Identifying the unknowns by aligning fragmentation trees

Florian Rasche ${ }^{\dagger}$ Kerstin Scheubert, ${ }^{\dagger}$ Franziska Hufsky, ${ }^{\dagger, \S}$ Thomas Zichner, ${ }^{\ddagger}$ Marco Kai, ${ }^{\text {II }}$ Aleš Svatoš, ${ }^{\text {II }}$ and Sebastian Böcker*, ${ }^{\dagger}$
Chair for Bioinformatics, Friedrich Schiller University, Jena, Germany, Genome Biology Research Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany, and Research Group Mass Spectrometry and Proteomics, Max Planck Institute for Chemical Ecology, Jena, Germany
E-mail: sebastian.boecker@uni-jena.de

Preprint of: Florian Rasche, Kerstin Scheubert, Franziska Hufsky, Thomas Zichner, Marco Kai, Aleš Svatoš, and Sebastian Böcker. Identifying the unknowns by aligning fragmentation trees.

Anal. Chem., 84(7):3417-3426, 2012.

Abstract

Mass spectrometry allows sensitive, automated and high-throughput analysis of small molecules. In principle, tandem mass spectrometry allows us to identify "unknown" small molecules not in any database, but the automated interpretation of such data is in its infancy. Fragmentation trees have recently been introduced for the automated analysis of the fragmentation patterns of small molecules. We present a method for the automated comparison of such fragmentation patterns, based on aligning the compounds' fragmentation trees. We cluster compounds based solely on their fragmentation patterns, and show a good agreement with known compound classes. Fragmentation pattern similarities are strongly correlated with the chemical similarity of molecules. We present a tool for searching a database for compounds with fragmentation pattern similar to an unknown sample compound. We apply this tool to metabolites from Icelandic poppy. Our method allows fully automated computational identification of small molecules that cannot be found in any database.

Mass spectrometry (MS) is a key analytical technology for detecting and identifying small molecules such as metabolites. ${ }^{1-3}$ It is orders of magnitude more sensitive than nuclear magnetic

[^0]resonance (NMR). Several analytical techniques have been developed, most notably gas chromatography MS (GC-MS) and liquid chromatography MS (LC-MS). We can analyze thermally unstable metabolites using LC-coupled tandem MS. This technique is usually combined with a gentle ionization, that results in minimal fragmentation of the adduct ions formed. In addition, LC-MS requires less sample preparation as no derivatization step is needed, and is more sensitive and quantitative more accurate. ${ }^{4}$ Molecules are mass-selected, fragmented, and the mass-to-charge ratios $(\mathrm{m} / \mathrm{z})$ of the resulting fragments recorded. This analytical technique has been applied for many years in proteomics. ${ }^{5,6}$

Computational methods for analyzing fragmentation spectra of small molecules were developed as part of the DENDRAL project. ${ }^{7}$ Unfortunately, the project failed to achieve its major objective of automated structure elucidation using MS data. The computational analysis of GCMS electron impact (EI) fragmentation spectra of small molecules is presumably simpler, as fragmentation is largely reproducible between instruments, and mostly independent of MS model or manufacturer. Computational methods have been developed for searching for similar compounds in a spectral library: In particular, Demuth et al. ${ }^{8}$ propose a method that aims at finding similar molecules in case a database does not contain the sample molecule; and Stein ${ }^{9}$ and Varmuza and Werther ${ }^{10}$ present methods to identify chemical substructures of the unknown sample molecule, see ref. ${ }^{11,12}$ for similar studies. All of these methods are based on the direct comparison of fragmentation spectra. Even for GC-EI-MS, the resulting computational problems are still far from being "solved". See Kind and Fiehn ${ }^{13}$ for a recent review.

Fragmentation in LC-MS experiments (usually collision-induced dissociation (CID)) is less reproducible than fragmentation by electron ionization for GC-MS. Even the time-consuming manual analysis of such data, ${ }^{14}$ as well as searching in spectral libraries, are major problems. ${ }^{15}$ Apart from a few pioneering studies (e.g. ref. ${ }^{16-18}$), there are few computational methods for the automated analysis of tandem MS data from small molecules. For multiple MS, Sheldon et al. ${ }^{19}$ proposed a method that takes into account tandem MS spectra of fragments in a "spectral tree". Also, methods exist for de novo sequencing of linear or cyclic non-ribosomal peptides, ${ }^{20-22}$ but these polymers are structurally strongly restricted.

For decades, MS experts have manually determined fragmentation pathways to explain tandem MS data and determine the molecular structure. In 2008, Böcker and Rasche ${ }^{23}$ presented an automated and swift method for annotating tandem MS data using a hypothetical fragmentation tree (FT). Tree nodes are annotated with the molecular formulas of the fragments and the edges represent (neutral or radical) losses. Computing FTs does not require databases of compound structures or of mass spectra. Neither does it require, apart from lists of common and implausible losses, expert knowledge of fragmentation. Expert evaluation suggests that the FTs are of very good quality. ${ }^{24}$ FTs can also be computed from multiple MS data. ${ }^{25}$ Rojas-Chertó et al. ${ }^{26}$ use multiple MS data to derive molecular formulas; note that their "fragmentation trees" are not related to the FTs used herein, but rather to spectral trees. ${ }^{19}$ Similar FTs can be identified using visual comparison, which indicates some similarity in the structure of the underlying compounds. Unfortunately, "manual comparison of FTs is also laborious and time-consuming". ${ }^{24}$

Here, we present an automated method for comparing the FTs of two compounds. This allows us to use FTs in applications such as database searching, where we replace the direct comparison of mass spectra by the comparison of the (annotated and more informative) FTs. Our method is based on local tree alignments, generalizing local sequence alignments. We assume that structural similarity is inherently coded in the CID spectra fragments. FT similarity is defined by its edges,
which represent losses and nodes, representing fragments. The local tree alignment contains those parts of the two trees where similar fragmentation cascades occurred.

Aligning FTs when the molecular structure of one compound is known can help elucidate the structure of the unknown compound. We concentrate on the pairwise similarity scores between FTs because these are simple numerical values easily susceptible to automated downstream analysis. We present three workflows based on similarity scores. First, we compute pairwise tree alignments for all compounds and so generate a pairwise similarity matrix. We then cluster the compounds based solely on this similarity measure. We find that the clusters that result agree well with the structural properties of the compounds. Second, we calculate pairwise FT alignment similarities and pairwise Tanimoto structural similarities of a dataset of knowns. These similarities are strongly correlated, reaching Pearson correlation coefficients up to $r=+0.68\left(r^{2}=0.46\right)$ and Spearman correlation coefficients up to $\rho=+0.71\left(\rho^{2}=0.50\right)$ for certain compound subsets. Third, we determine the similarities of a fragmentation tree from an unknown compound with all trees in a database, to search for related compounds. To filter out spurious hits, we present a statistical evaluation based on decoy database searching. These database hitlists can reveal structural features of the unknown. ${ }^{27}$ We name this approach fragmentation tree basic local alignment search tool or FT-BLAST for short. Finally, as a proof of principle we show how biological samples from Icelandic poppy (P. nudicaule) are analyzed in this framework.

We have elaborated suitable workflows for the process of clustering, database searching, and correlation with chemical similarity (Figure 1). Apart from the need to choose easily accessible parameters for the analysis no user interaction is required, as all workflows are fully automated. Fragmentation tree alignment provides solutions to a major problem in identifying small molecules and it makes possible high throughput computational identification of small molecules even when they have not been databased.

Methods

We analyzed spectra from three reference datasets (Table 1). The Orbitrap dataset contains 97 compounds, measured on a Thermo Scientific Orbitrap XL instrument. The MassBank dataset ${ }^{28}$ consists of 370 compounds measured on a Waters Q-Tof Premier spectrometer. The QSTAR dataset contains 44 compounds measured on an API QSTAR QTOF spectrometer by Applied Biosystems. ${ }^{24}$ The masses of all compounds ranged from 75 Da to 1258 Da . The supplementary material contains a detailed description of the computational methods.

Acquisition of mass spectra.

For the Orbitrap dataset, 37 compounds were previously measured and used for fragmentation tree evaluation. ${ }^{24}$ The remaining compounds originated from our stock, were purchased or donated by M. Strnad (Palacký University, Olomouc, Czech Republic). Some compounds were isotopically labeled with deuterium. The samples were dissolved in methanol (ca. $1 \mathrm{mg} / 1 \mathrm{~mL}$). They were either introduced into electrospray sources using a built-in infusion pump or mixed and separated by liquid chromatography, then measured on an Orbitrap XL instrument (Thermo Fisher Scientific, Bremen, Germany). Full-scan and CID mass spectra were generated using 30000 and 7500 full width at half maximum (FWHM) resolution, respectively. The activation time was set at 30 ms with

Figure 1: Workflows elaborated for the analysis of tandem MS data. Apart from choosing analysis parameters such as mass accuracy, no user interaction is required. Workflows (a) and (c) are targeted at compounds that are not in any database. (a) Clustering of known and unknown compounds using an all-against-all pairwise FT alignment, followed by hierarchical clustering. (b) Correlating FT alignment similarities and chemical similarities for a set of reference compounds. (c) Searching for an unknown compound in databases of reference compounds (either tandem mass spectra or fragmentation trees) using FT-BLAST. This method will return hits (similar compounds) even if the true compound is not in the database. Molecular structures are required only to compute chemical similarities (correlation analysis) or to annotate FT-BLAST hits.
the activation parameter $q=0.25$. An isolation window of 1.5 mass units was used. Fragmentation was performed using Collision Induced Dissociation (CID) or High-energy Collision Dissociation (HCD). Peak picking was done by the vendor software.

The MassBank dataset was downloaded from the MassBank database ${ }^{28}$ with accession numbers PR100001 to PR101056. We discarded compounds with precursor mass deviations above 10 ppm . Mass accuracy 50 ppm for the analysis was chosen by manual inspection of the data. The QSTAR dataset was also from a published source. ${ }^{24}$ Peak lists at different collision energies were merged using a window of 50 mDa . This window was determined through visual inpection of a few compounds from the QSTAR dataset. A too small window might cause a few wrong additional fragments to appear in the trees from less accurate datasets, whereas a too wide window results in fragments not appearing in the trees from more accurate datasets. Our alignment approach can compensate for such errors, however.

Table 1: Datasets used in this study. The QSTAR dataset and 38 compounds from the Orbitrap dataset were used for evaluating FTs in ref. ${ }^{24}$ The MassBank dataset was downloaded from the MassBank database ${ }^{28}$ (http://www.massbank.jp/), accession numbers PR100001 to PR101056. We discarded compounds where the measurement of the unfragmented molecule mass deviated more than 10 ppm from the theoretical mass. The MassBank dataset consists of ramp spectra; the other datasets were measured at discrete collision energies. 26 compounds of the Orbitrap dataset were fragmented using higher-energy collisional dissociation (HCD). For these compounds we used fragmentation energies between 5 and 95 arbitrary units. ${ }^{\text {a }}$ Expert estimate of measurement accuracy. ${ }^{\text {b }}$ Between 1 and 20 different collision energies. 41 compounds (zeatins, sugars, lipids, bicuculline) were measured at a single collision energy. ${ }^{\text {c }}$ Some compounds were also measured at 30 eV discrete collision energy. ${ }^{\mathrm{d}}$ Three to five distinct collision energies for each compound; four compounds measured at a single collision energy.

Name	Orbitrap	MassBank	QSTAR
Mass accuracy $(\mathrm{ppm})^{\mathrm{a}}$	<5	≈ 50	20
collision energy (eV)	between 5 and 150^{b}	ramp 5-60, 30	$15,25,45,55,90^{\mathrm{d}}$
Number of compounds	97	370	44
Mass range (dalton)	$75.0-1257.4$	$90.0-822.4$	$89.0-450.2$
Median / average mass	$342.1 / 346.2$	$230.0 / 298.0$	$174.6 / 212.1$
FTs with 1+, 3+, 5+, 7+ losses	$93,77,65,51$	$343,242,157,103$	$44,43,32,28$
Major compound classes	zeatins (24), amino acids	flavonoids (85), carboxylic	amino acids
	(19), glucosinolates (14),	acids (76), amino acids (73),	(21), cholines
	sugars (12), benzopyrans	nucleotides (65), sugars (22)	(18), amines (4)
Compound details	(11)		
	Table 2 and Suppl. Table 7	Suppl. Table 8	Suppl. Table 9

Fragmentation trees and molecular formulas.

For Orbitrap and QSTAR data, we identified molecular formulas following a published method. ${ }^{24}$ For each compound, we computed a hypothetical FT, annotating fragment peaks with molecular formulas and modeling fragmentation reactions through dependencies between fragment ions (Figure 2). We performed calculations as described in ref. ${ }^{24}$ using a revised and somewhat simplified scoring. The automated computation proceeded in three steps. First, we created a graph containing all molecular formulas that might explain each fragment peak and all potential fragmentation reactions between these formulas. Next, fragmentation reactions were scored, so that the more likely it was that a hypothetical fragmentation reaction was "real", the higher its score. Common losses such as $\mathrm{H}_{2} \mathrm{O}$ were given a bonus (Supplementary Table 1). In contrast to the published method ${ }^{24}$ we penalized implausible losses (Supplementary Table 2) and we allowed radicals as fragments (Supplementary Table 3). From this graph, we computed the FT with maximum score, annotating every peak once at most. We used an exact method to compute optimal FTs (Supplementary Fig. 10,11,12).

Aligning fragmentation trees.

For the automated comparison of FTs we followed the paradigm of pairwise local alignments. We defined a simple similarity measure on the edges (losses) and nodes (fragments) of the two FTs
(Supplementary Table 4). We generalized this similarity measure to trees of identical topology and summed the similarity of tree edges. We also allowed for the insertion and deletion of edges. We searched for subtrees in the two FTs that maximized our similarity measure. The rationale for doing so was the same as in the case of local sequence alignments. It is because the molecular structures are not identical but subtree similarity indicates structural resemblance.

Tree alignments have been proposed in the context of RNA structure comparison and efficient algorithms have been developed to compute them. ${ }^{29}$ In contrast to RNA trees, FTs are unordered, as there is no meaningful ordering of the losses of some fragments. Aligning unordered trees is computationally hard. ${ }^{29}$ To compute alignments of unordered trees, we used an exact algorithm based on dynamic programming that guarantees the optimal solution is found. Computational complexity is not usually an issue as the algorithm is efficient if the trees do not contain nodes with many outgoing edges.

Similarity of subtrees was defined as the sum of similarities of edges which, in turn, was chosen to reward identical losses and penalize distinct losses and insertions or deletions. Edge similarities were modified based on the number of non-hydrogen atoms contained. Similarity between fragments (nodes) was also rewarded or penalized (Supplementary Table 4). We modified the published recurrence ${ }^{29}$ for solving the problem in three ways. First, we also considered edge similarities. Second, we computed local alignments for maximum subtree similarity by adding a "zero-case" to the recurrence, corresponding to the leaves of the subtree. Third, we scored join nodes where two losses were combined into one, corresponding to the non-appearance of intermediate fragmentation steps. Alignment scores will clearly be large for large trees and small for small trees, so we normalized similarities by perfect match scores. To do this we computed for each FT the alignment score against itself, then used the minimum of the two scores, taken to the power of 0.5 . We refrained from using the similarity matrix directly. Instead, for each compound we viewed its similarity matrix column as a fingerprint (or feature vector), as is done with gene expression data. We computed the Pearson correlation for any two fingerprints, and processed the resulting fingerprint similarities. We implemented all algorithms in Java 1.6.

Clustering.

For each dataset, we performed all-against-all pairwise alignments. We limited calculations to FTs with three and more losses ($3+$ losses), as smaller trees do not contain sufficient information for clustering. We applied hierarchical clustering ${ }^{30}$ (Unweighted Pair Group Method with Arithmetic Mean, UPGMA) to the FT fingerprint similarities using EPoS. ${ }^{31}$ Mostly homogeneous clusters were collapsed based on visual inspection.

Correlation with chemical similarity.

