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Abstract

Metabolites, small molecules that are produced by an organism, possess a broad range
of functions from energy provision to the transfer of complex messages. A large number
of metabolites still remain unknown. As metabolites often directly in�uence the
phenotype, the biology of an organism can not be fully understood without uncovering
most of its metabolites. Additionally, a newly found metabolite may serve as lead for
the discovery of new drugs, especially antibiotics.
Two major techniques exist for the discovery of metabolites: nuclear magnetic

resonance provides full structural information, but lacks sensitivity. In contrast,
mass spectrometry (MS) provides much less information, but requires little amount
of sample and allows for high-throughput analysis. Here, we present algorithms and
work�ows for the fully automated analysis of tandem MS spectra from small molecules.
In the �rst step, we annotate spectra with a fragmentation tree. Such a tree

assigns molecular formulas to the peaks, and proposes fragmentation reactions between
them. Graph theoretical formulation of this task leads to the NP-hard Maximum

Colorful Subtree problem. We present algorithms for the de-novo calculation of
fragmentation trees, based on the spectra alone. Using an ILP formulation the tree
calculation is usually faster than the spectra can be acquired. Mass spectrometry
experts con�rm that the trees agree well with their knowledge of fragmentation
chemistry. Additionally, we can use fragmentation trees to improve molecular formula
determination by isotopic pattern.
The next step in the pipeline compares the fragmentation tree of an unknown

with reference fragmentation trees. We propose to use tree alignment for this,
since alignments de�ne similarity in a biologically meaningful way. To perform
tree alignments, we adapt a dynamic programming algorithm by Jiang et al.
(1995). Unfortunately, tree alignment is again NP-hard on unordered trees such as
fragmentation trees. But the runtime is only exponential in the maximum out-degree of
the tree. Fragmentation trees usually have small out-degrees, rendering the approach
feasible.
There are several possibilities how to process the fragmentation tree alignment

similarities: For evaluation, we compare these scores with structural similarities of
the corresponding compounds, and �nd these two measures highly correlated, even if
the spectra have been measured on di�erent instrument types. Using tree similarities
as input for hierarchical clustering results in groups that agree well with chemical
compound classes. We also developed FT-BLAST, a tool to search a database of
reference trees for an unknown tree. In addition to �nding highly similar compounds
from the database, it can �lter out spurious hits by applying a decoy database strategy.
Evaluations show that most of the remaining hits are meaningful.
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We apply the full work�ow starting with molecular formula determination to a
biological sample from Icelandic poppy (P. nudicaule). Clustering the unknowns
together with reference compounds, enabled the prediction of compound classes for
some unknowns. The FT-BLAST analysis gave hints to structural features of the
unknowns. An independent manual analysis of the unknowns con�rmed our �ndings.
In addition, reference fragmentation trees can be annotated with structural features

using an in-silico fragmentation approach. Although theoretical formulation of this
problem turns out to be one NP-hard problem nested in another, we managed to
develop a branch-and-bound heuristic for this task. In future, it may help to further
interpret tree alignments.
This work�ow may help researchers in the dereplication of drug leads by telling

them if a promising compound is similar to an already tested lead early in the process.
Another application may be the reliable reconstruction of metabolic networks from
mass spectrometric data, similar to Watrous et al. (2012).



Zusammenfassung

Metaboliten, kleine Moleküle die von einem Lebewesen produziert werden, besitzen
vielfältige Funktionen zum Beispiel als Energiespeicher oder als komplexer Botensto�.
Eine groÿe Zahl von Metaboliten ist noch unbekannt. Weil Metaboliten oft direkt
den Phänotyp beein�ussen, können die Prozesse eines Organismus nicht vollständig
verstanden werden, ohne den Groÿteil seiner Metaboliten zu kennen. Auÿerdem
können neue Metaboliten als Leitstruktur für die Medikamentenentwicklung dienen.
Zur Entdeckung von Metaboliten werden hauptsächlich die folgenden zwei Tech-

niken eingesetzt: Kernspinresonanzspektroskopie kann die vollständige Struktur
der Substanz aufdecken, ist aber nicht sehr sensitiv. Im Gegensatz dazu liefert
die Massenspektrometrie (MS) weniger Informationen, kommt aber auch mit einer
viel kleineren Probenmenge aus und ermöglicht daher eine Hochdurchsatzanalyse.
In dieser Arbeit stellen wir Algorithmen für die vollautomatische Analyse von
Tandemmassenspektren kleiner Moleküle vor.
Zunächst werden die Spektren mit einem Fragmentierungsbaum annotiert. Ein

