ments can be analyzed further. Molecular rearrangements
during the fragmentation can complicate the interpretation
of the spectra.

In the following, we will focus on computational mass
spectrometry for the identification of small compounds and
metabolites on high-resolution hybrid or multi-stage instru-
ments with electrospray ionization (ESI), such as (Q)TOF,
Orbitrap, and FTICR-MS. Because many ideas have been

pioneered on electron impact (EI) instruments, we will also
enlarge upon these where appropriate.

Acquisition and processing of tandem MS data

With current MS instruments, it is possible to acquire
tandem mass spectra in data-dependent-acquisition mode
(DDA). Here, the instrument performs an MS1 survey scan,
and selects one or more ions for subsequent MS2 or even
MSn scans. However, this has the drawbacks that the
effective scan rate for tandem MS is reduced by single-
stage MS survey scans and secondly the selection of parent
peaks only considers the N most intense peaks, possibly
including in-source fragments or, e.g., [M+Na]+ adducts.
Usually, [M+H]+ ions are preferable for fragmentation,
because at common collision energies (10–50 eV) they
result in more informative spectra for many compounds.

An advanced scheme to survey the metabolome of
Arabidopsis thaliana was proposed by Matsuda et al.
[18], who performed repeated measurements with DDA in
narrow, overlapping (60-Da) windows, and collected results
in a “Metabolite Expression Atlas” [19]. Out of almost
1,600 observed metabolite signals, they identified 167
compounds based on the tandem mass spectra.

A different approach is the acquisition of tandem mass
spectra, alternating between low and high collision energies
without any precursor mass filtering, termed MSE . Plumb
et al. [20] assessed and identified spectra of 10 metabolites
from rat urine. A difficulty is the superposition of fragments
from all co-eluting compounds, including background ions.
The assignment to precursor and product ions based on a
statistical test was introduced by Ipsen et al. [21], where ion
counts are modeled using a Poisson distribution. The
proposed algorithm works well if the acquisition conditions
are well controlled, such as low to medium signal
intensities, and absence of dynamic gain control in the
instrument. A more general but less rigorous method to
assign corresponding mass signals is the peak shape
correlation using Pearson correlation coefficients (ρ), as
described elsewhere [22].

Table 1 MSI levels for validation of non-novel compounds, based on [9]

Level Name Minimum requirements

1 Identified compounds At least two independent and orthogonal data relative to an authentic compound analyzed under identical
experimental conditions (e.g., retention time/index and mass spectrum, retention time and NMR spectrum,
accurate mass and tandemMS, accurate mass and isotope pattern, full 1H and/or 13C NMR, 2D NMR spectra)

2 Putatively annotated
compounds

Similar to level 1, but based on literature values reported for authentic samples by other laboratories

3 Putatively characterized
compound classes

Based upon characteristic physicochemical properties of a chemical class of compounds, or by spectral
similarity to known compounds of a chemical class

4 Unknown compounds These metabolites can still be differentiated and quantified based upon spectral data
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Comparison with reference spectra

Today, one of the most common methods for the identifi-
cation of compounds using mass spectrometry is the
comparison with spectra of authentic standards. Libraries
of mass spectra, especially the National Institute of Standards
and Technology (NIST) database and the Wiley registry of
mass spectral data, have been mentioned as part of a very
broad review of chemical signature databases [23]. A
summary is given in Table 2. Here, we want to focus on
the computational aspects.

Each database or processing tool requires one to score
database entries based on a similarity or distance function.
The most fundamental scorings are the “peak count” family
of measures. They count the number of matching peaks
between a query spectrum and each of the database spectra.
For this, both spectra can be considered as binary vectors
with 0’s and 1’s for “peak absent” and “peak present”,
respectively. They can be either fixed-length, with bins of
fixed widths such as 1 or 0.1 Da. Alternatively, the binary
vectors can result from a matching between the query Q and
library spectrum L, with a vector of length |Q∪L|. Common
distance functions on binary vectors are the Hamming
distance (counting any difference) or the Jaccard coefficient
(the fraction of matching peaks). These and other scoring
functions differ mostly in how missing or extra peaks are
treated. For an overview of distance measures, see [24].