Since the chemical structures are known for all reference compounds in our spectral datasets, we can correlate FT fingerprint similarity and chemical similarity. We chose the PubChem/Tanimoto ${ }^{32,33}$ measure of chemical similarity because it is the most widely used. We used the Chemistry Development Toolkit ${ }^{34}$ (version 1.3.37) to calculate the scores. We did not include any FTs with fewer than one loss.

It is important to note that we did not compare any compound against itself, which trivially results in identical fragmentation patterns, FTs, and molecular structures (including self-comparisons
would result in stronger correlations). We estimated Pearson and Spearman correlation coefficients for all datasets and restrictions using the programming language R . We also performed a betweendatasets analysis, where we only considered compound pairs from different datasets.

To evaluate our results, we also tested the correlation of chemical similarity and the classic peak counting score, as well as many of its variants.

FT-BLAST.

The classic way of analyzing tandem MS data is database searching and FT alignments can be used for this task. Given the tandem MS spectra of an unknown compound, we computed its FT, then aligned it to all FTs in our target database, and ranked hits according to fingerprint similarity. Target FTs are constructed from tandem MS data, possibly on the fly. Searching for a "known" compound in a target database is a task that has already been thoroughly studied. We concentrated on the much more intriguing case of where we could not find the query compound in the target database.

An important point is to differentiate between true and spurious hits. We employ a decoy database strategy where for each FT in the target database, a similar FT in the decoy database was generated. ${ }^{35}$ We created decoy fragmentation trees by using the backbones of real fragmentation trees from another dataset. ${ }^{16}$ We searched in the combined target and decoy database, and sorted results with respect to score. We reported hits from the true database only and displayed all hits up to a False Discovery Rate (FDR) of 30%. For each compound hit we can also compute an individual q-value, that is, the smallest FDR for which the hit is included in the output list.

We evaluated FT-BLAST by a leave-one-out strategy on the Orbitrap dataset. For each compound we removed the correct answer from the database and searched for the compound in the remainder.

Poppy data.

Surface extracts of P. nudicaule were made using methanol: 1% acetic acid 2:1 mixture. The extracts were directly infused using a Nanomate Triversa system (Advion, Ithaca, NY) on a Nanomate nanoelectrospray chip and analyzed on an Orbitrap XL (Thermo Fisher Scientific, Bremen, Germany). Measurements were conducted in both positive and negative mode using several collision energies. Precursor ions were manually selected based on ion intensities and expected masses obtained from literature, and HCD-fragmented. We used a published method ${ }^{24}$ to determine molecular formulas. We separately considered the results of the isotope analysis and the compound was kept in the fragmentation analysis only if the sum formula identified was among the top five hits in both cases. FTs, FT alignments, and FT fingerprint similarities were calculated as previously described. We included FTs from unknowns in the fingerprints. We ran FT-BLAST and hierarchical clustering as described above.

Results

In this analysis, we assume that we know the correct molecular formula of each compound. Computing molecular formulas is possible through combining isotope and fragmentation pattern data. ${ }^{24}$

For the QSTAR dataset, identifying the correct molecular formula is possible in all cases. ${ }^{24}$ Isotope patterns were available for 51 compounds from the Orbitrap dataset and for 47 of them we identified the correct molecular formula. There are no isotope pattern data available for the MassBank dataset so no molecular formulas were determined.

FTs with fewer losses contain less information and were therefore excluded from our analysis in some cases (Table 1). Computational complexity was not an issue, as running times increase primarily with the out-degree of nodes and, in our experience, FTs rarely contain nodes of outdegree six or higher (example in Figure 2). The average running time for each alignment was below 4 milliseconds on a laptop computer.

Clustering.

Figure 3 and Supplementary Figures 1-4 show the results of the clustering analysis. For Orbitrap data, sugars, zeatins, glucosinolates, amino acids and benzopyrans formed almost perfect clusters. For the MassBank dataset, flavonoids formed one large (64 flavonoids, two other) and three small clusters (12 flavonoids total, one other). Groups of nucleotides, carboxylic acids, sugars, and amino acids formed well-partitioned clusters. For QSTAR data, we observed good partitioning into amino acids, amines, and cholines.

To show how our method applies with measurements from different instruments, we performed combined dataset clustering, in which we clustered all FTs with five and more losses (5+ losses) from the three datasets (Figure 3). We observed many perfect or almost perfect clusters. In addition, compounds of the same class but from different datasets clustered together.

Correlation with chemical similarity.

For the Orbitrap dataset, the Pearson correlation between the FT fingerprint score and the PubChem/Tanimoto score was $r=+0.65\left(r^{2}=0.42\right)$; this correlation increased slightly for FTs with $3+$ losses (Figure 4). For the MassBank dataset, Pearson correlation was $r=+0.50\left(r^{2}=0.25\right)$. The correlation increased if we restricted ourselves to compounds with more losses. For FTs with seven and more losses ($7+$ losses) the Pearson correlation was $r=+0.68\left(r^{2}=0.46\right)$ and Spearman correlation $\rho=+0.71$ ($\rho^{2}=0.50$) (Supplementary Fig. 5). For the QSTAR dataset, the Pearson correlation was $r=+0.63\left(r^{2}=0.40\right)$ (Supplementary Fig. 6). All correlation results can be found in Supplementary Table 5.

We also performed a between-datasets analysis in which each compound from each dataset (Orbitrap, MassBank, QSTAR) was compared to every compound from the other two datasets. We explicitly excluded comparisons between two compounds from the same dataset. The Pearson correlation was $r=+0.49\left(r^{2}=0.24\right)$ for the complete datasets and $r=+0.58\left(r^{2}=0.34\right)$ for FTs with 7+ losses (Figure 4).

We found that correlation between the classical peak counting score and chemical similarity is much weaker than for the FT fingerprint similarity (Supplementary Fig. 9 and Supplementary Table 6).

Table 2: Top: Results of the FT-BLAST analysis for the Orbitrap dataset, compounds with at least one loss $(N=93)$. For each compound, we report results of the leave-one-out search in the database not containing the compound we search for. The FDR threshold is set to 30%. Results are ordered according to fingerprint similarity score. Circles correspond to hits in the same compound class as the query compound, hexagons to hits from a "similar" compound class. Since anthocyanins are made up of sugars and benzopyrans, they are regarded as being similar to both classes; as glucosinolates contain a sugar moiety, these classes are also regarded as being similar. Boxes correspond to hits from all other classes. A large asterisk indicates the compound with the highest chemical similarity (PubChem/Tanimoto), and small asterisks indicate other hits with chemical similarity above 0.85 . Symbols are colored by the class of the compound. Overall, we return 557 compounds from the same group, 63 compounds from a similar group, 270 compounds with best or high PubChem/Tanimoto score, and only 31 compounds which do not fall into any of the above categories. In 33 cases (35\%) we return the compound with highest chemical similarity at the top position; in 56 cases (60%) this compound is in the TOP 3. Bottom: Searching poppy data in the Orbitrap dataset. A large asterisk indicates the correct identification. Search results mentioned in text and frequent search results are indicated by a boxed number, namely chelidonine (1), phenylalanine (2), laudanosine (3), rotenone (4), bergapten (5), tyrosine (6), trimethoxycinnamic acid (7), glutamate (8), and anisic acid (9).

FT-BLAST.

Table 2 shows the results of the leave-one-out FT-BLAST search on the Orbitrap dataset. For each compound we removed the correct answer from the database and searched for the compound in the remainder. For each hit we verified whether it belonged to the same or a chemically "similar" compound class as the query. We also verified whether it had high (PubChem/Tanimoto at least 0.85) or the highest chemical similarity to the query. Many hit lists contained compounds mostly from the same class or with high chemical similarity; other hit lists were short or empty. Only a

rosmarinic acid

(a) (-)-shikimic acid

(b)

Figure 2: Optimal FT alignment for rosmarinic acid (8 losses) and (-)-shikimic acid (7 losses) from the MassBank dataset (a). The FT fingerprint similarity (from -1 to +1) of the mass spectra is +0.24 . (b) Fragmentation mass spectra of rosmarinic acid and (-)-shikimic acid used for computing FTs. The mass spectra do not share common peaks. Molecular structures of rosmarinic acid (c) and (- -shikimic acid (d). PubChem Tanimoto score of the compounds is 0.50 . The molecular structures are not known to the alignment method. We find that the FT alignment reproduces the key structural similarity of the two compounds: rosmarinic acid loses dehydrocaffeic acid and the anion formed loses two water molecules and carbon dioxide. The (- -shikimic acid behaves similarly. The key $\mathrm{C}_{2} \mathrm{O}_{2}$ loss originates from $n, n+1$ dihydroxylation of the aromatic rings. The compounds share a common biosynthetic polyketide origin.

Figure 3: Clustering results based on FT fingerprint similarities. (a) Heat map and hierarchical clustering of the QSTAR dataset, FTs with $3+$ losses, $N=43$. We observe good partitioning of the compounds into amino acids, amines, and cholines. (b) Combined dataset clustering, FTs with $5+$ losses, $N=254$. For better visualization, we have collapsed mostly homogeneous clusters; compounds from different classes are reported as "others". Number of compounds from different datasets are given as "(MassBank/Orbitrap/QSTAR)". Compounds of the same or similar classes but from different datasets, such as amino acids or sugars, cluster together. A nucleotide cluster (from MassBank) forms a subcluster of the zeatin cluster (from Orbitrap). (c) Hierarchical clustering of the Orbitrap dataset, FTs with $3+$ losses, $N=77$. Glucosinolates and zeatins form perfect clusters, all sugars form a cluster together with two other compounds, and large groups of amino acids and benzopyrans form almost perfect clusters.

Figure 4: Correlation and regression line: FT fingerprint similarity (x-axis) plotted against chemical similarity measured by PubChem/Tanimoto score (y-axis). Left: Orbitrap dataset, FTs with $3+$ losses, $N=$ 2926. Pearson correlation is $r=+0.67\left(r^{2}=0.45\right)$ and Spearman correlation is $\rho=+0.47\left(\rho^{2}=0.22\right)$. Right: between-datasets analysis, each compound from one dataset is compared to all compounds from the other two datasets. Only FTs with 7+ losses are considered, $N=9565$. Pearson correlation is $r=+0.58\left(r^{2}=0.34\right)$ and Spearman correlation is $\rho=+0.43$ ($\rho^{2}=0.18$).
few queries resulted in hit lists with several hits from incorrect compound classes. In fact, only 5\% of the hits must be regarded as "wrong". We can use q-values to discriminate further between true and spurious hits. They are omitted from Table 2 solely for the sake of readability.

Similar to Demuth et al. ${ }^{8}$ we also estimated the average chemical similarity of the query compounds to all compounds returned by FT-BLAST: The mean PubChem/Tanimoto similarity for the complete dataset, using the leave-one-out strategy described above, is 0.76 . If we ignore the decoy analysis of FT-BLAST and average over the TOP 5 hits of our search, the mean similarity drops to 0.67 ; if we combine both approaches and take at most the TOP 5 hits of FT-BLAST, the similarity increases to 0.78 .

Identifying unknowns from a biological sample.

As a real-world example of using our method we analyzed several extracts from Icelandic poppy (P. nudicaule) in an Orbitrap mass spectrometer. We found 89 features and identified their molecular formulas following a published method. ${ }^{24}$ After manual inspection, we selected 32 features with reliably identified molecular formulas. In other cases the isotope patterns of the features were often only faint. FTs were calculated and compared with the Orbitrap dataset using FTBLAST (Table 2). Eight compounds from the dataset were manually identified. For arginine, glutamine, quercetin and a hexose the top hit was the correct compound from the Orbitrap dataset. FT-BLAST results for reticuline (330.17 Da) and corytuberine (328.15 Da) included laudanosine, several benzopyrans, and phenylalanine, from which these alkaloids are synthesized. Search results for corytuberine also included chelidonine. These two alkaloids share a large substructure. Two other unknowns (370 and 386 Da) were manually classified as palmatine-derivatives. The structurally very similar alkaloid laudanosine was the first or second search result and the other hits were similar to those above. We are currently analyzing the extract using NMR spectrometry to obtain further data for the identification of the novel compounds.

We clustered poppy unknowns together with the Orbitrap dataset (Supplementary Fig. 8). Reticuline, corytuberine, the two palmatine derivatives, and one unknown clustered together with many alkaloids. Other unknowns fell into the amino acid or sugar cluster. A contaminant at $m / z 338$ (erucamide) was classified as lipid. No unknowns clustered with glucosinolates or zeatins.

Discussion

To achieve the full potential of small molecule MS analysis and to overcome limitations of spectral libraries, we need methods for the computational analysis of fragmentation spectra from unknown compounds. Rule-based approaches for analyzing compound fragmentation spectra may suffer from the tremendous number of rules, both known and unknown. In addition, completely unknown compounds may not necessarily follow the known rules of fragmentation. MS experts have come up with rules for classifying compounds, such as a water and ammonia loss for amino acids. However, real fragmentation patterns are far more complicated, and new "rules" are constantly being introduced. This makes manual compound classification and structure elucidation cumbersome as they require a thorough understanding of fragmentation patterns and profound knowledge of gasphase ion chemistry and energetics. In contrast, the approach presented here is fully automated and
"rule-free", both when computing and aligning FTs. It only requires sufficiently information-rich fragmentation spectra.

Clustering results show the potential of the method to differentiate compound classes. For the QSTAR dataset, we found good separation into the three compound classes. For Orbitrap data, large compound classes formed almost perfectly separated clusters. Smaller compound classes were distributed among several clusters, but clusters contained few outliers. For the MassBank dataset, flavonoids were perfectly clustered, whereas other compound classes were distributed among several well-separated and homogeneous clusters. Importantly, in the combined dataset clustering, compounds of the same class but from different datasets clustered together. Hierarchical clustering was applied as a proof-of-concept and to demonstrate clustering results. Better results can possibly be achieved by other clustering methods and supervised Machine Learning. Nevertheless, our results indicate how to deduce the compound class of an unknown when a reasonable number of knowns are clustered simultaneously. Even amino acids that did not show the characteristic losses were recognized by the method, such as N -formyl-L-methionine and N tigloylglycine (MassBank, 3+ losses, Supplementary Fig. 3).

We found strong correlation between FT similarity and chemical similarity. This is true even for the QSTAR dataset that contained only two major compound classes, and for the MassBank dataset with mass accuracy much lower than 10 ppm . We observed a slight drop in correlation for Orbitrap and QSTAR data for FTs with more losses but assume that this is an artifact (see the Supplementary Material). The correlation between two different measures of chemical similarity (PubChem/MACCS Tanimoto scores) was at most $r=+0.82$ for our datasets, emphasizing the quality of the above results. FT similarity must not be understood as a prediction of chemical similarity in the sense of Machine Learning methods. However, FT similarity, expert knoledge, and other sources of information can be combined to permit the accurate prediction of chemical similarity for many compounds.

FT-BLAST achieves a "larger profit" than classical spectral comparison methods, as it searches for similar, not identical, compounds. For the Orbitrap dataset, we achieved excellent search results for most compounds. Even when FT-BLAST returned only a single hit it was often meaningful. Cases where no hits or spurious hits were returned could often be attributed to small FTs, low quality measurements, or the absence of similar compounds from the database. Carboxylic acids and aromatic amino acids were harder to identify as their fragmentation patterns appeared to be more diverse. Results for the smaller QSTAR dataset were of comparable quality. We also found chemically similar hits in the MassBank dataset but the relationships were more complicated than membership in a compound class or Tanimoto similarity.

FT-BLAST individually selects the size of the output for each query compound. For this purpose, we have proposed a method for generating a decoy database of FTs that can be searched simultaneously. Database searching by spectral comparison has been in use for decades; but even today, no sensible methods for generating decoy databases for spectral comparisons have been developed. Although FT-BLAST returned an average of 8.4 compounds per query on the Orbitrap dataset, the average similarity of these results is much higher than when choosing the TOP 5 in all cases (see also Supplementary Fig. 7). The chemical similarities reported above (0.67 to 0.78) compare well to the numbers from ref. ${ }^{8}$: the highest TOP 5 chemical similarity reported there is 0.605 , obtained after extensive parameter optimization. But clearly, we cannot rule out that the improved performance is due to different database sizes, content, or spectral qualities.

