
A Note on the Parameterized Complexity of

Unordered Maximum Tree Orientation

Sebastian Böcker
Lehrstuhl für Bioinformatik

Friedrich-Schiller-Universität Jena

Ernst-Abbe-Platz 2, 07743 Jena, Germany

sebastian.boecker@uni-jena.de

.
Peter Damaschke∗

Department of Computer Science and Engineering

Chalmers University, 41296 Göteborg, Sweden

ptr@chalmers.se

Abstract

In the Unordered Maximum Tree Orientation problem, a set P of paths in a tree
and a parameter k is given, and we want to orient the edges in the tree such that all but at
most k paths in P become directed paths. This is a more difficult variant of a well-studied
problem in computational biology where the directions of paths in P are already given.
We show that the parameterized complexity of the unordered version is between Edge
Bipartization and Vertex Bipartization, and we give a characterization of orientable
path sets in trees by forbidden substructures, which are cycles of a certain kind.

This is a preprint of: Sebastian Böcker and Peter Damaschke.
A Note on the Parameterized Complexity of Unordered Maximum Tree Orientation.

Discrete Appl. Math., 160(10-11):1634-1638, 2012.

1 Introduction

Consider an undirected graph. To orient an edge uv means to decide on one direction, from
u to v or vice versa. Edges can be oriented independently. Given an orientation of all edges,
a path in the graph is called directed if we can traverse this path in one direction, following
the orientations of its edges. For convenience we will use the terms node and vertex in a tree
and in a general graph, respectively. Define the following problem:

Maximum Graph Orientation: Given is an undirected graph, a set P of n ordered pairs
of vertices, and a parameter k < n. Delete at most k pairs in P and orient the edges in the
graph such that, for each remaining pair (u, v) ∈ P , some directed path goes from u to v.

P can also be a multiset, that is, a pair (u, v) may appear several times in P . Then we do
not demand several distinct paths from u to v, but the multiplicity of (u, v) serves as a weight
when it comes to deletions. For notational convenience we will speak of a set P , although all
considerations carry over to multisets.

∗Corresponding author. Tel. 0046-31-772-5405. Fax 0046-31-772-3663.

1



A motivation of the problem is the inference of signal transmissions in protein-protein
interaction networks, based on cause-effect pairs. For example, if an experiment that changes
the amount of a protein u causes also a change at v, some information must flow from u to v.
Since a cycle can always be oriented, we can successively shrink cycles to new vertices until a
tree remains, thereby preserving the solution space. Thus it suffices to consider the problem
for trees, see [8].

Maximum Tree Orientation: Given is a tree, a set P of n ordered pairs of nodes of the
tree, and a parameter k < n. Delete at most k pairs in P and orient the edges in the tree
such that, for each remaining pair (u, v) ∈ P , some directed path goes from u to v.

Maximum Tree Orientation is NP-hard [8], and several approximation results have
also been derived there. Another standard direction of research on hard problems is the
computation of optimal solutions by mildly exponential or parameterized algorithms. We
state a few basic notions and refer to [4, 9] for general introductions. In exponential time
bounds we use the O∗ notation that omits polynomial factors. A problem is fixed-parameter
tractable (FPT) if it can be solved in p(n) · f(k) = O∗(f(k)) time where p is a polynomial
and f any computable function.

Maximum Tree Orientation can be reduced to the classical FPT problem Vertex
Cover [3]: Construct a graph G = (P,E) with P as vertex set, and with edges between any
two vertices whose corresponding tree paths in P have conflicting orientations; equivalence is
obvious. Hence Maximum Tree Orientation is in FPT, and it can be solved in “Vertex
Cover time” which is much faster than O∗(2k), see [2] for the latest bound.

In the present paper we study a more difficult problem:

Unordered Maximum Graph Orientation: Given is an undirected graph, a set P of n
unordered pairs of vertices, and a parameter k < n. Delete at most k pairs in P and orient
the edges in the graph such that, for each remaining pair (u, v) ∈ P , some directed path goes
from u to v, or in the opposite direction.