In addition to just counting matches, other measures also
include their actual mass and intensities. Stein [25]
compared the Euclidean distance, the probability-based
matching (PBM), and the normalized dot product (NDP)
for the database search of EI spectra, and proposed a
modified cosine distance for database retrieval.

Mass and intensity scores can be weighted by using the
formula W ¼ score intensitym � score massn, where the
parameters m=0.6 and n=3 were optimized experimentally
on a large training set of EI spectra. The MassBank system
[26] uses this measure, but optimized the exponents for ESI
spectra of common metabolites with their different mass
and intensity distributions to m=0.5 and n=2. MassBank
also offers a neutral loss search.

The Human Metabolome Database (HMDB) [10] uses a
scoring function based on spectral matching and parameter
optimization that was originally developed for peptides
[27].

Because peak intensities are inherently variable in CIDmass
spectra, especially across different acquisition parameters or
even instruments, Pavlic et al. [28] and Oberacher et al. [29]
proposed and optimized a search function based on a
combination of relative and absolute match probabilities,
which combine the principle of peak counting and summed
intensities of matching peaks.

The X-Rank algorithm [30] uses a statistical formulation
of the problem, and considers only ranked intensities
instead of absolute or relative intensities: what is the joint
probability of matching the nth peak in one spectrum to the
mth peak in another? If this probability can be reliably
calculated, the correct library spectrum should be the one
with the highest probability. The solution requires a training
on a representative dataset.

Finally, it depends on the tandem MS library, whether
the search can be constrained by the parent ion mass.
MassBank will search all spectra, whereas METLIN [31]
has an option to filter only the correct precursor masses.
HMDB searches entries within a user-defined precursor
mass window.

Computational analysis of tandem mass spectra

The simplest information which can be extracted from
accurate mass MS data is the elemental composition, see,
e.g., [32], and subsequent lookup in compound libraries as
implemented in MZSearcher [33]. Recently, improved
algorithms have been created which exploit the additional
information present in tandem mass and MSn spectra for
sum formula calculations.

The commercial SmartFormula3D software (Bruker
Daltonics) is an extension of an elemental composition
calculator. The software predicts elemental compositions of
both precursor and product ions, and filters all elemental
compositions of the precursor that are incompatible with

Table 2 Overview of several spectral libraries (only ESI spectra)

Library Compounds Spectra Accuracy Comment

NIST ’08 5,308 14,802 Nominal Commercial license

METLIN 2,658 13,896 Accurate Web interface, SOAP Web service planned

HMDB 921 2,565 Nominal Web interface, download free for noncommercial purposes

MassBank 2,189 9,218 Accurate/Nominal Web interface, SOAP Web service. Free subset for download planned

Data presented concern content size, accuracies, license, and availability. For NIST and MassBank the number of compounds is an upper bound,
ignoring possible redundancy
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the (smaller mass, thus likely more accurate) compositions
of the product ions.

SIRIUS Starburst [34] aims to calculate the correct sum
formula from MS and MS/MS data, but in addition it will
propose a tree representation that is very often close to the
actual fragmentation tree of the compound. In any case, the
organization as a tree simplifies the subsequent manual
interpretation and structure elucidation.

Because the fragmentation is a gas-phase reaction, the
cleavage sites can be approximated and described with
rules of possible fragmentation reactions. The commercial
software ACD/MS Fragmenter [35] is such a tool that uses
a database of fragmentation rules. Pelander et al. used both
SmartFormula3D and the ACD Fragmenter to differentiate
structural isomers in a comparatively low number of phase I
metabolites of quetiapine from LC/TOF MS spectra [36],
and recently generalized the survey to 111 compounds in 48
isomer groups [37].