By applying FT-BLAST and clustering to an unknown sample from poppy, we confirmed
eight manual identifications and suggested compound classes for some other unknowns, as they were unquestionably members of a well-defined cluster. Particularly remarkable was that we also identified the biosynthetic precursor of several alkaloids, which come from mixed biosynthetic pathways. The analysis of unknowns will become more powerful as more reference compounds become available. Our results may also simplify downstream NMR analysis.

The results presented are of good quality, but further improvements are possible with better scoring and when more data becomes available. We found that optimizing sample preparation and instrument settings to obtain fragment rich CID spectra could be advantageous. With compounds for which tandem MS does not produce a sufficient number of fragments, computing FTs from multiple MS spectra may be beneficial. ${ }^{25}$ Other fragmentation techniques, such as Electron Transfer Dissociation (ETD), can be analyzed by FT alignments, as our method is not limited specifically to CID fragmentation. In the future, we want to include more expert knowledge on characteristic losses and ions.

FT alignments open a way to a fast classification/identification of metabolites, limiting work spent on ubiquitously occuring "uninteresting" molecules. Areas of application include natural product discovery, identifying catabolic processing of drugs, dereplication and searching for biomarkers. ${ }^{36}$ In future, the systems biology approach of inferring biosynthetic pathways and metabolic networks from tandem MS data might be improved by using FT similarities instead of spectral comparisons. ${ }^{37,38}$

Acknowledgement

KS funded by Deutsche Forschungsgemeinschaft (BO 1910/10-1). FH supported by the International Max Planck Research School, Jena. We thank Masanori Arita (University of Tokyo, Japan) for providing the MassBank data, Ravi Kumar Maddula for measuring some of the compounds in the Orbitrap dataset, Miroslav Strnad (Palacký University, Olomouc, Czech Republic) for supplying the zeatins, and Evangelos Tatsis (MPI-CE Jena) for poppy samples. Financial support from the Max Planck Society is acknowledged.

Supporting Information Available

This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) Fernie, A. R.; Trethewey, R. N.; Krotzky, A. J.; Willmitzer, L. Nat. Rev. Mol. Cell Biol. 2004, 5, 763-769.
(2) Last, R. L.; Jones, A. D.; Shachar-Hill, Y. Nat. Rev. Mol. Cell Biol. 2007, 8, 167-174.
(3) Cui, Q.; Lewis, I. A.; Hegeman, A. D.; Anderson, M. E.; Li, J.; Schulte, C. F.; Westler, W. M.; Eghbalnia, H. R.; Sussman, M. R.; Markley, J. L. Nat. Biotechnol. 2008, 26, 162-164.
(4) Josephs, J. L.; Sanders, M. Rapid Commun. Mass Spectrom. 2004, 18, 743-759.
(5) Cravatt, B. F.; Simon, G. M.; Yates, J. R. Nature 2007, 450, 991-1000.
(6) Aebersold, R.; Mann, M. Nature 2003, 422, 198-207.
(7) Lederberg, J. Proc. Natl. Acad. Sci. U. S. A. 1965, 53, 134-139.
(8) Demuth, W.; Karlovits, M.; Varmuza, K. Anal. Chim. Acta. 2004, 516, 75 - 85.
(9) Stein, S. JASMS 1995, 6, 644-655.
(10) Varmuza, K.; Werther, W. J. Chem. Inf. Comp. Sci. 1996, 36, 323-333.
(11) Hummel, J.; Strehmel, N.; Selbig, J.; Walther, D.; Kopka, J. Metabolomics 2010, 6, 322-333.
(12) Tsugawa, H.; Tsujimoto, Y.; Arita, M.; Bamba, T.; Fukusaki, E. BMC Bioinformatics 2011, 12, 131.
(13) Kind, T.; Fiehn, O. Bioanal. Rev. 2010, 2, 23-60.
(14) Werner, E.; Heilier, J.-F.; Ducruix, C.; Ezan, E.; Junot, C.; Tabet, J.-C. J. Chromatogr. B 2008, 871, 143-163.
(15) Oberacher, H.; Pavlic, M.; Libiseller, K.; Schubert, B.; Sulyok, M.; Schuhmacher, R.; Csaszar, E.; Köfeler, H. C. J. Mass Spectrom. 2009, 44, 485-493.
(16) Hill, D. W.; Kertesz, T. M.; Fontaine, D.; Friedman, R.; Grant, D. F. Anal. Chem. 2008, 80, 5574-5582.
(17) Pelander, A.; Tyrkkö, E.; Ojanperä, I. Rapid Commun. Mass Spectrom. 2009, 23, 506-514.
(18) Heinonen, M.; Rantanen, A.; Mielikäinen, T.; Kokkonen, J.; Kiuru, J.; Ketola, R. A.; Rousu, J. Rapid Commun. Mass Spectrom. 2008, 22, 3043-3052.
(19) Sheldon, M. T.; Mistrik, R.; Croley, T. R. J. Am. Soc. Mass Spectrom. 2009, 20, 370-376.
(20) Ng, J.; Bandeira, N.; Liu, W.-T.; Ghassemian, M.; Simmons, T. L.; Gerwick, W. H.; Linington, R.; Dorrestein, P. C.; Pevzner, P. A. Nat. Methods 2009, 6, 596-599.
(21) Bandeira, N.; Pham, V.; Pevzner, P.; Arnott, D.; Lill, J. R. Nat. Biotechnol. 2008, 26, 13361338.
(22) Mohimani, H.; Yang, Y.-L.; Liu, W.-T.; Hsieh, P.-W.; Dorrestein, P. C.; Pevzner, P. A. Proteomics 2011, 11, 3642-3650.
(23) Böcker, S.; Rasche, F. Bioinformatics 2008, 24, I49-I55, Proc. of European Conference on Computational Biology (ECCB 2008).
(24) Rasche, F.; Svatoš, A.; Maddula, R. K.; Böttcher, C.; Böcker, S. Anal. Chem. 2011, 83, 1243-1251.
(25) Scheubert, K.; Hufsky, F.; Rasche, F.; Böcker, S. J. Comput. Biol. 2011, 18, 1383-1397.
(26) Rojas-Chertó, M.; Kasper, P. T.; Willighagen, E. L.; Vreeken, R. J.; Hankemeier, T.; Reijmers, T. H. Bioinformatics 2011, 27, 2376-2383.
(27) Henneberg, D.; Weimann, B.; Zalfen, U. Org. Mass Spectrom. 1993, 28, 198-206.
(28) Horai, H.; Arita, M.; Kanaya, S.; Nihei, Y.; Ikeda, T.; Suwa, K.; Ojima, Y.; Tanaka, K.; Tanaka, S.; Aoshima, K.; Oda, Y.; Kakazu, Y.; Kusano, M.; Tohge, T.; Matsuda, F. et al. J. Mass Spectrom. 2010, 45, 703-714.
(29) Jiang, T.; Wang, L.; Zhang, K. Theor. Comput. Sci. 1995, 143, 137-148.
(30) D'haeseleer, P. Nat. Biotechnol. 2005, 23, 1499-1501.
(31) Griebel, T.; Brinkmeyer, M.; Böcker, S. Bioinformatics 2008, 24, 2399-2400.
(32) Wang, Y.; Xiao, J.; Suzek, T. O.; Zhang, J.; Wang, J.; Bryant, S. H. Nucleic Acids Res. 2009, 37, W623-W633.
(33) Rogers, D. J.; Tanimoto, T. T. Science 1960, 132, 1115-1118.
(34) Steinbeck, C.; Hoppe, C.; Kuhn, S.; Floris, M.; Guha, R.; Willighagen, E. L. Curr. Pharm. Des. 2006, 12, 2111-2120.
(35) Keller, A.; Nesvizhskii, A. I.; Kolker, E.; Aebersold, R. Anal. Chem. 2002, 74, 5383-5392.
(36) Kulasingam, V.; Diamandis, E. P. Nat. Clin. Pract. Oncol. 2008, 5, 588-599.
(37) Berthoumieux, S.; Brilli, M.; de Jong, H.; Kahn, D.; Cinquemani, E. Bioinformatics 2011, 27, i186-i195.
(38) Krumsiek, J.; Suhre, K.; Illig, T.; Adamski, J.; Theis, F. J. BMC Systems Biology 2011, 5, 21.

Identifying the unknowns by aligning fragmentation trees Supplementary methods and material

Florian Rasche ${ }^{1}$, Kerstin Scheubert ${ }^{1}$, Franziska Hufsky ${ }^{1,4}$, Thomas Zichner ${ }^{2}$, Marco Kai ${ }^{3}$, Aleš Svatoš ${ }^{3}$, and Sebastian Böcker ${ }^{1}$
${ }^{1}$ Chair for Bioinformatics, Friedrich Schiller University, Jena, Germany
${ }^{2}$ Genome Biology Research Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
${ }^{3}$ Research Group Mass Spectrometry and Proteomics, Max Planck Institute for Chemical Ecology, Jena, Germany
${ }^{4}$ Max Planck Institute for Chemical Ecology, Jena, Germany

Table of Contents

1 Experimental section . 2
2 Identifying molecular formulas . 3
3 Computing fragmentation trees. 3
4 Scoring alignments . 5
5 Aligning fragmentation trees . 7
6 Normalization of scores and fingerprinting . 7
7 Clustering ... 8
8 Correlation with chemical similarity . 11
9 Fragmentation Tree Basic Local Alignment Search Tool . 16
10 Poppy samples . 17
11 Peak counting score . 19
Compound list for the Orbitrap dataset. 24
Compound list for the MassBank dataset. 25
Compound list for the QSTAR dataset. 29

1 Experimental section

To show the applicability of our method to diverse types of MS data, we use three datasets in this study (Table 1). The first dataset consists of 97 compounds measured on an Orbitrap mass spectrometer. The second dataset was downloaded from the MassBank database. The third dataset contains 44 compounds measured on an API QSTAR. Supplementary Tables 7, 8,9 list the compounds in the datasets.

For the Orbitrap dataset, 37 compounds were previously measured and used for fragmentation tree evaluation [17]. The remaining 60 substances were from our laboratory stocks and were either previously purchased or isolated from natural sources. The Orbitrap dataset mainly contains zeatins, amino acids, glucosinolates, sugars and benzopyrans. For 41 compounds (zeatins, sugars, lipids, bicuculline) only a single fragmentation energy was used.

The MassBank dataset was downloaded from the MassBank database [9] at http://www. massbank.jp/, accession numbers PR100001 to PR101056. These spectra were measured on a Waters Q-Tof Premier instrument at the RIKEN Plant Science Center (Yokohama, Japan) by F. Matsuda, M. Suzuki, and Y. Sawada. We discarded 47 compounds where the measurement of the unfragmented molecule mass deviated more than 10 ppm from the theoretical mass, leaving us with 370 compounds. We stress that mass accuracy of fragment ions is worse than 10 ppm : The instrument configures itself to be most accurate in the mass range of the precursor mass. Thus, even if the mass accuracy of the unfragmented molecule mass is below 10 ppm , the fragment ions distributed over the full mass range may be much more inaccurate. By visual inspection of mass spectra and FTs, we decided to use an accuracy of 50 ppm . So, mass accuracy is one order of magnitude worse than for the Orbitrap data. Most MS ${ }^{2}$ spectra in this dataset were recorded in ramp mode, with collision energy varying from $5-60 \mathrm{eV}$. Some compounds were additionally measured at a fixed energy of 20 eV . In these cases we merged the spectra, but disabled the scoring of collision energies. Among others, the dataset contains flavonoids, with and without sugar moieties, saccharides, and nucleotides.

The QSTAR dataset was measured on an API QSTAR QTOF instrument by Applied Biosystems with mass accuracy 20 ppm . This dataset was measured at the Leibniz Institute of Plant Biochemistry (Halle, Germany) by Christoph Böttcher. It contains 44 compounds, most of them amino acids and phenolic choline esters, plus four biogenic amines and one carboxylic acid. MS^{2} spectra were measured at three to five collision energies. Only four compounds were measured at a single collision energy. Experimental details for the QSTAR dataset can be found in [17].

We merged peak lists for product ion spectra acquired from the same precursor at different collision energies. For that, peaks from different product ion spectra with less than 50 mDa distance were considered to represent the same fragment ion. This relatively large mass window was found to improve the mass accuracy of the data by averaging over peaks from several measurements. Such peaks were combined into a single peak: The mass of the resulting peak is the weighted mean of peak masses, where weights were chosen as signal intensities in the product ion spectra. The intensity of the resulting peaks is simply the sum of intensities of the peaks in the product ion spectra. Intensities were not scaled, since this would compromise comparison of peak intensities from product ion spectra measured at different collision energies.

2 Identifying molecular formulas

In [17], molecular formulas were correctly identified in all cases for the QSTAR dataset and 21 compounds from the Orbitrap dataset. For another 30 compounds from the Orbitrap dataset used in this study, isotope patterns were measured. In 26 of 30 cases, we identified the correct molecular formula as described below. We found mass accuracy to be insufficient to identify the molecular formulas of the two anthocyanins with masses above 1000 Da . For two compounds (tyrosine and sphingosine), the correct molecular formula is in second place. In case of tyrosine, the isotope pattern intensities are inaccurate, whereas for sphingosine too few fragment peaks were recorded.

To limit memory usage, we slightly modify the method from [17] for determining the molecular formula. First, isotope patterns are scored as described in [2]. Then, fragmentation trees are calculated for the 20 best candidate molecular formulas only, and their score is calculated as described in the next section. We stress that a score from the hetero-tocarbon ratio of a molecular formula is added as a prior to the fragmentation tree score. The logarithmized value of the gaussian density function with mean 0.59 and SD 0.56 is used as prior score [3]. Fragmentation tree scores and isotope pattern scores are combined as described in [17], and molecular formula candidates are sorted with respect to the combined score.

For the MassBank dataset, no isotope pattern information is available, so we cannot identify molecular formulas from the experimental data.

It must be understood that even in cases were we cannot unambiguously determine the molecular formula from the data, it is possible to use the FT alignment setup described in this paper: In case of doubt about the molecular formula of an unknown, we can use the trees of several molecular formula hypotheses as queries or clustering input.

3 Computing fragmentation trees

We assume that the correct molecular formula of each compound is known: Such formulas can be determined without user interaction from high quality MS data. In [17], molecular formulas were correctly identified in all cases for the QSTAR dataset and a subset of the Orbitrap dataset used here. The results for another part of the Orbitrap dataset are described in the previous section.

For each compound, we calculate a hypothetical FT from the tandem MS data, as described in $[3,17]$. FTs are computed solely from the experimental MS data, optimizing a scoring function. First, a fragmentation graph is build, where vertices correspond to molecular formulas that are within the mass accuracy of some peak, and that are subformulas of the compound ion molecular formula. Vertices of the graph are colored, and molecular formulas corresponding to the same peak receive the same color. We draw a directed edge (arc) between a pair of vertices if the second molecular formula is a sub-formula of the first.