Fragmentierungsbaum ordnet den Peaks Summenformeln zu und postuliert Frag-
mentierungsreaktionen zwischen diesen. Die Formulierung dieser Aufgabe mithilfe
der Graphentheorie führt zum NP-harten Maximum Colorful Subtree Problem.
Wir stellen Algorithmen für die Berechnung von Fragmentierungsbäumen ohne
Zuhilfenahme einer Datenbank vor. Bei Verwendung eines ganzzahligen linearen
Programms können die Bäume meist schneller berechnet, als die Spektren gemessen
werden. Massenspektrometrie-Experten bestätigen, dass die Bäume sich gut mit ihrem
Wissen über Fragmentierungsreaktionen erklären lassen. Fragmentierungsbäume
können auch verwendet werden, um die Identi�zierung der Summenformel durch
Isotopenmuster zu verbessern.
Im nächsten Schritt wird der Baum eines unbekannten Sto�es dann mit Ref-

erenzbäumen verglichen. Wir verwenden Baumalignments zu diesem Zweck, da
Alignments Ähnlichkeit biologisch sinnvoll de�nieren. Um Baumalignments zu
berechnen, haben wir einen Algorithmus von Jiang et al. angepasst. Dieser basiert auf
dynamischer Programmierung. Leider ist das Alignieren von ungeordneten Bäumen,
wie Fragmentierungsbäumen wieder NP-schwer. Allerdings wächst die Laufzeit nur
exponentiell mit dem höchsten Ausgangsgrad. Fragmentierungsbäume haben meist
kleine Ausgangsgrade, was den Ansatz praktikabel macht.
Es gibt verschiedene Möglichkeiten mit den Ähnlichkeiten der Fragmentierungs-

bäume weiterzuarbeiten: Zu Testzwecken vergleichen wir diese Ähnlichkeit mit der
strukturellen Ähnlichkeit der entsprechenden Substanzen. Diese Ähnlichkeiten sind
stark korreliert, sogar wenn die Spektren mit verschiedenen Spektrometer-Typen
gemessen wurden. Wenn wir die Sto�e basierend auf ihren Fragmentierungs-
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baumähnlichkeiten clustern, bilden sich Gruppen, die in etwa chemischen Sto�klassen
entsprechen. Zusätzlich haben wir FT-BLAST entwickelt, ein Programm zur Suche
von Fragmentierungsbäumen in einer Referenzdatenbank. Neben der Tatsache dass es
sehr ähnliche Substanzen in der Datenbank �nden kann, kann es die Signi�kanz der
Tre�er mithilfe einer Köderdatenbank berechnen. Tests zeigen, dass der Groÿteil der
Tre�er über einer Signi�kanzschwelle sinnvoll sind.
Wir verwenden den gesamten Ablauf zur Identi�zierung einer biologischen Probe

des Islandmohns (P. nudicaule). Durch das Clustern der unbekannten Substanzen
zusammen mit Referenzmessungen konnten wir die Sto�klassen einiger Unbekannter
vorhersagen. Auÿerdem gab die FT-BLAST-Analyse Aufschluss über charakteristische
Teilstrukturen. Eine unabhängige manuelle Analyse bestätigte unsere Ergebnisse.
Referenzfragmentierungsbäume können auÿerdem mit Strukturformeln annotiert

werden, indem man einen in-silico Fragmentierungsansatz benutzt. Obwohl es sich
bei der theoretischen Formulierung dieses Problems um zwei ineinander geschachtelte
NP-schwere Probleme handelt, konnten wir eine Branch-and-bound-Heuristik für das
Problem entwickeln. Diese kann in Zukunft helfen, Baumalignments noch besser zu
interpretieren.
Die hier vorgestellt Interpretation von Spektren könnte bei der Dereplizierung von