A similar problem is approached by Mass Frontier [38],
which was originally targeted at electron impact (EI)
spectra as obtained from GC-MS. Support for ESI spectra
has been added later. The fragmentation schemes have been
extracted from the literature and in-house spectral libraries.
Horai et al. [39] annotated the spectra of 453 metabolites in
MassBank, and used both ACD Fragmenter and MassFrontier
in a manual process to verify the annotation. From an overall
120,000 peaks, only 3% could be annotated with confidence.
Some of the fragmentation rules used by MassFrontier also
cover the negative ionization mode, but Heinonen et al. [40]
report that for some compounds MassFrontier (version 5) is
not able to identify any fragments in negative mode. For both
ACD/MS Fragmenter and MassFrontier further algorithmic
details are not published.

Another class of algorithms strives to interpret the
tandem MS spectra, and to assign fragment structures to
observed peaks. The systematic bond disconnection
method is independent of any rule sets. A member of
this class is the EPIC tool [41]. It matches resulting
product ions from a single precursor structure against the
peaks measured on a high-resolution mass spectrometer.
The application provides a Web front end, and allows one
to generate a report including the user-approved fragment
structures.

Heinonen et al. [40, 42] proposed an algorithm that,
given both a metabolite’s molecular structure and its
tandem mass spectrum, tries to predict the fragmentation
tree of the metabolite by interpreting the tandem mass
spectrum. Among sets of equivalent possible fragmenta-
tions, their tool can select the solution which minimizes the
bond dissociation energy. Even this seemingly simple
problem turns out to be computationally hard. The authors
show that in general, it is NP complete to decide whether a
given molecular structure will generate a fragment of a

certain mass.3 The authors present heuristics that work well
for small molecules, but require hours of running time for
molecules above 350 Da. But even if the correct molecular
formula is known for the parent peak and all fragment
peaks in the spectrum, the problem remains NP hard [43].
None of the above approaches is capable of handling non-
trivial rearrangements during fragmentation.

The number of compounds in spectral databases is low
compared to the estimated number of metabolites for a
given organism. Computational mass spectrometry
approaches help to identify the “known” unknowns, i.e.,
those metabolites which are in a compound library, but
without any reference spectra. Once a tool is available that
allows one to assign (sub-)structures to peaks in reasonable
time, it is also possible to screen comparatively large
general-purpose molecular databases and calculate a score
of the agreement between the spectrum and candidate
compounds.

This approach was first used by Hill et al. [44] who
measured the spectra of 102 test compounds on a Micromass
Q-TOF II in positive mode at different collision energies. For
each compound they retrieved on average 270 candidates
from the PubChem database, and used Mass Frontier (version
4) to predict the tandem mass spectra. The agreement score
was a simple peak count between predicted and measured
spectra. The median rank of the correct compounds in an
evaluation on the PubChem database was four if no manual
expert knowledge was used.

The MetFrag suite [45] can directly query an upstream
database (currently KEGG, PubChem, and ChemSpider are
supported, custom SDF structure files can be uploaded).
MetFrag performs an in silico fragmentation and ranks the
candidates based on the number of molecular fragments
which explain the measured peaks. On the same test set that
was used by Hill et al. [44], MetFrag performs better than
the commercial MassFrontier, in particular the average and
standard deviation of the correct ranks are lower. MetFrag
has an Open Source license, and both a Web front end and
Web service interface are available.

In their paper Levsen et al. [46] measured and
interpreted a large number of compounds from various
classes, and also used ab initio calculations to explain some
of the fragmentation mechanisms. The use of computational
chemistry methods such as density functional theory (DFT)
promises to predict the fragmentation sites based on the
simulation of bond elongation upon protonation [47, 48].
The approach showed good accuracy for fluconazole,
voriconazole, and maraviroc with two of its breakdown
products, but has rather high computational demands.