We then weight vertices and edges of the fragmentation graph, based on the likelihood that a certain vertex or edge is "true". Further details can be found in [3, 17]. For vertices, we use log odds to differentiate between the model (the peak is truly a fragment with the proposed molecular formula) and the background (the peak is noise):

- We use the mass difference between the measured peak and the molecular formula, and assume mass differences to be normally-distributed [10,23]. The basic score of the vertex

loss name	loss formula	loss name	loss formula
Water	$\mathrm{H}_{2} \mathrm{O}$	Deoxyhexose equivalent	$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4}$
Methane	CH_{4}	Hexose equivalent	$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}$
Ethene	$\mathrm{C}_{2} \mathrm{H}_{4}$	Hexuronic equivalent acid	$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}$
Ethine	$\mathrm{C}_{2} \mathrm{H}_{2}$	Ammonia	NH_{3}
Butene	$\mathrm{C}_{4} \mathrm{H}_{8}$	Methylamine	$\mathrm{CH}_{5} \mathrm{~N}$
Pentene	$\mathrm{C}_{5} \mathrm{H}_{8}$	Methylimine	$\mathrm{CH}_{3} \mathrm{~N}$
Benzene	$\mathrm{C}_{6} \mathrm{H}_{6}$	Trimethylamine	$\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{~N}$
Formaldehyde	$\mathrm{CH}_{2} \mathrm{O}$	Cyanic Acid	CHNO
Methanol	$\mathrm{CH}_{4} \mathrm{O}$	Urea	$\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{O}$
Carbon monoxide	CO	Phosphonic acid	$\mathrm{H}_{3} \mathrm{PO}_{3}$
Formic acid	$\mathrm{CH}_{2} \mathrm{O}_{2}$	Phosphoric acid	$\mathrm{H}_{3} \mathrm{PO}_{4}$
Carbon dioxide	CO_{2}	Metaphosphoric acid	HPO_{3}
Acetic acid	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$	Dihydrogen vinyl phosphate	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{4} \mathrm{P}$
Ketene	$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}$	Hydrogen sulfide	$\mathrm{H}_{2} \mathrm{~S}$
Propionic acid	$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$	Sulfur	S
Malonic acid	$\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{4}$	Sulfur dioxide	SO_{2}
Malonic anhydride	$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{3}$	Sulfur trioxide	SO_{3}
Pentose equivalent	$\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{4}$	Sulfuric acid	$\mathrm{H}_{2} \mathrm{SO}_{4}$

Supplementary Table 1: The common losses used in our calculations. If an entry from this table or a combination thereof occurs in a hypothetical fragmentation step, the score of this step is significantly increased.
is computed via the logarithmized Gaussian probability density function of the mass difference, with SD $1 / 3$ of the instrument's mass accuracy.

- We then add λ times the peak intensity to the vertex score, with $\lambda=0.04$. This is the negative log likelihood that the peak is a noise peak, assuming an exponential distribution of peak intensities.
- For the Orbitrap and QSTAR datasets, we use default parameters $\alpha=0.1$ and $\beta=0.8$ for collision energy scoring, see [3] for details. We found that these parameters have only small impact on FT computation, so we leave out further details.

Next, we score the edges of the fragmentation graph:

- We use a list of common losses that one expects to see in a tandem MS experiment, see Supplementary Table 1. This table was modified from Table 2 in [17] by including methanol $\left(\mathrm{CH}_{4} \mathrm{O}\right)$. Combinations of up to three losses from this table are rewarded by $\log _{10}(\gamma / n)$, where n is the number of combined common losses. We use $\gamma=10(+1)$ for the Orbitrap and the MassBank dataset, and $\gamma=1000(+3)$ for the QSTAR dataset.
- Different from [17] we penalize for implausible losses that were repeatedly annotated "wrong" by MS experts, see Supplementary Table 2. If a loss equals a implausible loss, we penalize it by adding $\log _{10}\left(10^{-3}\right)=-3$ to its score.
- Similarly, losses containing only nitrogen or only carbon are penalized by $\log _{10}\left(10^{-4}\right)=$ -4 .
- Also different from [17] we allow radicals as fragments. We penalize a radical loss with $\log _{10}\left(10^{-3}\right)=-3$, unless it is one of the common radical losses from Supplementary Table 3. In that case, the score is not modified.
- To avoid star-like FTs where all fragments branch from the root, we penalize large losses by $\log _{10}\left(\frac{1-\text { mass loss }}{\text { parent mass }}\right)$.

"loss name"	loss formula
"Dicarbon monoxide"	$\mathrm{C}_{2} \mathrm{O}$
"Tetracarbon monoxide"	$\mathrm{C}_{4} \mathrm{O}$
"Unsaturated cyclopropane"	$\mathrm{C}_{3} \mathrm{H}_{2}$
"Unsaturated cyclopentane"	$\mathrm{C}_{5} \mathrm{H}_{2}$
"Unsaturated cycloheptane"	$\mathrm{C}_{7} \mathrm{H}_{2}$

Supplementary Table 2: The implausible losses used in our calculations. If an entry from this table occurs in a hypothetical fragmentation step, the score of this step is significantly decreased. We believe that such losses should only very rarely (if ever) occur in a FT, so we penalize their appearance. We do no completely forbid them, as this conflicts the idea of an optimization-based method. It turns out that none of the implausible losses appears in any FT computed for this study.

loss name	loss formula
Atomar hydrogen	H
Oxygen radical	O
Hydroxy radical	OH
Methyl radical	CH_{3}
Methoxy radical	$\mathrm{CH}_{3} \mathrm{O}^{\cdot}$
Propyl radical	$\mathrm{C}_{3} \mathrm{H}_{7}$
tert-Butyl radical	$\mathrm{C}_{4} \mathrm{H}_{9}$
Phenoxy radical	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}$

Supplementary Table 3: The radical losses used in our calculations. If an entry from this table occurs in a hypothetical fragmentation step, this is not penalized. Other radical losses are not forbidden, but the score of the corresponding step is significantly decreased.

The weight of every vertex is pulled to each incoming edge, so that the resulting graph is solely edge-weighted. To find the hypothetical FT, we search for a colorful subtree inside the fragmentation graph that has maximum weight. Calculations were carried out using an exact method, resulting in score-optimal fragmentation trees. We have attached all FTs computed from all datasets in Supplementary Figures 10-12.

Some compounds did not fragment significantly, resulting in hypothetical FTs with an insufficient number of losses. Especially amino acids and carboxylic acids have mostly less than three losses. This is due to current instruments limited mass range at 50 thomson, too high for small amino acids like glycine and alanine.

The quality of fragmentation trees has already been evaluated by experts [17]. For the datasets used in [17], 78.96% of the losses were assigned as "correct", 13.37% as "unsure", and 7.67% as "wrong". Fragmentation tree results improved using the extended scoring described above, including a penalty for implausible losses (Supplementary Table 2).

4 Scoring alignments

Since we base our FT alignment on losses and fragments, we need a scoring function to evaluate pairs of losses, as well as pairs of fragments. In our scoring we distinguish three main cases for two losses $n l_{1}$ and $n l_{2}$. Those cases are a match $n l_{1}=n l_{2}$, a mismatch $n l_{1} \neq n l_{2}$, or an insertion/deletion (indel) where either $n l_{1}=\lambda$ or $n l_{2}=\lambda$ is a gap symbol. A summary of scores can be found in Supplementary Table 4. In detail, we define:

	Event	Score
losses	Basic match score	+5
	Modification for each non-hydrogen atom	+1
	Basic mismatch score	-2
	Modification for each non-hydrogen atom	-0.5
fragments	Basic match score	+5
	Modification for each non-hydrogen atom	+1
	Basic mismatch score	-3
	Modification for each non-hydrogen atom	± 0
	Insertion/deletion score	± 0
	Merging losses modification	± 0

Supplementary Table 4: Scoring neutral losses and fragments.

- For a match, we assign a positive score. This score depends on the size of the losses, since agreement between larger losses is more significant than between smaller ones. We set $\delta(n l, n l):=5+$ \#atoms where \#atoms is the number of non-hydrogen atoms in the loss $n l$ (that is, all carbon and hetero atoms).
- For a mismatch we assign a negative score, that increases when the losses get more dissimilar. We set $\delta\left(n l_{1}, n l_{2}\right):=-5-\# d i f f$ where \#diff is the number of non-hydrogen atoms in the symmetric difference between the two losses. As an example, $n l_{1}=\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ and $n l_{2}=\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{1} \mathrm{~N}_{1}$ differ in two carbon, one oxygen, and one nitrogen atoms, a total of four non-hydrogen atoms, so $\delta\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}, \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{1} \mathrm{~N}_{1}\right)=-5-4=-9$.
- For an insertion/deletion we set $\delta\left(n l_{1}, \lambda\right)=\delta\left(\lambda, n l_{2}\right)=0$, as deleting nodes from the alignment implicitly reduces the score that can be reached.
- Finally, we will allow two subsequent losses to be merged in one of the tree. Here, we set $\delta_{\text {merge }}:= \pm 0$. We do not penalize merged losses, as merging losses implicitly reduces the score that can be reached by the alignment.

Scoring of fragment pairs is somewhat similar. For two fragments f_{1} and f_{2} we again distinguish between match $f_{1}=f_{2}$ and mismatch $f_{1} \neq f_{2}$. To correctly compare trees measured in negative and positive mode, we "neutralize" the fragment ion formulas by adding or subtracting a hydrogen atom.

- For a match, we assign a positive score depending on the size of the fragment. We set $\delta(f, f):=5+\# a t o m s$ where \#atoms is the number of non-hydrogen atoms in the fragment f (that is, all carbon and hetero atoms).
- For a mismatch we assign a negative score not depending on the symmetric difference between the two fragments. We set $\delta\left(f_{1}, f_{2}\right):=-3$ for $f_{1} \neq f_{2}$. In this way, we allow for matching losses even when the corresponding fragments show no similarity.

Recall that some compounds in the Orbitrap dataset are isotopically labeled with deuterium. When comparing molecular formulas of losses or fragments in the alignment, we treat deuterium as hydrogen. As an example, losses $\mathrm{H}_{2} \mathrm{O}$ and HDO would receive a score of +6 .

To avoid overfitting, we have deliberately kept the proposed scoring very simple. At a later stage, when more datasets become available, optimization of the scoring scheme may further improve the quality of alignments.

5 Aligning fragmentation trees

Whereas efficient, polynomial-time algorithms exist for the alignment of ordered trees, the alignment of unordered trees is computationally hard, namely MAX SNP-hard [11]. Still, there exists an algorithm for computing exact solutions to this problem, that has reasonable running time in practice. The reason for this is that FTs usually have comparatively small out-degree: Fragments rarely have more than, say, five daughter fragments. We can limit the inevitable exponential part of the running time to this out-degree. Jiang et al. [11] proposed an exact algorithm based on dynamic programming to compute global alignments of unordered trees. Here, we modify this algorithm for our purpose of aligning FTs.

We use dynamic programming to compute the maximal score $S\left(T_{1}, T_{2}\right)$ of a local alignment between two trees T_{1}, T_{2}. Let $N(v)$ denote the children of any node v in T_{1} or T_{2}. In the following, let u be a node of T_{1}, and v a node of T_{2}. Let $D[u, v]$ be the maximal score of a local alignment of two subtrees of T_{1}, T_{2}, where the subtree of T_{1} is rooted in u, and the subtree of T_{2} is rooted in v. For $A \subseteq N(u)$ and $B \subseteq N(v)$ we define $D_{u, v}[A, B]$ to be the score of an optimal local alignment with subtree rooted in u and v, respectively, such that at most the children A of u and B of v are used in the alignment. Note that all children A of u and B of v can be used, but also, any subset is allowed, including the empty set. Clearly, we have $D_{u, v}[A, \varnothing]=D_{u, v}[\varnothing, B]=0$ for all A, B. Now, $D[u, v]=D_{u, v}[N(u), N(v)]$ holds.

We initialize $D_{u, v}[A, B]=0$ for $A=\varnothing$ or $B=\varnothing$. In the recurrence, we distinguish three cases, namely match (including mismatches), deletion, or insertion, where the latter two are symmetric to each other. For non-empty sets $A \subseteq N(u)$ and $B \subseteq N(v)$ we get

$$
\begin{gathered}
D_{u, v}[A, B]=\max \left\{0, \text { match }_{u, v}[A, B], \text { delete }_{u, v}[A, B], \text { insert }_{u, v}[A, B]\right\} \\
\operatorname{match}_{u, v}[A, B]:=\max _{a \in A, b \in B}\left\{D[a, b]+D_{u, v}[A-\{a\}, B-\{b\}]+\delta(u a, v b)\right\} \\
\operatorname{delete}_{u, v}[A, B]:=\max _{a \in A, B^{\prime} \leq B}\left\{D_{a, v}\left[N(a), B^{\prime}\right]+D_{u, v}\left[A-\{a\}, B-B^{\prime}\right]+\delta(u a, \lambda)\right\} \\
\text { insert }_{u, v}[A, B]:=\max _{A^{\prime} \subseteq A, b \in B}\left\{D_{u, b}\left[A^{\prime}, N(b)\right]+D_{u, v}\left[A-A^{\prime}, B-\{b\}\right]+\delta(\lambda, v b)\right\}
\end{gathered}
$$

where $\delta(u a, v b)$ denotes the score of the losses attached to arcs $u a$ and $v b$, and $\delta(u a, \lambda), \delta(\lambda, v b)$ accordingly. Finally, we compute the maximal score of a local alignment of T_{1}, T_{2} as

$$
S\left(T_{1}, T_{2}\right)=\max _{u \in T_{1}, v \in T_{2}} D[u, v] .
$$

Merging two losses in T_{1} or T_{2} requires additional care, as several losses may be joined simultaneously: Every node can choose to become a JoIN node, in which case it cannot participate in the matching itself, whereas all losses below the JoIN node are incremented by the loss above the join node. To compute the corresponding score, we have to iterate over all subsets of children of some node u in T_{1} that we assume to be Join nodes, and match them optimally to some children of v in T_{2}. This can be achieved by dynamic programming similar to above, where we have to introduce a PREJOIN case where a node will become a JoIN node for its parent. A corresponding optimization is required for the case that a JOIN node is present in T_{2}. We leave out the technical details.

6 Normalization of scores and fingerprinting

Since the score of an alignment is highly dependent on the size of the trees, alignment scores have to be normalized: In the extreme case of an FT with only one vertex (the parent
molecule), the alignment score is zero against all other trees. To this end, we normalize by the score that a perfect match would obtain. Since we do local alignments, a perfect match means that the one tree is a subtree of the other one. The same score is obtained by aligning this subtree with itself, $S\left(T_{i}, T_{i}\right)$. So, we normalize the score by

$$
\begin{equation*}
S_{0}\left(T_{1}, T_{2}\right)=\frac{S\left(T_{1}, T_{2}\right)}{\left(\min \left\{S\left(T_{1}, T_{1}\right), S\left(T_{2}, T_{2}\right)\right\}\right)^{c}} \tag{1}
\end{equation*}
$$

where $c \in[0,1]$ is the normalization parameter. Here, $c=1$ corresponds to a full normalization by the perfect match score, whereas $c=\frac{1}{2}$ corresponds to the square root of this value. We do not to choose the full score for normalization, since it is much more likely for a very small tree to be a subtree of another tree, than it is that a medium-size or large tree is a subtree of another tree. To this end, $c=1$ favors small trees and discriminates against large trees, whereas no normalization ($c=0$) favors large trees. In our study, we choose $c=\frac{1}{2}$.

Instead of directly using normalized scores, we found that an additional re-evaluation of similarities is useful: When two compounds are structurally similar, they should show comparable FT similarities to any other compound. To this end, we use the scores of one compound against all others as its fingerprint or feature vector. We compare two compounds by comparing their fingerprints. This can be achieved using any classical methods for comparing feature vectors, such as Euclidean distance or Pearson correlation. In our study, we chose the Pearson correlation coefficient, see (2) in Section 8 below.

7 Clustering

We compute pairwise alignments of FTs for all compound pairs, as explained in Section 5. We normalize scores by perfect match score using $c=\frac{1}{2}$ in (1), and compute fingerprints of the compounds as described in Section 6. This results in a matrix of pairwise similarities. To this matrix, we apply hierarchical clustering or, more precisely, UPGMA (Unweighted Pair Group Method with Arithmetic Mean) agglomerative clustering [19]. Again, we stress that hierarchical clustering is probably not the best-suited method for clustering compounds based on FT similarity; rather, we have chosen this method as it is well-known, particularly in the context of analyzing gene expression data [5].

It is understood that for FTs with few losses, clustering results will become somewhat arbitrary: In the extreme case of a single neutral loss, similarity or dissimilarity to any other FT can easily be spurious. To this end, we limit clustering to FTs with a lower bound on the number of losses. Somewhat unexpectedly, we were able to set this lower bound as small as three losses, while still retaining a good quality of the clustering. Still and all, we have to exclude a number of compounds from our cluster analysis, see Table 1. We believe that this is not a shortcoming of our method, but rather the problem that certain compounds do not "fragment sufficiently" under tandem MS, resulting in mostly uninformative fragmentation spectra. As indicated in the Discussion section, this problem may be overcome by using multiple MS.