Leitstrukturen für Medikamente helfen, da in einer frühen Phase bereits festgestellt
werden kann, ob die neue Leitstruktur einer schon getesteten Struktur ähnelt. Eine
weitere Anwendung könnte die verlässliche Rekonstruktion von metabolischen Netzen
aus Massenspektrometrie-Daten sein, ähnlich dem Ansatz von Watrous et al. (2012).
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Preface

This thesis presents large parts of my research in the automated analysis of tandem
mass spectra from small molecules. During this work, I was member of the
Bioinformatics Group led by Professor Sebastian Böcker at the Friedrich-Schiller-
Universität Jena. My studies were supported by the university's basic funding.
Most of the results presented here have been published in [12, 76�78] and were

achieved in cooperation with my supervisor Sebastian Böcker, our collaborators Ale²
Svato², Macro Kai, Ravi Kumar Maddula and Christoph Böttcher, my colleagues
Franziska Hufsky, François Nicolas, Kerstin Scheubert and Imran Rauf and, last but
not least, my diploma students Tamara Steijger and Thomas Zichner.
Together with other co-workers I also participated in the analysis of glycan mass

spectra [7, 8], the calculation of fragmentation trees from MSn data [83, 84] and
GC-MS spectra [45] as well as a faster method to calculate fragmentation tree
alignments [44]. Before working with the Bioinformatics group, I implemented two
methods for biological network analysis under supervision of Sebastian Wernicke and
Prof. Rolf Niedermeier [103�105].
The main results of this thesis are presented in Chapters 3�6, whose results are also

presented in the following publications:
Chapter 3 describes the calculation of fragmentation trees using results from

both [77] and [78]. Sebastian Böcker and I developed the concept and the dynamic
programming approach, which I also implemented. I designed the scoring function
and developed and implemented the insertion heuristic. I was also involved in the
development of the other heuristics and the ILP.
Chapter 4 presents evaluation of the trees against expert knowledge. Here, I only

performed the comparison with the Mass Frontier results, since the manual evaluation
had to be performed by skilled biochemists.
Chapter 5 deals with the alignment concept to compare fragmentation trees. It is

published in [76]. In this project, I participated in the development of the method, the
scoring and the signi�cance estimation. I implemented the scoring, decoy database
generation and q-value calculation. Furthermore, I performed large parts of the
analyses.
In Chapter 6, an approach for the annotation of fragmentation trees with molecular

structures is described. These results have been published at the 9th Workshop on
Algorithms in Bioinformatics (WABI 2009) [12]. Here, I worked on the problem
formulation and developed the algorithms together with all co-authors.
For the remainder of this thesis, I will use �we� as the �rst person pronoun, as it is

common in scienti�c literature. This may be interpreted as �the reader and I� or as
�my collaborators and I�, whichever suits best in the situation.
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1 Introduction

Analysis of biological sequences has long been the focus of bioinformatics research. The
genome as well as proteins can be represented by sequences of nucleotides or amino
acids. But as modeling approaches proceed, it becomes evident that neither the study
of the genome and transcriptome, nor the proteome is su�cient to fully understand
cell processes.
The genome gives a static image of what an organism is able to do, but no

hints to what is currently happening in the organism or cell. (For simplicity, we
ignore epigenetic e�ects like methylation here.) The proteome, in contrast, reveals
information about the cell's current state. But it is only half of the picture: Some
proteins such as actins, tubulins and keratins directly in�uence the appearance of
a cell. But a large class of proteins � enzymes � is used to in�uence and modify
small molecules, which in turn determine the appearance of the cell as cell walls,
membranes, energy sources and in several other functions. As a prominent example,
Mendel observed the color of pea �owers. Their color originates from an anthocyanin
produced by the plant [93] and thus, from a metabolite. Mendel was lucky that the
connection between this metabolite and some gene was straightforward, despite several
transformations in between. Otherwise his studies might have been inconclusive.
Both metabolites and proteins can also serve as signaling molecules. Small molecules