Here we have to decide not only on the deleted pairs but also on the orientations of pairs
that are kept. This unordered version comes into mind naturally, and it has a plausible
motivation as well: In the protein-protein interaction network application, the data may be
expression profiles, such that one can observe that certain pairs are in correlation, but one
cannot see what is the cause and the effect.

Still the unordered problem inherits some basic properties of the ordered counterpart.
Exactly as in the ordered case, we can always orient cycles and successively shrink them to
new vertices, thereby preserving the solution space. Therefore, the actual problem to consider
is the following.

Unordered Maximum Tree Orientation: Given is a tree T , a set P of n unordered pairs
of nodes of T , and a parameter k < n. Delete at most k pairs in P and orient the edges in T
such that, for each remaining pair (u, v) ∈ P , the (u, v)-path in T is a directed path from u
to v, or in the opposite direction.

Since any pair of nodes in a tree is connected by a unique path, we will henceforth consider
P as a set of paths, and the problem is to orient all but k paths in P by edge orientations.

Trivially, Unordered Maximum Tree Orientation can be solved in O∗(3n) time:
Decide for each path in P one orientation or decide not to orient the path, and then check
consistency. A little more thinking yields:

Proposition 1 Unordered Maximum Tree Orientation is solvable in O∗(2n) time.

2



Proof. We process the paths one-by-one in a certain order and decide for each path whether
to orient it or not. It always suffices to consider one orientation: For the first path, both
orientations lead to symmetric solutions, hence we can take either one. In the following steps
we always take a path from P that intersects paths that are already oriented, hence only
one possible orientation is consistent. If no such path exists, then we start a new connected
component, and again the first orientation is arbitrary. �

Essentially the same argument shows:

Proposition 2 Unordered Maximum Tree Orientation with k = 0 is solvable in poly-
nomial time. �

Triviality for k = 0 provokes the question whether Unordered Maximum Tree Ori-
entation is also fixed-parameter tractable in parameter k, like the ordered version. In this
paper we give an affirmative answer. More specifically, we show that its complexity is between
two established FPT graph problems:

Edge Bipartization: Given a graph and a parameter k, delete at most k edges such that
the graph becomes bipartite.

Vertex Bipartization: Given a graph and a parameter k, delete at most k vertices such
that the graph becomes bipartite.

The following statements are well known to be equivalent:

• G is a bipartite graph.

• The vertices of G can be colored white and black such that any two adjacent vertices
have distinct colors.

• G does not contain odd cycles.

Due to the last property, solutions to Vertex Bipartization are also known as odd cycle
transversals.

We will give simple parameterized reductions from Edge Bipartization to Unordered
Maximum Tree Orientation, and from the latter problem to Vertex Bipartization.
Since Vertex Bipartization is solvable in O∗(3k) time [11, 7], so is Unordered Maximum
Tree Orientation. The best known FPT algorithm for Edge Bipartization, based on
iterative compression, runs in O∗(2k) time [6]. Besides these implicit complexity bounds for
Unordered Maximum Tree Orientation, we also give structural characterizations of
path sets in trees that can be oriented.

2 Unordered Maximum Tree Orientation versus Bipartization
Problems

We call a set P of paths in a tree orientable if Unordered Maximum Tree Orientation
has a solution with k = 0. Proposition 2 says that this property can be checked in polynomial
time. Now we give a characterization of orientable path sets in terms of an auxiliary graph. A
similar construction was used in [1] for a graph drawing problem. Interestingly, the auxiliary
graph is not “canonical” but depends on some arbitrary initial decisions, however this will
not cause any problems for its use.

3



a b

c

d e

ab db

ae dc

Figure 1: Transformation of an Unordered Maximum Tree Orientation instance into
a graph. The pairs from P = {ab, ae, db, dc} have been arbitrarily ordered as a → b, d →
b, a → e, d → c. Dummy vertices have been inserted between the vertices in G representing
non-conflicting paths. The resulting graph is not bipartite, indicating that P is not orientable.