We first analyze the Orbitrap dataset. We discarded 20 compounds as the resulting FTs showed less than three losses. The Orbitrap dataset contains mostly zeatins (21 with $3+$ losses), glucosinolates (14), benzopyrans (11), sugars (9), and amino acids (9). The heat map of the fingerprint similarity matrix is depicted in Supplementary Figure 1. The clustering is depicted in Figure 3 and Supplementary Figure 1. Finally, clustering with collapsed mostly-homogeneous clusters is depicted in Supplementary Figure 2. We observe

Supplementary Fig. 1: Heat map and hierarchical clustering for the Orbitrap dataset, compounds with $3+$ losses.
that clusters are very homogeneous: There is a perfect glucosinolate cluster containing all 14 glucosinolates, a perfect zeatin cluster containing all 21 zeatins, and an almost perfect sugar cluster containing all nine sugars, plus one anthocyanin and one carboxylic acid. Furthermore, there is an almost perfect amino acid clusters containing seven of the nine amino acids plus one alkaloid. Similarly, there is a perfect benzopyran cluster containing six of the eleven benzopyrans.

For the MassBank dataset, we had to discard 128 compounds with less than three losses. Here, we find a large group of flavonoids (81 with $3+$ losses), nucleotides (54), amino acids (33), carboxylic acids (26), and sugars (17). The heat map of the similarity matrix plus the clustering is depicted in Supplementary Figure 3. Clustering with collapsed mostlyhomogeneous clusters is depicted in Supplementary Figure 4. We observe an almost perfect cluster of 64 flavonoids containing only two non-flavonoid compounds. For amino acids we find five perfect clusters containing 22 of the 33 amino acids in total. Similarly, we find four carboxylic acid clusters containing ten carboxylic acids plus one other compound. For nucleotides there are seven small perfect clusters, containing 32 nucleotides in total, and a large cluster containing 16 nucleotides but also four sugars and two sugar alcohols.

Supplementary Fig. 2: Hierarchical clustering of the Orbitrap dataset (compounds with 3+ losses) where for better visualization, we have collapsed (mostly) homogeneous clusters.

Finally, we analyze the QSTAR dataset: This dataset contains biogenic amino acids and complex choline derivatives [3]. We observe a well partitioning of the compounds into amino acids, amines and cholines, see Figure 3 for heat map and hierarchical clustering.

To show the applicability of our method between measurements from different instruments, we performed a combined dataset clustering: We cluster all compounds from the Orbitrap, MassBank and QSTAR datasets for FTs with 5+ losses, leaving us with 157 compounds from the MassBank dataset, 65 compounds from the Orbitrap dataset, and 32 compounds from the QSTAR dataset. We report results in Figure 3. We observe a large amino acid cluster containing three amino acids from the MassBank, three amino acids from the Orbitrap and 17 amino acids from the QSTAR dataset. Furthermore, eight sugars from MassBank and eight sugars from Orbitrap form a large cluster with six sugar alcohols and five carboxylic acids from MassBank. The only remaining glucosinolate from MassBank forms a perfect cluster with the 13 remaining glucosinolates from Orbitrap. Finally, an almost perfect cluster of 27 nucleotides from MassBank forms a subcluster of the almost perfect zeatin cluster, containing 15 zeatins from Orbitrap and four nucleotides from MassBank. This demonstrates that the structures of the fragmentation trees are highly similar although/albeit the fundamental differences between Q-Tof and Orbitrap mass analyzers.

Supplementary Fig. 3: Heat map and hierarchical clustering for the MassBank dataset, compounds with $3+$ losses.

8 Correlation with chemical similarity

As all of the compounds in our datasets are references with known molecular structure, we can estimate their structural similarity, termed chemical similarity in the following. This allows us to compare chemical similarities with our FT alignment-based similarities. This is meant as a proof-of-concept: In applications, we obviously do not know the molecular structure of the unknown query compound. But our results clearly show the correlation between these similarity values.

For measuring correlation, we use the well-known Pearson product-moment correlation coefficient r (Pearson correlation coefficient for short) that measures the linear dependence of two variables $X=\left(X_{1}, \ldots, X_{n}\right)$ and $Y=\left(Y_{1}, \ldots, Y_{n}\right)$:

$$
\begin{equation*}
r=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sqrt{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}} \tag{2}
\end{equation*}
$$

with $-1 \leq r \leq+1$. Here, \bar{X} denotes the mean of X_{1}, \ldots, X_{n}. We also compute the Spearman correlation coefficient ρ that is the Pearson correlation coefficient of the ranked variables. The values X_{i}, Y_{i} are each converted to ranks $x_{i}, y_{i} \in\{1, \ldots, n\}$, and

$$
\begin{equation*}
\rho=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\frac{n+1}{2}\right)\left(y_{i}-\frac{n+1}{2}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\frac{n+1}{2}\right)^{2} \sum_{i=1}^{n}\left(y_{i}-\frac{n+1}{2}\right)^{2}}} \tag{3}
\end{equation*}
$$

where again, $-1 \leq \rho \leq+1$. Ties can be broken by assigning fractional ranks. Computations of correlation coefficients were carried out using the program language R.

To judge the level of correlation between the two similarities, we stress that these are not two measurements where, say, by the laws of physics, one expects a linear dependence. This being said, we argue that any Pearson correlation coefficients $r>0.5\left(r^{2}>0.25\right)$ can be regarded as strong correlation. This is even more so since two different chemical similarity scores based on comparing molecular (sub-)structures, namely PubChem/Tanimoto and another Tanimoto score that uses Molecular ACCess System (MACCS) fingerprints [6], show a Pearson correlation of less than $r=+0.82$, see below. Similarly, a Spearman correlation coefficient of $\rho>0.5\left(\rho^{2}>0.25\right)$ indicates a strong but possibly non-linear correlation.

Supplementary Fig. 4: Hierarchical clustering of the MassBank dataset (compounds with 3+ losses) where for better visualization, we have collapsed (mostly) homogeneous clusters.

Supplementary Fig. 5: Correlation and regression line, MassBank dataset. FTs fingerprint similarity (x-axis) plotted against chemical similarity measured by PubChem/Tanimoto score (y-axis). Left: FTs with $1+$ losses $(N=58653)$. Pearson correlation is $r=+0.50\left(r^{2}=0.25\right)$, Spearman correlation is $\rho=+0.43\left(\rho^{2}=0.18\right)$. Right: FTs with $7+$ losses $(N=5253)$. Pearson correlation is $r=+0.68\left(r^{2}=0.46\right)$, Spearman correlation is $\rho=+0.71\left(\rho^{2}=0.50\right)$.

Again, we normalize FT alignment scores by perfect match score using $c=\frac{1}{2}$ in (1), and compute fingerprints of the compounds as described in Section 6. To show the effect of the fragmentation tree size on the correlation with chemical similarity, we differentiate between those compounds with FTs that have at least $1+, 3+, 5+$, and $7+$ losses, respectively. See Table 1 for the number of compounds remaining in the different datasets. For a dataset with n compounds, this results in $\binom{n}{2}=\frac{n(n-1)}{2}$ compound pairs where we can correlate the two similarity values. We stress that we do not measure the similarity of a compound against itself: Any method for comparing fragmentation patterns should be able to pick up the similarity of two identical patterns. Including such self-comparisons would result in even higher but possibly misleading correlation coefficients.

Many different similarity scores have been developed in chemoinformatics to compare molecular structures [13]. We concentrate on one of the most commonly used frameworks [1], namely binary fingerprint representations with Tanimoto similarity scores (Jaccard indices) [18]. We decided to use fingerprints of the PubChem database [22] as again, we argue that it is particularly widely used. We use the Chemistry Development Toolkit version 1.3.37 [21] for our computations. We stress that these computations were performed completely independent of FT alignment computations; computations of FT alignments were carried out without any knowledge of the chemical structures.

See Supplementary Table 5 for all correlation coefficients and the number of alignments from which the coefficients are computed. See Figure 4 for the correlation plot of the Orbitrap dataset, FTs with $3+$ losses. See Supplementary Figure 5 for the correlation plots of the MassBank dataset, FTs with 1+ and 7+ losses, and Supplementary Figure 6 for the correlation plot of the QSTAR dataset, FTs with $1+$ losses. Finally, see again Figure 4 for the correlation plot of the between-datasets analysis, FTs with 7+ losses.

Different methods for measuring chemical similarity will result in different similarities of the compounds. To this end, we have estimated the correlation of two different measures

		only compounds with			
Dataset	correlation method	$1+$ losses	$3+$ losses	$5+$ losses	$7+$ losses
Orbitrap	Pearson r	0.65	0.67	0.64	0.58
	Pearson r^{2}	0.42	0.45	0.41	0.34
	Spearman ρ	0.45	0.47	0.48	0.51
	Spearman ρ^{2}	0.20	0.22	0.23	0.26
	no. compound pairs N	4278	2926	2080	1275
MassBank	Pearson r	0.50	0.60	0.67	0.68
	Pearson r^{2}	0.25	0.36	0.45	0.46
	Spearman ρ	0.43	0.52	0.64	0.71
	Spearman ρ^{2}	0.18	0.27	0.41	0.50
	no. compound pairs N	58653	29161	12246	5253
	Pearson r	0.63	0.62	0.55	0.51
	Pearson r^{2}	0.40	0.38	0.30	0.26
	Spearman ρ	0.64	0.64	0.61	0.55
	Spearman ρ^{2}	0.41	0.41	0.37	0.30
	no. compound pairs N	946	903	496	378
Between-dataset	Pearson r	0.49	0.52	0.55	0.58
	Pearson r^{2}	0.24	0.27	0.30	0.34
	Spearman ρ	0.37	0.40	0.38	0.43
	Spearman ρ^{2}	0.14	0.16	0.14	0.18
	no. compound pairs N	51083	32351	17309	9565

Supplementary Table 5: Correlation of chemical similarity (PubChem/Tanimoto) with fragmentation tree similarity, for all datasets and different restrictions on the number of losses. For the between-dataset correlation, only compound pairs from different datasets are considered. We also report the number of alignments (compound pairs) N for every set.
of chemical similarity, namely the PubChem/Tanimoto score and the MACCS/Tanimoto score [6], the later being part of the Open Babel project [7]. The Pearson correlation of PubChem/Tanimoto and MACCS/Tanimoto scores is between $r=+0.74$ and $r=+0.81$ for the Orbitrap dataset, between $r=+0.79$ and $r=+0.82$ for the MassBank dataset, and between $r=+0.74$ and $r=+0.79$ for the QSTAR dataset. Analogously, the Spearman correlation is between $\rho=+0.66$ and $\rho=+0.70$ for the Orbitrap dataset, between $\rho=+0.70$ and $\rho=+0.82$ for the MassBank dataset, and between $\rho=+0.73$ and $\rho=+0.75$ for the QSTAR dataset. These values may be seen as upper bounds for the correlation that we can possibly reach between FT similarity and chemical similarity.

All three datasets show a good correlation ($r \geq 0.50$). We reach the best correlation ($r=+0.65$) for the Orbitrap dataset that contains many compound classes. For the QSTAR dataset comprised of only two major compound classes we still reach a very strong Pearson correlation of $r=+0.63$. But even for the MassBank dataset with mass accuracy much worse than 10 ppm there is a good correlation, which increases to very strong Spearman correlation $\rho=+0.71$ for FTs with 7+ neutral losses.

As shown in Supplementary Table 5, the correlation coefficients of the MassBank dataset increase by limiting the correlation analysis to FTs with more neutral losses. This may appear evident, since correlation with chemical similarity requires that information is present in the FTs. Nevertheless, the correlation coefficients of the QSTAR and the Orbitrap datasets decrease when limiting the analysis to bigger trees. Interestingly, also the correlation between the MACCS/Tanimoto scores and the PubChem/Tanimoto scores of these

Supplementary Fig. 6: Correlation and regression line, QSTAR dataset. FTs fingerprint similarity (x-axis) plotted against chemical similarity measured by PubChem/Tanimoto score (y-axis). Only FTs with $1+$ losses $(N=946)$. Pearson correlation is $r=+0.63\left(r^{2}=0.40\right)$, Spearman correlation is $\rho=+0.64\left(\rho^{2}=0.41\right)$.
two datasets decreases from $r=+0.79$ to $r=+0.74$ for the QSTAR dataset, respectively from $r=+0.81$ to $r=+0.74$ for the Orbitrap dataset. We believe that the weaker correlation of FTs with more losses is an artifact of our data. Some compound classes fragment better than others, and limiting the compounds to bigger FTs implies limiting the compound subsets to less compound classes. For example, in the QSTAR dataset 13 of the 16 FTs with less than seven losses are cholines. Thus, the reduced subset consists of 64% amino acids. Possibly, a strong correlation within only one or few compound classes is more difficult, since FTs of one compound class are very similar and not sensitive enough to predict small differences between the structures.

To demonstrate that the strong correlation coefficients are not artifacts (measuring all compounds with one instrument and by one person), we performed a between-datasets analysis: Each compound from each dataset (Orbitrap, MassBank, QSTAR) is compared to each compound from the other two datasets. This is done to separate the intra-dataset correlation from the inter-dataset correlation. We reach Pearson correlation $r=+0.49\left(r^{2}=\right.$ $+0.24)$ for the between-datasets analysis, and $r=+0.58\left(r^{2}=+0.34\right)$ for FTs with $7+$ losses. Our results indicate that the method is robust against differences in sample preparation, instruments, and raw data processing methods. This may allow us to search for compounds in "mixed" databases where we do not limit the search to reference compounds measured under similar conditions as the query compound, see the next section. In this way, we may considerably enlarge the set of reference compounds for identifying the unknown.

9 Fragmentation Tree Basic Local Alignment Search Tool

We noted above that the important point in database searching, is to differentiate between true and spurious hits. Obviously, one of the FTs has maximal similarity among all trees in the database, but this does not mean that this best hit is a good hit.

To assess the significance of hits, we generated a decoy database: For each FT in the target database, a FT in the decoy database is constructed. For a target tree tree with m edges, we randomly generate a decoy tree with m edges. Unfortunately, we have no statistical model of the structure of fragmentation trees; at the same time, we believe that the topology of FTs is extremely important for the alignment. To this end, we chose to generate decoy fragmentation trees from an independent dataset. We computed FTs for the fragmentation data from 102 compounds measured on a Micromass QTOF, published by Hill et al. [8]. Using compounds from an independent dataset has two advantages: On the one hand, these are true FTs, so decoy FTs are structurally "similar" to the true FTs. On the other hand, this is an independent dataset, so any similarity to true FTs must be fully at random. Using the Hill et al. dataset [8] has the additional advantage that resulting FTs are large, allowing us to compute subtrees more easily: To generate a random tree with m losses, we first discard all decoy trees with less than m edges. From the remaining, we randomly select one tree, where larger trees are chosen with higher probability: A tree with m^{\prime} edges is chosen with weight $m^{\prime}-m+1$. Starting with a random edge, we build a subtree from this tree by randomly adding incident edges to the subtree, until the subtree has size m edges. The root of the decoy tree is assigned the same molecular formula as the root of the target tree. We then label the edges and remaining nodes of the decoy tree: We randomly choose a loss from the target database, respecting multiplicities. So, whereas the structure of the tree and the succession of losses is random, the losses of a decoy fragmentation tree have the same "occurrence pattern" as those in the target database. The label for the target node of this edge is defined by subtracting the chosen loss from the label of its source node. In case the resulting molecular formula is invalid (the loss is not a sub-formula of the source node molecular formula), a new loss is selected. If no loss that would result in a valid formula exists, the whole tree is discarded, and the tree generation is restarted from scratch.

From this construction, we may assume that spurious hits in the target database and hits in the decoy database are equally likely: The decoy FTs are similar to true FTs with respect to size, tree topology, losses, and molecular formula of the parent compound. We also assume that hits in the decoy database are never "true" hits: It is extremely unlikely to construct a tree which, by chance, is also an element of the target database, or is the FT that we are actually searching for.