3 If a problem is NP complete, then there cannot exist an algorithm with
running time polynomial in the input size unless P=NP. It is widely
believed among computer scientists that the latter is not the case.
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Identification case studies

Finally, we wanted to apply some of the methods mentioned
above to arbitrarily selected compounds: kaempferol is a plant
secondary metabolite found in the flavonoid pathway;
reserpine and verapamil are two well-known drugs, see
Fig. 1 for their structures and PubChem identifiers. The
chemical and spectroscopic details are provided in the
“Electronic supplementary material”. This case study is not
meant to be an exhaustive evaluation, but provides qualita-
tive observations. The selection of tools and databases was
purely determined by their availability to us.

The first spectral data we investigated were from
kaempferol. To determine the elemental composition from
accurate mass and the isotope distribution, we used MS1

data obtained on an ESI-QTOF instrument (micrOTOFQ-II,
Bruker Daltonics). We evaluated Bruker SmartFormula and
SIRIUS [11] calculators. Both tools returned the correct
formula C15H10O6 ranked first. This is no surprise, given
the rather low molecular mass (286.048 Da) of the
compound, and the good accuracy of the instrument for
both mass and relative isotope intensities. However,
knowing the correct molecular formula will not get us very
far: PubChem listed 159 compounds with this molecular
formula, in KEGG we found 12.

Beyond the elemental composition, tandem mass spectra
provide the next level of evidence for the identification. As
mentioned before, the comparison with reference spectra in
an identical analytical setup would be preferred. In reality,
spectral libraries such as the NIST database or MassBank
contain spectra from a variety of instruments. HMDB and
METLIN were each measured (so far) on a single
instrument model, which should be beneficial if the local
instrument is comparable.

We used the MassBank record PB000166 (acquired on a
QStar Pulsar i, Applied Biosystems; 40 eV; removing peaks
of 5% intensity or less) to search in MassBank, METLIN,
and HMDB. We always tried to search without matching
the precursor mass, to include not only exact matches, but
also similar compounds (in terms of spectral similarity).
This strategy was used in MassBank and METLIN, and we
mimicked that by specifying the maximum allowed
precursor mass window in HMDB, which was not a fixed
value, but depends on the remaining input.

METLIN is focused on human metabolites, and does not
contain any kaempferol spectra. Therefore, it is also of interest
whether the results might help a manual interpretation, if the
compound is not contained in the spectral library. With the
QStar spectrum the first hits were several flavonoid-like
structures, including fisetin, genistein, and koparin, in the first
three positions. In HMDB we searched with the maximum
allowed precursor tolerance of 2 Da, any collision energy was
allowed. The database returned 24 results, with vitamin A,
kaempferol, and 2-hydroxyestrone ranked in the top three.
Together, both databases suggested that our substance is a
flavonoid, but gave little confidence to decide which one. This
result list should be a strong motivation to query libraries
which have a better coverage for flavonoids.

Therefore, we used MassBank, which has several plant
research institutes among the consortiummembers. Searching
MassBank returned a list of mostly flavonoids among the top
20 results, with two kaempferol measurements from a QTOF
Premier ranked first (30 eV, score 0.91) and third (RAMP 5–
60 eV, score 0.75).

We cross-checked the results with kaempferol spectra from a
Waters QTOF instrument (PR040029), and also the medium
energy HMDB nominal mass spectrum measured on a Waters
Quattro triple quadrupole. The full results are shown in Table 3.

If the metabolite (or compound class) was likely not
contained in the spectral library, we would have to consult
computational mass spectrometry approaches to interpret
the spectrum. We used MetFrag to obtain structure
hypotheses based on the elemental composition search in
PubChem, and subsequent scoring of the experimental and
in silico peaks. The first seven hits were flavonoid-like
structures, with kaempferol ranked third. If only the
molecular formula and the MetFrag results were available,
it would be necessary to purchase and measure a number of
flavonoids for a convincing identification. But because of
the excellent fit in MassBank, and the rather sharp decline
of scores for other candidates, an MSI level 1 identification
could concentrate on the verification of kaempferol.