Given a set P of paths in a tree, we construct a graph G = (V,E) as follows. Every
path in P is represented by a vertex of V . (We will sometimes identify paths in P and their
corresponding vertices in V , without risk of confusion.) We assign arbitrary (!) orientations
to the paths, that is, each path with end nodes u and v, say, is directed either from u to v, or
from v to u. This should induce an orientation on the tree edges in an obvious sense, however,
it is also obvious that the given orientations can be in conflict. Note that, for any two paths
in P that intersect in at least one edge, the orientations on all edges in the intersection either
accord or conflict; a mixed case is not possible. Now, if two intersecting paths are in conflict,
we connect them in G by an edge. If two intersecting paths are in accordance, we connect
them in G by an edge as well, but we subdivide this edge by a dummy vertex. We call the
non-dummy vertices regular. See Fig. 1 for an example.

Lemma 3 The set P is orientable if and only if G (constructed from any initial orientation
of the paths in P ) is bipartite.

Proof. Consider an orientation of the tree edges that induces an orientation of P , in the
obvious sense. We color a path white if its orientation is the original one, and we color a path
black if its orientation has been switched. We claim that this yields a white-black coloring of
G, hence G is bipartite. For any two regular vertices of V that are adjacent, the edge between
them was created because they were in conflict. But since P is now oriented, exactly one
of the two orientations has been switched, hence the two vertices are white and black. Any
further edge in G connects a pair of regular vertices, that represent according paths in P ,
with their dummy vertex. Since the two vertices are still in accordance, either none or both
of the orientations have been switched, thus they have the same color, and we can assign the
other color to the dummy vertex.

For the reverse direction consider a white-black coloring of G. We switch the orientation of
all black paths, and we claim that this resolves all orientation conflicts. Any two intersecting
paths that were in conflict are joined by an edge in G, hence they have different colors, hence
exactly one orientation is switched. Any two intersecting paths that were in accordance have
distance 2 as vertices in G, hence they have the same color, hence none or both of their
orientations are switched, and no new conflict is introduced. �

Theorem 4 There is a parameter-preserving reduction from Unordered Maximum Tree
Orientation to Vertex Bipartization, thus the former problem can be solved in O∗(3k)
time.

Proof. Given a set P of paths in a tree and parameter k, we construct a graph G as
explained prior to Lemma 3. Then we run the O∗(3k) time Vertex Bipartization algorithm

4



from [11] on G. Suppose it finds a solution with at most k vertex deletions. Wherever the
solution deletes a dummy vertex, we re-insert it and delete a neighbored regular vertex instead.
Obviously this does not increase the number of vertex deletions, and the resulting graph
remains bipartite: A graph is bipartite if and only if no induced odd cycles exist, moreover,
all odd cycles destroyed by removal of a dummy vertex are destroyed as well by removal of a
neighbor. Now only regular vertices are deleted. Finally we remove from P the, at most k,
corresponding paths. Since the rest of G is bipartite, the rest of P is orientable due to Lemma
3, and we can construct an orientation in polynomial time due to Proposition 2. Conversely,
if P minus k selected paths is orientable, then G minus k selected vertices is bipartite, also
by Lemma 3. �

As an implicit lower bound we establish:

Proposition 5 There is a parameter-preserving reduction from Edge Bipartization to
Maximum Tree Orientation.

Proof. Given a graph with p vertices and parameter k, i.e., an instance of Edge Biparti-
zation, we construct a tree that is merely a star, consisting of a central node and p leaves
attached. These leaves represent the p vertices, and every edge of the graph is represented as
a path between the leaves. We show that the graph is bipartite if and only if this path system
P is orientable. Clearly, this also establishes equivalence of the parameterized problems. It
suffices to observe the following chain of equivalent statements:

• The graph is bipartite.

• The vertices can be colored white and black, such that adjacent vertices have distinct
colors.

• The tree edges can be oriented outwards and inwards such that every path in P is
composed of an outwards and an inwards edge.

• P is orientable. �

3 An Explicit Characterization of Orientable Path Sets

Lemma 3 gave us an FPT algorithm for Maximum Tree Orientation, but the characteriza-
tion itself may appear somewhat unsatisfactory, as the auxiliary graph has some arbitrariness.
Here we give a more canonical “forbidden substructure” characterization of orientable path
sets, in terms of the paths only. It is not only aesthetic but may also serve as a basis for
alternative FPT algorithms in future research (although, admittedly, we cannot provide an
algorithmic application right now).