We align our sample FT to every tree in the combined database, containing both target and decoy FTs, and sort the results with respect to score (fingerprint similarity). We report hits from the true database only. Assume we are given a False Discovery Rate (FDR) threshold t, such as $t=30 \%$. If the TOP $n_{\mathrm{T}}+n_{\mathrm{D}}$ in the combined search contains n_{T} hits from the target database and n_{D} hits from the decoy database, then we calculate a FDR of $n_{\mathrm{D}} / n_{\mathrm{T}}$ for this list. We search for the largest set of top hits with FDR $n_{\mathrm{D}} / n_{\mathrm{T}} \leq t$. For each hit, we compute the q-value as the smallest FDR under which this hit is reported in the output.

In case we search for a FT in the database where we did not exclude this FT, our method recovered the correct FT in all cases. More precisely, the similarity of a FT to itself, is highest among all FTs in the dataset. Finding a "known compound" in a database is not a complicated task, and could be also done using methods based on spectral comparison. But we report this result here to show that our method will also "find the knowns", not only the unknowns.

We want to evaluate our method for those cases where the compound is not found in the database. To this end, we pursue a leave-one-out evaluation: For each compound, we deliberately delete the corresponding FT from the database before searching for it. We then compute an alignment score against all remaining compounds (both targets and decoys) in our dataset. As usual, these values are normalized by perfect match score with exponent 0.5 and used as fingerprints. Pearson correlation between the fingerprints is calculated and used as final fingerprint similarity score. We sort compounds with respect to fingerprint similarity, and estimate the FDR as described above.

In Table 2 we report search results for the Orbitrap dataset with FDR threshold $t=30 \%$. One can see that the search results of glucosinolates, sugars and zeatins contain almost exclusively compounds of the respective group. Some benzopyrans receive several hits from their own and similar groups, whereas for other benzopyrans, no hits are found. Possibly, the corresponding spectra are of lower quality, or the chemical similarity to other benzopyrans is weak. Only few hits were found for the alkaloids. We attribute this to the fact that we have relatively few reference compounds available for the diverse class of alkaloids. We find almost no hits for amino acids, carboxylic acids, and lipids. Here, FTs were often too small to identify any hits.

To report the average Tanimoto structural similarity score of the hits returned by FTBLAST, we calculated the Tanimoto score of the query compound and the hitlist entry. We then averaged either over all hits with an FDR below the threshold of 30% for the FT-BLAST approach, the five best scoring hits disregarding the FDR for the TOP 5 approach, or only those hits both within the FDR threshold and the TOP 5 for the combined approach. Now we average over all 93 queries (Orbitrap FTs with $1+$ losses) to reach the final values of 0.76 for FT-BLAST, 0.67 for TOP $5,0.78$ for the combined approach. The TOP 5 approach is identical to Demuth et al. [4], the others are only adepted to the fact that an FDR estimation is available. Of course, this analysis is performed on the leave-one-out results.

Identical to Demuth et al. [4] we analyzed the Tanimoto scores $T(h)$ of the first h hits with h ranging from one to the number of compounds. Again, we did not use the FDR estimation but considered all scores obtained by a leave-one-out analysis. We then averaged over all compounds (Fig. 7). As Demuth et al. we compared these results with pseudo hitlists containing randomly ordered compounds (minimum value) and compounds arranged in descending order in accordance with the Tanimoto scores (upper limit). The average Tanimoto scores of our hitlists decrease from $0.78(h=1)$ to $0.34(h=92)$. The upper limit is between $0.90(h=1)$ and $0.34(h=92)$, and the minimum value is about 0.34 for all h. All three values converge to 0.34 as this is the average Tanimoto score of all pairwise different compounds. Compared to Figure 1 in [4], the correlation values of FT-Blast are considerably higher.

10 Poppy samples

Surface extracts of P. nudicaule were made using methanol: 1% acetic acid $2: 1$ mixture. The following organs of the plant were processed in different samples: petals, stamen with and without base, and stem. All extracts were directly infused using a Nanomate Triversa system (Advion, Ithaca, NY) on a Nanomate nanoelectrospray chip and analyzed on an Orbitrap XL (Thermo Fisher Scientific, Bremen, Germany). The instrument operated at 100000 resolution and settings for tandem mass spectra acquisition as above. Measurements were conducted using both positive and negative mode. Precursor ions were manually selected based on ion intensities and fragmented using HCD with stepped collision energies of $0,5,10,15,20,25$,

Supplementary Fig. 7: Average Tanimoto scores $T(h)$ between query structures and the first h structures from hitlists obtained by FT-Blast without using FDR estimation (FT-BLAST), pseudo hitlists containing the database structures with maximum Tanimoto score to query structure (BEST) and randomly selected pseudo hitlists (RANDOM). All three analyses were performed on the Orbitrap dataset.

30,40 , and 50 arbitrary units. The data contained 489 non-empty fragmentation spectra of 89 potential compounds.

First, we tried to determine the molecular formulas of the unknown compounds, compare to Section 2 and [17]. To do so, it is necessary to measure both an isotope pattern and fragmentation pattern of the unknown compound. Unfortunately, isotope patterns had to be extracted from MS1 survey scans and were often of insufficient quality: In many cases, only the monoisotopic and the $M+1$ isotope could be detected as an extensive overlap of isotope peaks with peaks from other compounds occurs in the very rich direct-infusion MS spectra. In the mass range of up to a thousand dalton, this is usually insufficient to determine the molecular formula of an unknown compound from its isotope pattern [2]. To this end, we conservatively selected 29 poppy compounds where fragmentation tree analysis and isotope pattern analysis agreed upon the molecular formula of the unknown: For these compounds, the TOP 1 molecular formula of the combined analysis is among the TOP 5 molecular formulas of the isotope pattern analysis, and among the TOP 5 molecular formulas of the fragmentation pattern analysis (see Sec. 2).

For each of the 29 poppy compounds, we calculated fragmentation trees as described in Section 3. Afterwards, we performed an all-against-all alignment using the poppy FTs plus the Orbitrap FTs, and the corresponding decoy FTs. Scores were normalized and fingerprint similarities were calculated as described in Section 6. We then searched for the unknown compounds in the database of knowns (Orbitrap) using FT-BLAST described in Section 9. The FDR was again 30%. Results of this analysis are shown in Table 2.

We identified eight compounds in the sample by manual analysis of the spectra. FTBLAST identified glutamine, arginine and quercetin by returning the respective references from the Orbitrap dataset as first hit. For the hexose (179 Da) galactose and mannose are the first hits. The unknown is most likely glucose, which was not in our reference, so FTBLAST suggests other hexoses. Four other compounds were manually identified as alkaloids. The 328 Da feature is corytuberine, the 330 Da compound is reticuline. We consider the 370 Da feature as hydrogenated and hydroxylated palmatine. The 386 Da unknown is again hydrogenated and hydroxylated palmatine, but additionally with an methyl-group and a broken double bond. Unfortunately, our reference dataset only contained few alkaloids. Our
list of search results always contains the alkaloid laudanosine, which is most similar to the manual identifications. In case of corytuberine, chelidonine is always among the TOP3. These two alkaloids are extremely similar. The non-alkaloid hits are also reasonable: Phenylalanine is the biosynthetic precursor of these alkaloids. Benzopyrans and hydroxylated alkaloids only differ by the fact that the oxygen is not in the ring system but attached to it as hydroxy group, and anisic acid (the carboxylic acid occurring in all hit lists) is again very similar to phenylalanine.

We clustered the unknowns together with the reference measurements from Orbitrap, again using fingerprint similarities. We used all FTs with at least one loss to include as many reference compounds as possible. We computed all-against-all alignments for all compounds from the combined dataset poppy unknowns plus Orbitrap. We used hierarchical clustering as described in Section 7. Supplementary Figure 8 shows the clustering of the unknown compounds from poppy together with the Orbitrap reference dataset. All manually identified unknowns are grouped into their respective cluster. On top of the figure one can see the alkaloid cluster with four reference alkaloids and the four manually identified "unknowns". The 400 Da compound probably is also an alkaloid. Since it is located at the border of the cluster, more reference alkaloids are required for a reliable classification. Since the unknown at 229 Da falls into the amino acid cluster, we consider it at least strongly related with amino acids. The 277 Da molecule is probably a sugar, or contains a sugar moiety. With the limited reference data, it is not possible to assign a group to the 438 and 537 Da compounds, but we may assume that they are neither related to zeatins nor to glucosinolates, as no unknown falls into these well-separated clusters. Manual interpretation also failed to identify the compounds, NMR analysis is currently being performed. Additionally, our analysis correctly shows that a contamination with mass 338 Da , measured during a blank column run, is similar to the lipids. Database search and manual validation identified it as erucamide (PubChem CID 5365371), an additive originating from the plastic ware used for sample collection.

Results from the FT-BLAST and clustering analysis should be seen as strong hints towards a compound class. This can point towards unknowns of interest and simplify a downstream analysis, e.g. using NMR.

11 Peak counting score

Above, we have found a very strong correlation between FT similarity and chemical similarity. But how much of this correlation is due to the use of FTs, and what correlation can be reached with a "classical" shared peaks count? To this end, we correlate the normalized shared peaks count with chemical similarity. Given two fragmentation spectra, we count the number of peaks present in both spectra, respecting the mass accuracy of the measurement, then normalize this score. This score and variants thereof have been proposed repeatedly in the literature for searching tandem mass spectra of small compounds. For a fair comparison, we use the same subsets of compounds (with $1+, 3+, 5+$, and $7+$ losses) as above.

We tested different variants of the shared peak counting score. First, beside counting only similar peaks, also similar parent losses (mass differences to the parent peak) were counted. We tried various combinations of scoring peak masses and/or loss masses. Second, also considered the mass differences between two peaks, where two peaks with a lower mass difference receive a higher score. We tested a log likelihood-based scoring, based on the observation that mass differences in a well-calibrated mass spectrum are normallydistributed [2,23]. Third, we include the intensities and masses of the matching peaks by

Supplementary Fig. 8: Clustering of the poppy and the Orbitrap datasets, FTs with 1+ losses. Colored compounds are known references. Many unknown compounds form a cluster together with several alkaloids (top of the figure). Other unknowns end up in amino acid or sugar clusters. The poppy sample most likely contained no glucosinolates and zeatins, as no unknowns can be found among these clusters.
scoring two matching peaks with peakmass $\sqrt{3} \sqrt{\text { peakintensity }}$ as suggested by Stein and Scott $[12,20]$. The second and the third attempt did not improve the correlation with the chemical similarity score. The first attempt improved the correlation coefficient of the QSTAR dataset with a peak-loss-score of 0 , but the overall performance was still best for the ordinary shared peak counting score. In the end, we normalized the shared peak counting score similar to the normalization of the FT alignment score by perfect match score using $c=1.0$, and compute the fingerprints of the compounds as described in Section 6. Among all possibilities, we found that this normalization reached the best correlation with the chemical similarity score. Hence, it should be understood that while we report ordinary peak counting score results below, we were unable to reach consistently better results with any of the numerous variations of the peak counting score that we inspected.

It is noteworthy that correlations for the peak counting score (Supplementary Table 6) are very high, somewhat different from what has been reported in the literature. In fact, numerous variations of the peak counting score have been developed to cope with its
limitations, but these are often targeted at correlating raw spectra, not peak lists [12]. Pavlic et al. [16] and Oberacher et al. [14, 15] found that the unmodified peak counting score was inadequate for searching tandem MS databases. Also, counting shared peak is prone to artifact signals, see Figure 5 in [14]. It is therefore possible that the high correlations we reach for the peak counting score, are somewhat artificial.

Still, comparing Supplementary Tables 5 and 6 we see that the correlation of the peak counting scores with chemical similarity (Tanimoto/PubChem) is - in all cases but two weaker than for the tree alignment scores. It must be understood that, since correlation coefficients are rather high for the peak counting score, even small increases are significant improvements. This is particularly so as we have noted in Section 8 that even two different measures of chemical similarity (both Tanimoto scores) show a Pearson correlation of less than $r=+0.82$ on any of the data subsets. A particular large increase is observed for the QSTAR dataset, see Supplementary Table 6 and compare to Supplementary Table 5. Noteworthy is the large increase in Pearson correlation when analyzing the between-dataset: Whereas the peak counting score reaches a Pearson correlation coefficient of only $r=+0.38$ $\left(r^{2}=0.14\right)$, Pearson correlation for the tree alignment fingerprint score is $r=+0.49\left(r^{2}=\right.$ $0.24)$. We believe this to be of particular importance, since it indicates the power of our tree alignment method to build up a database for identifying unknown metabolites measured on different instruments and with different settings.

		only compounds with			
Dataset	correlation method	1+ losses	$3+$ losses	5+ losses	7+ losses
Orbitrap	Pearson r	0.58	0.61	0.59	0.54
	Pearson r^{2}	0.34	0.37	0.35	0.29
	Spearman ρ	0.39	0.43	0.45	0.52
MassBank	Spearman ρ^{2}	0.15	0.18	0.20	0.27
	Pearson r	0.43	0.53	0.62	0.67
	Pearson r^{2}	0.18	0.28	0.38	0.45
	Spearman ρ	0.34	0.41	0.53	0.66
	Spearman ρ^{2}	0.12	0.17	0.28	0.44
	Pearson r	0.45	0.44	0.45	0.43
	Pearson r^{2}	0.20	0.19	0.20	0.18
	Spearman ρ	0.51	0.50	0.45	0.42
	Spearman ρ^{2}	0.26	0.25	0.20	0.18
Between-dataset	Pearson r	0.38	0.42	0.48	0.52
	Pearson r^{2}	0.14	0.18	0.23	0.27
	Spearman ρ	0.33	0.36	0.39	0.42
	Spearman ρ^{2}	0.11	0.13	0.15	0.18

Supplementary Table 6: Correlation of chemical similarity (PubChem/Tanimoto) with the shared peak count, for all datasets and different restrictions on the number of losses. See Supplementary Table 5 for the number of compound pairs N.

References Supplementary Methods

1. P. Baldi and R. W. Benz. BLASTing small molecules-statistics and extreme statistics of chemical similarity scores. Bioinformatics, 24(13):i357-i365, 2008.
2. S. Böcker, M. Letzel, Z. Lipták, and A. Pervukhin. SIRIUS: Decomposing isotope patterns for metabolite identification. Bioinformatics, 25(2):218-224, 2009.