We tested the FiD software [40] with all KEGG elemental
composition candidates individually, but the scores provided
by the algorithm did not result in a viable ranking (results are
shown in the “Electronic supplementary material”). We
expect that the algorithm can easily be extended to provide
scores suitable for database searches.
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Fig. 1 Molecular structures of (left to right): kaempferol (1) C15H10O6, monoisotopic mass 286.048 Da, PubChem CID 5280863; reserpine (2)
C33H40O9N2, 608.273 Da, CID 5770; and verapamil (3) C27H38N2O4, 454.283 Da, CID 2520
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Second, we investigated data from reserpine. The drug
has a higher molecular mass of 608.273 Da, and could be
expected to be a challenge to identify. Still, SmartFormula
found the correct elemental composition ranked second.
Together, the first two suggestions produced 120 hits in
PubChem, whereas in KEGG we had only a single hit for
the correct solution. SIRIUS applies less strict chemical
filtering by default, and found the correct solution at rank
14 of its output. On the other hand, C33H40O9N2 was the
only molecular formula among all 168 SIRIUS candidate
formulae which was found in the compound libraries.
PubChem listed 55 compounds with this molecular formula,
in KEGG we found only a single one.

For reserpine we used the 40-eV spectrum from
METLIN entry 2253, measured on an Agilent 6510 ESI
Q-TOF. MassBank returned reserpine spectra on the first
two ranks, measured on a single-quadrupole instrument4

(ZQ, Waters). This time, HMDB had not one record within
the allowed 2-Da window of the parent ion, and with the
nominal mass WA002661 spectrum METLIN was also
unable to return reserpine at all. All results are show
Table 4.

As additional evidence, we analyzed all 55 PubChem
candidates with the calculated C33H40O9N2 composition in
MetFrag, which found the solution well based on the QTOF
spectrum, but less so with the nominal masses from the ZQ
instrument. For further confirmation it would be reasonable
to purchase 5–10 authentic standards, or to validate the
structure candidates in an NMR experiment.

Finally, we investigated the verapamil data, focusing on
the tandem MS analysis. We used mass spectral data from

the METLIN entry 3009 (40-eV spectrum, measured on an
Agilent 6510 ESI Q-TOF), the MassBank record KOX00895
(10–50 eV; 5 spectra merged; measured on a QStar, 1%
relative intensity threshold), and the HMDB01850 record.

The search in MassBank returned the query spectrum
and five other spectra, measured on a single-quadrupole
instrument (ZQ, Waters) and an ion trap (LC/MSD Trap
XCT, Agilent Technologies) in the first six positions. Then,
METLIN also returned verapamil ranked first, and all
runners-up had a much lower score. In HMDB we searched
with the maximum allowed parent ion tolerance of (in this
case) 27 Da: HMDB returned 30 results for the KOX00895
peaks, with two structurally quite different compounds
(loperamide and deoxycholic acid glycine conjugate) at the
top of the list, and the best matching verapamil spectrum
ranked third. The same searches with peak data from the
METLIN entry 3009 produced comparable results. The full
results are shown in Table 5.

Although we had convincing evidence for verapamil in
MassBank and METLIN, we nevertheless analyzed the 436
PubChem entries with formula C27H38N2O4 in MetFrag.
MetFrag was able to explain 6 out of the 11 peaks we also
used in the spectral library tests from KOX00895, ranking the
correct compound (and several highly similar structures) in
second position, but all in all 16 similar compounds obtained
the same score as verapamil. In a next step a user would try to

Table 3 Identification of kaempferol by searching a query tandem
mass spectrum from one library in the other two libraries, and with the
MetFrag search in PubChem

Searching in... Query spectrum, DB and entry

MassBank MassBank HMDB
PB000166 PR040029 05801

MassBank 1, 3 1, 19 1, 19

METLIN NA NA NA

HMDB 2, 9, 23 3, 6, 11 1, 2, 5

MetFrag 3 5 11

Numbers are positions in the output list where kaempferol was
reported by the search. MassBank and HMDB report all spectra (from
different instruments or collision energy settings). Smaller numbers
imply that we have to consider less hits to identify the correct
compound. METLIN does not contain kaempferol spectra, but
returned similar structures at the top of the result list

NA not applicable

Table 4 Identification of reserpine by searching with a QTOF
spectrum from METLIN, or the single-quadrupole Waters ZQ
spectrum in all three libraries. METLIN returns the compound ID,
whereas MassBank and HMDB report all spectra

Searching in... Query spectrum, DB and entry

METLIN MassBank
2253 WA002661

MassBank 1, 2 1–4

METLIN 1 Not found

HMDB NA NA

MetFrag 1 15

4 In single-quadrupole instruments, a higher voltage can be applied to
the sampling cone to induce in-source fragmentation.