Definition 6 An inner node v of a path p splits v in two subpaths that we call the rays of p,
with respect to this fixed v. (An inner node of a path is any node except the two endnodes.)
Consider a cyclic sequence (p0, . . . , pk−1) of paths in a tree. In the following, addition and
subtraction of indices is understood modulo k, hence (k − 1) + 1 = 0. We call (p0, . . . , pk−1)
a star cycle with center v if:

• Node v is an inner node of every pi.

• For all i, the intersection pi ∩ pi+1 of paths pi and pi+1 is a path (of at least one edge)
with v as one end node.

5



• For all i, the intersections pi ∩ pi−1 and pi ∩ pi+1 are contained in the two distinct rays
of pi.

• For all i, j that are not cyclic neighbors, that is, neither j = i+ 1 nor j = i− 1 modulo
k, only the center v is in pi ∩ pj. (“The cycle is induced.”)

Theorem 7 P is orientable if and only if P has no odd star cycles.

Proof. An odd star cycle is not orientable, since the rays must be directed towards the center
and away from the center alternatingly, which is impossible in an odd cycle.

For the reverse direction, ironically, we use Lemma 3. So let G be a graph as used there,
and P not orientable. By Lemma 3, G is not bipartite, hence G contains an odd cycle C. A
chord in a cycle C is an edge connecting two vertices being not consecutive in C. Note that
vertices involved in a chord are always regular. A pseudochord is a subdivided edge, i.e., path
of two edges linked by a dummy vertex, connecting two regular vertices being not consecutive
in C. If C has a chord or pseudochord, we can split C in two cycles one of which, denoted C ′,
is odd again. In the case of a chord, C ′ is shorter than C. In the case of a pseudochord, C ′

may still be as long as C, but then C ′ has one more dummy vertex than C, since the vertex
in C − C ′ was regular. (Any two regular vertices have at most one dummy vertex between
them.) Thus, after finitely many iterations we obtain an odd cycle C∗ with neither chords nor
pseudochords. For the tree paths (regular vertices) in C∗ this means that only consecutive
regular vertices in C∗ (possibly with one dummy vertex in between) intersect as paths. This
property together with the geometry of a tree implies that C∗ is also a star cycle.

To see this last conclusion, first observe that C∗ has at least three regular vertices. If C∗

has exactly k = 3 regular vertices, then the three corresponding tree paths either form a star
cycle or they have a common edge. But in the latter case every possible orientation makes
C∗ an even cycle (thanks to the dummy vertices), which contradicts the choice of C∗. Now
consider any cyclic sequence (p0, . . . , pk−1) of k > 3 paths in the tree, such that any two cyclic
neighbors (and only cyclic neighbors) intersect in a path, that is, share at least one edge.
Observe that p0, p1, p2 must have a common node v which is also an endpoint of both p0 ∩ p1
and p1∩p2, and these two intersections are in different rays of p1. Otherwise some edge e of p1
would separate p0 and p2, but then the remaining paths pi, which must not contain e, would
not be able to connect p0 and p2. Similarly p1, p2, p3 have a common node, and this is the
same v, otherwise p3 would be separated from p0; and so on. Traversing the cyclic sequence
we thus establish the structure as described in Definition 6. �

4 Further Research

Vertex Bipartization, and hence Unordered Maximum Tree Orientation, is solv-
able in O∗(3k) time. In Section 1 we also mentioned a trivial O∗(2n) time algorithm for
Unordered Maximum Tree Orientation. Due to the smaller base this would be faster
than the FPT algorithm when k/n is above some threshold. But the obvious question is
whether such problem instances exist at all. If k denotes the optimal solution value, how
large can k/n be? An observation is that k/n can be 0.5− ε for arbitrarily small ε > 0. Just
consider stars with p leaves pairwise connected by

(p
2

)
paths. But are there also computation-

ally hard instances with large k/n? And is there a general upper bound for k/n, especially,
some constant c < 1 such that k/n ≤ c for all path sets in all trees?

The O∗(2n) time algorithm in Section 1 also enumerates all possible orientations. Is it
possible to enumerate all orientations with at most k deletions in FPT time?