Supplementary Fig. 9: Correlation and regression line, QSTAR dataset: Shared peak counting fingerprint similarity (x -axis) plotted against PubChem/Tanimoto score (y -axis). To make results comparable with our above evaluation, we discarded all compounds from the Orbitrap dataset that resulted in FTs without any losses. Pearson correlation is $r=+0.45$ ($r^{2}=0.20$), Spearman correlation is $\rho=+0.51\left(\rho^{2}=0.26\right)$. Compare to Suppl. Figure 6.
3. S. Böcker and F. Rasche. Towards de novo identification of metabolites by analyzing tandem mass spectra. Bioinformatics, 24:I49-I55, 2008. Proc. of European Conference on Computational Biology (ECCB 2008).
4. W. Demuth, M. Karlovits, and K. Varmuza. Spectral similarity versus structural similarity: mass spectrometry. Anal. Chim. Acta., 516(1-2):75-85, 2004.
5. P. D'haeseleer. How does gene expression clustering work? Nat. Biotechnol., 23(12):1499-1501, 2005.
6. J. L. Durant, B. A. Leland, D. R. Henry, and J. G. Nourse. Reoptimization of MDL keys for use in drug discovery. J. Chem. Inf. Comput. Sci., 42(6):1273-1280, 2002.
7. R. Guha, M. T. Howard, G. R. Hutchison, P. Murray-Rust, H. Rzepa, C. Steinbeck, J. Wegner, and E. L. Willighagen. The Blue Obelisk: Interoperability in chemical informatics. J. Chem. Inf. Model., 46(3):991998, 2006.
8. D. W. Hill, T. M. Kertesz, D. Fontaine, R. Friedman, and D. F. Grant. Mass spectral metabonomics beyond elemental formula: Chemical database querying by matching experimental with computational fragmentation spectra. Anal. Chem., 80(14):5574-5582, 2008.
9. H. Horai, M. Arita, S. Kanaya, Y. Nihei, T. Ikeda, K. Suwa, Y. Ojima, K. Tanaka, S. Tanaka, K. Aoshima, Y. Oda, Y. Kakazu, M. Kusano, T. Tohge, F. Matsuda, Y. Sawada, M. Y. Hirai, H. Nakanishi, K. Ikeda, N. Akimoto, T. Maoka, H. Takahashi, T. Ara, N. Sakurai, H. Suzuki, D. Shibata, S. Neumann, T. Iida, K. Tanaka, K. Funatsu, F. Matsuura, T. Soga, R. Taguchi, K. Saito, and T. Nishioka. MassBank: a public repository for sharing mass spectral data for life sciences. J. Mass Spectrom., 45(7):703-714, 2010.
10. N. Jaitly, M. E. Monroe, V. A. Petyuk, T. R. W. Clauss, J. N. Adkins, and R. D. Smith. Robust algorithm for alignment of liquid chromatography-mass spectrometry analyses in an accurate mass and time tag data analysis pipeline. Anal. Chem., 78(21):7397-7409, 2006.
11. T. Jiang, L. Wang, and K. Zhang. Alignment of trees: an alternative to tree edit. Theor. Comput. Sci., 143(1):137-148, 1995.
12. I. Koo, X. Zhang, and S. Kim. Wavelet- and fourier-transform-based spectrum similarity approaches to compound identification in gas chromatography/mass spectrometry. Anal. Chem., 83(14):5631-5638, 2011.
13. A. R. Leach and V. J. Gillet. An Introduction to Chemoinformatics. Springer, Berlin, Dordrecht, The Netherlands, 2005.
14. H. Oberacher, M. Pavlic, K. Libiseller, B. Schubert, M. Sulyok, R. Schuhmacher, E. Csaszar, and H. C. Köfeler. On the inter-instrument and inter-laboratory transferability of a tandem mass spectral reference library: 1. results of an Austrian multicenter study. J. Mass Spectrom., 44(4):485-493, 2009.
15. H. Oberacher, M. Pavlic, K. Libiseller, B. Schubert, M. Sulyok, R. Schuhmacher, E. Csaszar, and H. C. Köfeler. On the inter-instrument and the inter-laboratory transferability of a tandem mass spectral reference library: 2. optimization and characterization of the search algorithm. J. Mass Spectrom., 44(4):494-502, 2009.
16. M. Pavlic, K. Libiseller, and H. Oberacher. Combined use of ESI-QqTOF-MS and ESI-QqTOF-MS/MS with mass-spectral library search for qualitative analysis of drugs. Anal. Bioanal. Chem., 386(1):69-82, 2006.
17. F. Rasche, A. Svatoš, R. K. Maddula, C. Böttcher, and S. Böcker. Computing fragmentation trees from tandem mass spectrometry data. Anal. Chem., 83:1243-1251, 2011.
18. D. J. Rogers and T. T. Tanimoto. A computer program for classifying plants. Science, 132(3434):1115-1118, 1960.
19. R. R. Sokal and C. D. Michener. A statistical method for evaluating systematic relationships. University of Kansas Science Bulletin, 38:1409-1438, 1958.
20. S. E. Stein and D. R. Scott. Optimization and testing of mass spectral library search algorithms for compound identification. J. Am. Soc. Mass Spectrom., 5(9):859-866, 1994.
21. C. Steinbeck, C. Hoppe, S. Kuhn, M. Floris, R. Guha, and E. L. Willighagen. Recent developments of the chemistry development kit (CDK) - an open-source java library for chemo- and bioinformatics. Curr. Pharm. Des., 12(17):2111-2120, 2006.
22. Y. Wang, J. Xiao, T. O. Suzek, J. Zhang, J. Wang, and S. H. Bryant. PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res., 37(Web Server issue):W623-W633, 2009.
23. R. Zubarev and M. Mann. On the proper use of mass accuracy in proteomics. Mol. Cell. Proteomics., 6(3):377381, 2007.

group	compound	PubChem ID molecular formula	ion	monoisotopic mass frag.method	collision energies	annotated NLs
Alkaloid	Berberine	2353 C20H18NO4+	$[\mathrm{M}+\mathrm{H}]+$	336.124 CID	35, 45	6
Alkaloid	Bicuuculine	10237 C20H17NO6	$[\mathrm{M}+\mathrm{H}]+$	367.106 CID	35	25
Alkaloid	Chelidonine	10147 C20H19NO5	[$\mathrm{M}+\mathrm{H}]+$	353.126 CID	35,45	12
Alkaloid	Cinchonine	8350 C19H22N2O	$[\mathrm{M}+\mathrm{H}]+$	294.173 CID	35, 45, 55	66
Alkaloid	Emetine	10219 C29H40N204	$[\mathrm{M}+\mathrm{H}]+$	480.299 CID	35,45	62
Alkaloid	Harmane	5281404 C12H10N2	$[\mathrm{M}+\mathrm{H}]+$	182.084 CID	35,45, 55	1
Alkaloid	Laudanosin	15548 C21H27NO4	$[\mathrm{M}+\mathrm{H}]+$	357.194 CID	35, 45, 55, 70	
Amino acid	Alanine	602 C3H7NO2	[M-H]-	89.048 CID	5.90	0
Amino acid	Arginine	232 C6H14N402	$[\mathrm{M}+\mathrm{H}]+$	174.112 CID	5.80	7
Amino acid	Asparagine	$236 \mathrm{CHH8N2O3}$	$[\mathrm{M}+\mathrm{H}]+$	132.053 CID	5-75	0
Amino acid	Aspartate	424 C4H7N04	[M-H]-	133.038 CID	5.90	4
Amino acid	Cysteine	594 C3H7NO2S	[M -H]	121.02 CID	5-90, 150	0
Amino acid	Cystine	595 C6H12N20452	$[\mathrm{M}+\mathrm{H}]+$	240.024 CID	$5-45$	1
Amino acid	Glutamate	611 CSHONO4	$[\mathrm{M}+\mathrm{H}]+$	147.053 CID	5.60	4
Amino acid	Glutamine	738 C5H10N2O3	[M -H] $]$	146.069 CID	5.90	5
Amino acid	Glycine	$750 \mathrm{C} 2 \mathrm{H5NO} 2$	[M-H]-	75.032 HCD	5-95	0
Amino acid	Isoleucine	791 C6H13NO2	$[\mathrm{M}+\mathrm{H}]+$	131.095 CID	5.60	2
Amino acid	Leucine	857 C6H13NO2	$[\mathrm{M}+\mathrm{H}]+$	131.095 CID	5.50	2
Amino acid	Methionine	876 C5H11NO2S	$[\mathrm{M}+\mathrm{H}]+$	149.051 CID	5.55	6
Amino acid	Phenylalanine	994 C9H11NO2	[$\mathrm{M}+\mathrm{H}]+$	165.079 CID	5.45	
Amino acid	Proline	614 C5HONO2	$[\mathrm{M}+\mathrm{H}]+$	115.063 CID	5.90	1
Amino acid	Serine	617 C3H7NO3	$[\mathrm{M}+\mathrm{H}]+$	105.043 HCD	5-75	
Amino acid	Threonine	205 C4H9NO3	[M-H]-	119.058 CID	5-95,9	
Amino acid	Tryptophan	1148 C11H12N202	[M -H] $]$	204.09 HCD	5.95	6
Amino acid	Tyrosine	1153 C9H11NO3	$[\mathrm{M}+\mathrm{H}]+$	181.074 CID	5.45	
Amino acid	Valine	1182 C5H11NO2	$[\mathrm{M}+\mathrm{H}]+$	117.079 CID	5-90	
Anthocyanin	C1044256802	44256802 C47H55027+	$[\mathrm{M}+\mathrm{H}]+$	1051.293 CID	$5-45$	
Anthocyanin	C1044256805	44256805 C58H65031+	$[\mathrm{M}+\mathrm{H}]+$	1257.351 HCD	5.45	18
Anthocyanin	Delphinidin-3-rutinoside	5492231 C27H31016+	[$\mathrm{M}+\mathrm{H}]+$	611.161 HCD	5.45	18
Benzopyran	Armentoflavone	5281600 C30H18010	[$\mathrm{M}+\mathrm{H}]+$	538.09 CID	35, 45, 55, 70	15
Benzopyran	Bergapten	2355 C12H804	$[\mathrm{M}+\mathrm{H}]+$	216.042 CID	35, 45, 55, 70	10
Benzopyran	BiochaninA	5280373 C16H1205	$[\mathrm{M}+\mathrm{H}]+$	284.068 CID	35, 45, 55, 70	19
Benzopyran	Epicatechin	72276 C15H1406	[$\mathrm{M}+\mathrm{H}]+$	290.079 CID	35, 45, 55, 70	
Benzopyran	Genistein	5280961 C15H1005	[$\mathrm{M}+\mathrm{H}]+$	270.053 CID	35, 45, 55	17
Benzopyran	Kaempferol	5288863 C15H1006	$[\mathrm{M}+\mathrm{H}]+$	286.048 CID	35,45,55	26
Benzopyran	Quercetin	5280343 C15H1007	$[\mathrm{M}+\mathrm{H}]+$	302.043 CID	35,45, 55	23
Benzopyran	Rotenone	6758 C23H2206	$[\mathrm{M}+\mathrm{H}]+$	394.142 CID	35, 45, 55, 70	
Benzopyran	Rutin	5288805 C27730016	$[\mathrm{M}+\mathrm{H}]+$	610.153 CID	35, 45, 55, 70	
Benzopyran	Vitexinrhamnoside	5282151 C27H30014	$[\mathrm{M}+\mathrm{H}]+$	578.164 CID	35, 45, 55, 70	13
Benzopyran	Xanthohumol	639665 C21H2205	[$\mathrm{M}+\mathrm{H}]+$	354.147 CID	35, 45, 55, 70	${ }^{3}$
Carboxylic acid	Anisicaid	11370 C8H803	$[\mathrm{M}+\mathrm{H}]+$	152.047 CID	35, 45, 55, 70	
Carboxylic acid	Indole-3-carboxylicacid	69867 C9H7NO2	$[\mathrm{M}+\mathrm{H}]+$	161.048 CID	35, 45, 55, 70	
Carboxylic acid	TrimethoxycinnamicAcid	$735755 \mathrm{C} 12 \mathrm{H1405}$	$[\mathrm{M}+\mathrm{H}]+$	238.084 CID	35, 45, 55, 70	16
Glucosinolate	3-Hydroxypropyl-Glucosinolate	$25245521 \mathrm{C} 10 \mathrm{H17NO} 1052$	[M -H] $]$	375.029 HCD	5.90	
Glucosinolate	3-Methylthiopropy-Glucosinolate	25244538 C11H19NO953	[M-H]-	405.022 HCD	5.90	${ }^{13}$
Glucosinolate	4-Methox-3-3indolylmethy glucosinolate	656562 C17H20N2010s2	[M-H]-	476.056 HCD	5.90	19
Glucosinolate	7-Methylthiohepty glucosinolate	44237368 C15H27NO953	[M-H]	461.085 HCD	5.90	18
Glucosinolate	8-Methythioocty glucosinolate	44237773 C16H29N0953	[M-H]-	475.1 HCD	5,15-55,65-90	2
Glucosinolate	Glucoalysin	656523 C13H25NO1053	[M-H]	451.064 HCD	5,15-50, 60	
Glucosinolate	Glucoerucin	656538 C12H21No953	[M -H] $]$	419.038 HCD	5.90	19
Glucosinolate	Glucohirsutin	44237257 C16H29NO1053	[M -H]]	491.095 HCD	5.90	- 24
Glucosinolate	Glucibarin	44237203 C15H27NO1053	[M-H]-	477.08 HCD	5.90	28
Glucosinolate	Glucoiberin	9548621 C11H19NOOS3	[[M-H]-	421.017 HCD	55-90	30
Glucosinolate	Glucomalcommin	25244201 C17H21NO1152	[M-H]-	479.056 HCD	5.90	25
Glucosinolate	Glucoraphanin	9548633 C12H21NOOS33	[M -H]-	435.033 HCD	5.90	
Glucosinolate	Glucoraphenin	6443008 C12H21NO1153	[M-H]-	451.028 HCD	5.90	16
Glucosinolate	Indolvimethyl Ilucosinolate	25244590 C16H18N20952	[M -H] $]$	446.045 HCD	5.90	22
Lipid	DErrSPhinganine	91486 C 18 H 39 NO 2	[$\mathrm{M}_{\mathbf{H}] \text {] }}$	301.298 CID	25	12
Lipid	DerrSphingosine	5280335 C 18 H 37 NO 2	$[\mathrm{M}+\mathrm{H}]+$	299.282 CID	10	
Lipid	Phosphatidylcholine	129900 C25H54NO6P	$[\mathrm{M}+\mathrm{H}]+$	495.369 HCD	30	
Lipid	Phosphatidylethanolamine	46891780 C3HH74N08P	[M-H]-	715.515 CID	20	- 6
Sugar	Cellobiose	294 C12H22011	$[\mathrm{M}+\mathrm{H}]+$	342.116 HCD	4	10
Sugar	DP5	C30H52026	[$\mathrm{M}+\mathrm{Na}]^{+}$	828.275 HCD	45	16
Sugar	DP7	C42H72036	$[\mathrm{M}+\mathrm{H}]+$	1152.38 HCD	12	17
Sugar	Fucose	17106 C6H1205	[$\mathrm{M}+\mathrm{Na}]^{+}$	164.068 CID	46	${ }^{2}$
Sugar	Galactose	6036 C6H1206	[$\mathrm{M}+\mathrm{NH} 4]^{+}$	180.063 HCD	12	
Sugar	Gentiobiose	441422 C12H22011	[$\mathrm{M}+\mathrm{Na}]^{+}$	342.116 ClD	20	
Sugar	Lactose	6134 C12H22011	$[\mathrm{M}+\mathrm{H}]+$	342.116 HCD	4	10
Sugar	Mannitol	6251 C6H1406	[$\mathrm{M}+\mathrm{H}$] +	182.079 HCD	20	12
Sugar	Mannose	18950 C6H1206	$[\mathrm{M}+\mathrm{H}]+$	180.063 CID	15	
Sugar	Rhamnose	19233 C6H1205	[$\mathrm{M}+\mathrm{Na}]^{+}$	164.068 CID	46	
Sugar	Sorbitol	$5780 \mathrm{C6H1406}$	[$\mathrm{M}+\mathrm{H}]+$	182.079 CID	20	14
Sugar	Trehalose	7427 C12H22011	[$\mathrm{M}+\mathrm{Na}]^{+}$	342.116 CID	20	-
Zeatin	Cis-zeatin	449093 C10H13N5O	$[\mathrm{M}+\mathrm{H}]+$	219.112 CID	44	7
Zeatin	Cis-zeatin-9-glucoside	9842892 C16H23N506	[$\mathrm{M}+\mathrm{H}]+$	381.165 CID	17	5
Zeatin	Cis-zeati-o-glucoside	25244165 C 16 H 23 N 506	$[\mathrm{M}+\mathrm{H}]+$	381.165 CID	19	有
Zeatin	Cis-zeatin-riboside	6440982 C15H21N505	$[\mathrm{M}+\mathrm{H}]+$	351.154 CID	11	- 4
Zeatin	Cis-zeati-riboside-O-glucoside	11713250 C21H31N5010	$[\mathrm{M}+\mathrm{H}]+$	513.207 CID	20	- ${ }_{4}^{4}$
Zeatin	D5-Cis-zeatin-riboside	6440982 C15H21N505	[M +H$]+$	351.154 CID	15	15
Zeatin	D5-Trans-Zeatin	449093 C1005H8N5O	[$\mathrm{M}+\mathrm{H}]+$	224.143 CID	15	8^{8}
Zeatin	D5-Trans-zeatin-7-glucoside	C1605H18N506	$[\mathrm{M}+\mathrm{H}]+$	386.196 CID	14	-8
Zeatin	D5-Trans-zeatin-9.glucoside	9842892 C1605H18N506	$[\mathrm{M}+\mathrm{H}]+$	386.196 CID	14	10
Zeatin	D5-Trans-zeatin-riboside	6440982 C15H21N505	$[\mathrm{M}+\mathrm{H}]+$	351.154 CID	13	
Zeatin	D5-Trans-zeatin-ribside-o-glucoside	11713250 C21H31N5010	$[\mathrm{M}+\mathrm{H}]+$	513.207 CID	23	15
Zeatin	D6-isopenteny-Adenine	C1006H7N5	$[\mathrm{M}+\mathrm{H}]+$	209.155 CID	27	4^{4}
Zeatin	D6-isopentenyl-Adenine-7-glucoside	330023 C1606H17N505	$[\mathrm{M}+\mathrm{H}]+$	371.208 CID	30	1
Zeatin	06-sopentenyl-Adenine-9-glucoside	23197432 C1606H17N505	[$\mathrm{M}+\mathrm{H}]+$	371.208 CID	15	${ }^{6}$
Zeatin	D6-isopentenyl-Adenosine	24405 C1506H15N504	$[\mathrm{M}+\mathrm{H}]+$	341.197 CID	22	4
Zeatin	Isopentenyl-Adenine	C10H13N5	$[\mathrm{M}+\mathrm{H}]+$	203.117 ClD	35	${ }^{2}$
Zeatin	Isopentenyl-Adenine-7-glucoside	330023 C16H23N505	$[\mathrm{M}+\mathrm{H}]+$	365.17 CID	14	${ }^{4}$
Zeatin	Isopenteny-Adenine-9.glucoside	23197432 C 16 H 23 N 505	$[\mathrm{M}+\mathrm{H}]+$	$365.17{ }^{\text {ClD }}$	14	${ }^{5}$
Zeatin	Isopentenyl-Adenosine	24005 C15H21N504	$[\mathrm{M}+\mathrm{H}]+$	335.159 ClD	13	3^{3}
Zeatin	Trans-Zeatin	449093 C10H13N5O	$[\mathrm{M}+\mathrm{H}]+$	219.112 CID	47	${ }^{6}$
Zeatin	Trans-zeatin--g-glucoside	9842892 C16H23N506	$[\mathrm{M}+\mathrm{H}]+$	381.165 CID	28	5
Zeatin	Trans-zeatin--glucoside	25244165 C 16 H 23 N 506	$[\mathrm{M}+\mathrm{H}]+$	381.165 CID	28	
Zeatin	Trans-Zeatin-riboside	6440982 C15H21N505	$[\mathrm{M}+\mathrm{H}]+$	351.154 CID	24	- 1
Zeatin	Trans-zeatin-riboside-O-glucoside	11713250 C21H31N5010	$[\mathrm{M}+\mathrm{H}]+$	513.207 ClD	12	