Table 5 Identification of verapamil with two QTOF and one triple-
quadrupole spectrum

Searching in... Query spectrum, DB and entry

METLIN MassBank HMDB
3009 KOX00895 HMDB01850

MassBank 1–7, 9, 18 1–6, 10, 13, 15 Not found

METLIN 1 1 Not found

HMDB 9, 19, 28 3, 14, 28 1, 12, 29

MetFrag 8 2 Not found
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manually assign fragment peaks to likely structures, possibly
also using a substructure search in a spectral library, to verify
the predicted fragments. Taking both MassBank and MetFrag
results into account, it would be sufficient to validate a small
number of authentic standards to obtain an MSI level 1
identification.

Conclusion

With modern high resolution mass spectrometers, the
determination of the elemental composition for low to
medium weight metabolites from accurate measurements is
clearly feasible. The number of results (and false positives)
in a subsequent search in the compound libraries depends
on the database size and content. But clearly, this is only
the first step of compound identification.

The different distance measures for spectra comparison in
reference libraries have come a long way. The results from
MassBank show that spectral libraries can not only retrieve the
correct compound—even from different instruments—among
the top hits, but also related structures (HMDB also returned
some quite different structures, though). Not surprisingly, the
queries with QTOF spectra achieved much better rankings than
the nominal mass quadrupole data.

But the results of the case study also clearly show that an
MSI level 2 identification based on tandem mass spectra is
difficult to achieve because spectral libraries have a low
(and divergent) coverage of the chemical space, and the
ranked result lists are just that; simply using the best hit as
“truth” can be very misleading. On the other hand, the
library results often allow one to obtain the correct
compound class, i.e., a level 3 identification. Consequently,
unless authors make explicit statements how the spectral
match was (structurally) interpreted, simply reporting the
best hits can at best be considered a highly putative
identification.

Without reference spectra, a compound identification
based on current in silico methods is currently not possible.
However, both our case study and the more extensive
results published for ACD Fragmenter and MetFrag make it
clear that they are valuable tools to augment the rather
sparse reference libraries and to direct selection of authentic
compounds for in-house comparison.

An open question remains, whether the spectral libraries
should contain (1) individual collision energies, (2) merged
spectra from several spectra, or (3) RAMP spectra, where
the instrument ramped up the collision energy during the
acquisition. If a single eV spectrum is compared to a library
of merged (or RAMP) spectra, not only the number of
peaks in the library will be higher, but the intensities in the
library are unlikely to be anywhere close to what can be
observed for a single energy. This should be true for

MassBank, which modifies the intensity with an exponent
(score_intensity0.5) as a term of the scoring function, but
even more so for METLIN, which recently adopted the X-
Rank algorithm and currently contains spectra measured at
a set of collision energies. In the future, we expect a rapid
growth of the public spectral libraries. Analogous to the
wealth of algorithms for the analysis of sequence data
available with the large sequence databases, we also
anticipate new and more robust algorithms in the area of
computational mass spectrometry.

All spectral libraries would benefit from opening up their
data. Such a step allows one to use the experimental spectra
for the training of computational mass spectrometry
algorithms, which in turn can be used for quality control,
e.g., to calculate mass accuracies, detect incorrect metadata
both within and across libraries.

But unlike the sequence analysis area, identification is still
missing a possibility to search for those compounds that have
not been recorded in any library or structure database. The
existing spectra interpretation algorithms return some kind of
score, but none offers a reliable p value, and methods for
these tasks are highly sought.
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