On another front, the simple O∗(2n) time bound for Unordered Maximum Tree Ori-
entation can be slightly improved. Using the general technique from [10] (their Theorem 16),

6



one can combine the trivial algorithm and the FPT algorithm to reduce the base 2 slightly.
One could even try to get much faster exact algorithms for Unordered Maximum Tree
Orientation via the reduction to Vertex Bipartization. Note that Vertex Bipartiza-
tion can be solved in O∗(1.62n) time [10], but the catch is that n is the number of vertices
in the graph, which can be much higher than the given number of tree paths, as we may have
many dummy vertices. Also, it seems that the method in [10] (enumeration of maximal inde-
pendent sets) cannot be easily adapted to our reduction graphs with many dummy vertices,
without destroying the time bound. Anyhow, it remains open whether there exist instances
where any such improvement would be relevant, hence the relation of k and n is the primary
question.

Next, Unordered Maximum Tree Orientation (parameterized) could be easier than
Vertex Bipartization in general, as our reduction graphs may form a special class of graphs
with algorithmically useful properties. Additional parameters (as for the ordered case in [3])
and mixed graphs where some edges are already oriented [5] could be interesting as well.

Acknowledgments

The second author has been supported by the Swedish Research Council (Vetenskapsr̊adet),
grant 2010-4661, “Generalized and fast search strategies for parameterized problems”. We
are indebted to Falk Hüffner and Rolf Niedermeier for drawing our attention to their paper
[3] and pointing out a mishap in an early draft.

References

[1] S. Böcker, F. Hüffner, A. Truss, M. Wahlström: A faster fixed-parameter approach to
drawing binary tanglegrams, in: J. Chen, F.V. Fomin (Eds.), IWPEC 2009, LNCS 5917,
Springer, Heidelberg, 2009, pp. 38–49.

[2] J. Chen, I.A. Kanj, G. Xia: Improved upper bounds for vertex cover. Theor. Comput.
Sci. 411 (2010) 3736–3756.

[3] B. Dorn, F. Hüffner, D. Krüger, R. Niedermeier, J. Uhlmann, Exploiting bounded signal
flow for graph orientation based on causeeffect pairs, Algor. for Mol. Biol., to appear
(2011).

[4] R.G. Downey, M.R. Fellows, Parameterized Complexity, Springer, New York, 1999.

[5] M. Elberfeld, D. Segev, C.R. Davidson, D Silverbush, R. Sharan: Approximation al-
gorithms for orienting mixed graphs, in: R. Giancarlo, G. Manzini (Eds.), CPM 2011,
LNCS 6661, Springer, Heidelberg, 2011, pp. 416–428.

[6] J. Guo, J. Gramm, F. Hüffner, R. Niedermeier, S. Wernicke, Compression-based fixed-
parameter algorithms for feedback vertex set and edge bipartization, J. Comp. Syst. Sci.
72 (2006) 1386–1396.

[7] D. Lokshtanov, S. Saurabh, S. Sikdar, Simpler parameterized algorithm for OCT, in: J.
Fiala, J. Kratochv́ıl, M. Miller (Eds.), IWOCA 2009, LNCS 5874, Springer, Heidelberg,
2009, pp. 380–384.

[8] A. Medvedovsky, V. Bafna, U. Zwick, R. Sharan, An algorithm for orienting graphs
based on cause-effect pairs and its applications to orienting protein networks, in: K.A.
Crandall, J. Lagergren (Eds.), WABI 2008, LNCS 5251, Springer, Heidelberg, 2008, pp.
222–232.

7



[9] R. Niedermeier, Invitation to Fixed-Parameter Algorithms, Oxford Lecture Series in
Math. and its Appl., Oxford Univ. Press, 2006.

[10] V. Raman, S. Saurabh, S. Sikdar, Efficient exact algorithms through enumerating maxi-
mal independent sets and other techniques, Theory Comput. Syst. 41 (2007) 563–587.

[11] B. Reed, K. Smith, A. Vetta, Finding odd cycle transversals, Oper. Res. Letters 32 (2004)
299–301.

8