Supplementary Table 7: Compound list for the Orbitrap dataset: Compound class, compound name, PubChem ID, molecular formula, ion type, monoisotopic mass (Da), fragmentation technique, collision energies, and number of annotated losses (edges) in hypothetical FTs. Collision energies are given in electron volt for CID and arbitrary units for HCD fragmentation. If a range is given, we used a step size of 5 units within this range. Compounds with less than three (seven) annotated losses are colored red (yellow).

Supplementary Table 8: Compound list for the MassBank dataset: Compound class, compound name, PubChem ID, molecular formula, monoisotopic mass (Da), collision energies (eV), and number of annotated losses (edges) in hypothetical FTs. The ion type of all compounds is $[\mathrm{M}+\mathrm{H}]^{+}$. Compounds with less than three (seven) annotated losses are colored red (yellow).

Supplementary Table 8: Compound list for the MassBank dataset (continued)

Supplementary Table 8: Compound list for the MassBank dataset (continued)

Nucleotide	Trans-zeatin-riboside	6440982 C15H21N505	351.154	Ramp 5-60	6
Nucleotide	UPP-beta---hamnose	23724669 C15H24N2016P2	550.06	Ramp 5-60	13
Nucleotide	UDP-Galactose	23724458 C15H24N2017P2	566.055	Ramp 5-60	13
Nucleotide	UDP-xylose	23724459 C14H22N2016P2	536.044	Ramp 5-60	15
Nucleotide	Uracil	1174 C4H4N2O2	112.027	Ramp 5-60	0
Nucleotide	Uridine	6029 C9H12N206	244.07	Ramp 5.60	5
Nucleotide	Uridine_s-diphosphate	6031 CHH14N2012P2	404.002	Ramp 5-60	5
Nucleotide	Uridine_-sdiphospho---glucose	8629 C15H24N2017P2	566.055	Ramp 5-60	13
Nucleotide	Uridine_5-diphosphoglucuronic_acid	17473 C15H22N2018P2	580.034	Ramp 5-60	14
Nucleotide	Uridine_5-diphospho-N-acetylgalactosamine	23724461 C17H27N3017P2	607.082	30, Ramp 5-60	17
Nucleotide	Uridine_5-diphospho-N-acetyglucosamine	445675 C17H27N3017P2	607.082	30, Ramp 5-60	17
Nucleotide	Uridine_5-monophosphate	6030 C9H13N2O9P	324.036	Ramp 5-60	4
Nucleotide	Xanthine	1188 C5H4N4O2	152.033	Ramp 5-60	1
Nucleotide	Xanthosine	64959 C10H12N406	284.076	Ramp 5-60	2
Nucleotide	Xanthosine-5-monophosphate	73323 C10H13N409P	364.042	Ramp 5-60	6
Organosulfonic acid	2-Mercaptoethanesulfonic_acid	598 C2H60352	141.976	Ramp 5-60	2
Organosulfonic acid	Hypotaurine	107812 C2H7NO2S	109.02	Ramp 5-60	2
Organosulfonic acid	5-Sulforaphene	6433206 C6HONOS2	175.013	Ramp 5-60	4
Penicillin	Piperacillin	6604563 C23H27N5075	517.163	Ramp 5.60	5
Phenol	4-Nitrophenol	980 C6H5NO3	139.027	Ramp 5-60	0
Phenol	4-Nitrophenyl_phosphate	378 C6H6NO6P	218.993	30, Ramp 5-60	1
Phenol	Catechol	289 C6H602	110.037	30, Ramp 5-60	3
Polyketide	Zearalenone	5281576 C18H2205	318.147	Ramp 5-60	8
Stilibene	E-3-4.5-trinydrox.3-glucopyranosylstilene	5281712 C20H2209	406.126	Ramp 5-60	5
Sugar	2-Deoxyribose-5-phosphate	439288 C5H1107P	214.024	Ramp 5-60	2
Sugar	Alpha-D-(t)-mannose-1-phosphate	439279 C6H1309p	260.03	Ramp 5-60	2
Sugar	Alpha-D-Galactose-1-phosphate	123912 C6H1309p	260.03	Ramp 5-60	4
Sugar	Alpha---Glucose-1-6-diphosphate	82400 C6H14012P2	339.996	Ramp 5-60	6
Sugar	Alpha---glucose--phosphate	439165 C6H1309p	260.03	Ramp 5-60	4
Sugar	D()-Gulono-gamma-lactone	165105 C 6 H 1006	178.048	Ramp 5-60	9
Sugar	D-(t)-Cellotriose	440950 C18H32016	504.169	Ramp 5-60	22
Sugar	D-(t)-Melezitose	92817 C18H32016	504.169	Ramp 5-60	12
Sugar	D-(t)-Raffinose	439242 C 18 H 32016	504.169	Ramp 5-60	9
Sugar	D-(t)-Trehalose	7427 C12H22011	342.116	Ramp 5-60	10
Sugar	D-Arabinose-5-phosphate	230 C5H1108P	230.019	Ramp 5-60	3
Sugar	D-Erythrose-4.phosphate	697 C4H907P	200.009	Ramp 5-60	3
Sugar	D-Fructose-6-phosphate	439160 C6H1309p	260.03	Ramp 5-60	2
Sugar	D-Glucosamine-6-phosphate	439217 C6H14NO8P	259.046	Ramp 5.60	3
Sugar	D-Glucose-6-phosphate	5958 C6H1309P	260.03	Ramp 5-60	3
Sugar	D-Mannose-6-phosphate	65127 C6H1309p	260.03	Ramp 5-60	4
Sugar	D-Ribose-5-phosphate	439167 C5H1108P	230.019	Ramp 5.60	3
Sugar	D-Ribulose-5.phosphate	439184 C5H1108P	230.019	Ramp 5-60	2
Sugar	L-(t)-Rhamnose	25310 C6H1205	164.068	Ramp 5-60	0
Sugar	Maltotriose	439586 C 18 H 32016	504.169	Ramp 5.60	25
Sugar	Palatiose	439559 C12H22011	342.116	Ramp 5-60	14
Sugar	Sucrose	5988 C12H22011	342.116	Ramp 5-60	11
Sugar alcohol	1-2-Dilauroy-sn-Glycero-3-Phosphate	9547171 C27H5308P	536.348	Ramp 5.60	5
Sugar alcohol	1-Lauroy-2-Hydroxy-sn-Glycero-3-Phosphocholine	460605 C20H42NO7P	439.27	Ramp 5-60	1
Sugar alcohol	1-Myristoyl-2-Hydroxy-sn-Glycero-3-Phosphate	9547180 C17H3507P	382.212	Ramp 5-60	3
Sugar alcohol	D-(t)-Mannitol	6251 C6H1406	182.079	Ramp 5-60	9
Sugar alcohol	DL-Glyceraldehyde_3-phosphate	729 Сзн706р	169.998	Ramp 5-60	3
Sugar alcohol	D-Sorbitol	$5780 \mathrm{C} 6 \mathrm{H1406}$	182.079	Ramp 5-60	9
Sugar alcohol	D-Sorbitol-6-phosphate	152306 C6H1509p	262.045	Ramp 5-60	2
Sugar alcohol	Dulcitol	11850 C6H1406	182.079	Ramp 5.60	11
Sugar alcohol	Galactinol	439451 C12H22011	342.116	Ramp 5-60	14
Sugar alcohol	Glycero-2-phosphate	2526 СЗН906Р	172.014	Ramp 5.60	2
Sugar alcohol	L-diditol	5460044 C6H1406	182.079	Ramp 5-60	5
Sugar alcohol	Malitiol	493591 C12H24011	344.132	Ramp 5-60	10
Sugar alcohol	Rac-Glycerol_3-phosphoate	439162 СЗН906Р	172.014	Ramp 5-60	2
	2-Hydroxyphenylactic_acid	11970 C8H803	152.047	Ramp 5-60	1
	Hinokitiol	3611 C10H1202	164.084	30, Ramp 5-60	0
	Methyl_Salicylate	$4133 \mathrm{C8H803}$	152.047	Ramp 5-60	1

Supplementary Table 8: Compound list for the MassBank dataset (continued)

group	compound	molecular formula	monoisotopic mass	collision energies	annotated NLs
Amine	Dopamine	C8H11NO2	153.079	$10,20,30,40,50$	19
Amine	Spermidine	C7H19N3	145.158	15, 25, 35, 45	17
Amine	Spermine	C10H26N4	202.216	15, 25, 35, 45	12
Amine	Tyramine	C8H12NO+	138.092	15, 20, 30, 40, 50	23
Amino acid	Alanine	C3H7NO2	89.048	10	1
Amino acid	Arginine	C6H14N4O2	174.112	20, 25, 30	15
Amino acid	Asparagine	C4H8N2O3	132.053	10, 15, 20, 30, 40	15
Amino acid	Aspartic acid	C4H7NO4	133.038	10, 15, 20, 30	8
Amino acid	Citrulline	C6H13N3O3	175.096	$10,15,20,25,30$	22
Amino acid	Cysteine	C3H8NO2S+	122.028	10, 15, 20, 30	7
Amino acid	Cystine	C6H12N2O4S2	240.024	10, 15, 20, 30, 40	40
Amino acid	Glutamic acid	C5H9NO4	147.053	10, 15, 20, 30	7
Amino acid	Glutamine	C5H10N2O3	146.069	10, 15, 20, 30	8
Amino acid	Histidine	C6H9N3O2	155.069	15, 25, 35, 45	18
Amino acid	Isoleucine	C6H13NO2	131.095	10, 15, 25, 40	18
Amino acid	Leucine	C6H13NO2	131.095	15, 25, 40	9
Amino acid	Lysine	C6H14N2O2	146.106	10, 15, 20, 30, 40	23
Amino acid	Methionine	C5H11NO2S	149.051	10, 15, 20, 30	10
Amino acid	Phenylalanine	C9H11NO2	165.079	15, 25, 40	15
Amino acid	Proline	C5H9NO2	115.063	10, 15, 55	7
Amino acid	Serine	C3H7NO3	105.043	10, 15, 20, 30	5
Amino acid	Threonine	C4H9NO3	119.058	10, 15, 20, 30	6
Amino acid	Tryptophane	C11H12N2O2	204.09	15, 25, 40, 55	38
Amino acid	Tyrosine	C9H11NO3	181.074	10, 15, 25, 30, 40	22
Amino acid	Valine	C5H11NO2	117.079	10, 25, 40, 55	15
Carboxylic acid	6-Aminocapronic acid	C6H13NO2	131.095	15, 20, 30, 40	29
Choline	3-(4-Hexosyloxyphenyl)propanoyl choline	C20H32NO8+	414.213	25,40, 55	4
Choline	4-Coumaroyl choline	C14H2ONO3+	250.144	15, 25, 40	4
Choline	4-Hexosylferuloyl choline	C21H32NO9+	442.208	15, 25, 40, 55	5
Choline	4-Hexosyloxybenzoyl choline	C18H28NO8+	386.181	$15,25,40,55,90$	5
Choline	4-Hexosyloxycinnamoyl choline	C2OH30NO8+	412.197	25,40, 55	4
Choline	4-Hexosylvanilloyl choline	C19H30NO9+	416.192	15, 25, 40, 55, 70	3
Choline	4-Hydroxybenzoyl choline	C12H18NO3+	224.129	15, 25, 40, 55	4
Choline	5-Hydroxyferuloyl choline	C15H22NO5+	296.15	15, 25, 40, 55	11
Choline	Acetyl choline	C7H16NO2+	146.118	20	3
Choline	Benzoyl choline	C12H18NO2+	208.134	15, 25, 40, 55	3
Choline	Cafeoyl choline	C14H20NO4+	266.139	15, 25, 40, 55	8
Choline	Choline with Arylglycerol-arylether backbone	C23H32NO8+	450.213	50	3
Choline	Cinnamoyl choline	C14H2ONO2+	234.149	15, 25, 40, 55	3
Choline	Feruloyl choline	C15H22NO4+	280.155	15, 25, 40	7
Choline	Nicotinic acid choline ester	C11H17N2O2+	209.129	15, 25, 40, 55	3
Choline	Sinapoyl choline	C16H24NO5+	310.165	15, 25, 40	4
Choline	Syringoyl choline	C14H22NO5+	284.15	50	19
Choline	Vanilloyl choline	C13H2ONO4+	254.139	15, 25, 40, 55	10

Supplementary Table 9: Compound list for the QSTAR dataset: Compound class, compound name, molecular formula, monoisotopic mass (Da), collision energies (eV), and number of annotated losses (edges) in hypothetical FTs. The ion type of all compounds is $[\mathrm{M}-\mathrm{H}]^{-}$. Compounds with less than three (seven) annotated losses are colored red (yellow).

Supplementary Fig. 10: All FTs for the Orbitrap dataset in separate file.

Supplementary Fig. 11: All FTs for the MassBank dataset in separate file.

Supplementary Fig. 12: All FTs for the QSTAR dataset in separate file.

[^0]: *To whom correspondence should be addressed
 ${ }^{\dagger}$ Chair for Bioinformatics, Friedrich Schiller University, Jena, Germany
 ${ }^{\ddagger}$ Genome Biology Research Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
 ${ }^{\text {II }}$ Research Group Mass Spectrometry and Proteomics, Max Planck Institute for Chemical Ecology, Jena, Germany
 ${ }^{\S}$ Max Planck Institute for Chemical Ecology, Jena, Germany