are advantageous to bridge large distances, e.g. between organisms. Metabolites are
also often used as attack and defense molecules between species, as they can enter
another cell more easily and can be produced in su�cient amounts faster and with less
energy investment. Thus antibiotics, toxins and stress signals are often metabolites.
These properties render metabolites highly interesting in pharmacy [22]. According
to Li and Vederas, by 1990, 80% of all drugs were derived from or inspired by
metabolites [61].
Therefore, the �eld of metabolomics, the study of all metabolites in a cell or an

organism, has emerged over the last years [59]. The results in this area helped to gain
a more comprehensive understanding of the cell as a whole [35].
Metabolites are di�cult to identify since their structure cannot be deduced from

the genomic sequence. Only for molecules produced by polyketide synthases and non-
ribosomal peptide synthases a certain predictability has been established [13]. Thus,
a vast number of metabolites remains unknown [24]. Particularly, plants, fungi and
bacteria synthesize up to 20 000 di�erent metabolites per species [35], presenting a
huge pool of potentially bioactive substances.
Typically, nuclear magnetic resonance (NMR) is used to identify the structure of an

unknown metabolite [27, 32]. It provides detailed information on the structure, but
requires large amounts of puri�ed metabolite, in the range of milligrams. Often the
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2 1. Introduction

metabolite of interest is only present in very low concentrations and hard to purify,
impeding the acquisition of such amounts. If the model organism, a plant, for example,
cannot be cultivated easily in high numbers, this further complicates the task. NMR
is thus not applicable for an high throughput setup.
In contrast, mass spectrometry (MS) is far more sensitive than NMR, and does not

require a puri�ed sample. In contrast, a tissue extract or bio�uids can be analyzed
with a minimal e�ort of sample preparation, by using a chromatography method
before conducting the spectrometric measurement. According to Patti et al. [74] liquid
chromatography coupled mass spectrometry (LC-MS) detects more metabolites than
any other technique and is thus most suitable for the screening of unknown metabolites.
But LC-MS does not provide as much information about a metabolite as NMR. In

the simplest form, only masses and, if the data has high quality, molecular formulas
can be determined. In a more complex variant, called tandem mass spectrometry, the
compound is fragmented and masses of the fragments are recorded. This reveals some
information about the structure of a compound. The standard approach is now to
compare a fragmentation spectrum with other such spectra in a database. But this
is only successful in 25% of the cases [2]. A manual inspection of the unidenti�ed
potential metabolites is time-intensive and, given their large number, impractical [74].

1.1 Contribution of this Work

In this thesis, we will present a work�ow to greatly simplify identi�cation of unknown
metabolites. This work�ow is able to automatically retrieve a list of similar (not
necessarily identical) compounds from a database, and assign signi�cance values to the
hits. Additionally, it depicts relationships between known and unknown compounds
by clustering. We use this clustering to even postulate compound classes for unknown
metabolites, where this is unambiguously possible.
In our pipeline, we �rst annotate the spectra with molecular formulas without

the use of any database. Then, we perform a database search using the annotation
instead of the spectra directly. Through this concept we were able to overcome several
limitations of spectral comparisons for database search: We can identify compounds
even if the reference spectra have been measured on a di�erent instrument type, such
as QToF versus Orbitrap instruments. Using a decoy database strategy, we can assign
signi�cances to database hits. This measures the reliability of a database hit. Lastly,
we are able to retrieve hits not only from identical but also from similar substances.
This has previously been possible as a side product [25]. In contrast, our comparison
model has been deliberately designed to account for spectrum changes caused by
similar compounds. The signi�cance estimation allows for the assessment of such
similar hits for the �rst time. Thus, we were able to improve on previous results for
the search of similar substances in spectral libraries.
Based on the results of such a search, several applications are possible: During

the search for novel antibiotics, time is often wasted in the structural elucidation of
a potential drug, which then turns out to be highly similar to a known antibiotic.
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Although automated structural elucidation by mass spectrometry will most likely
remain impossible, the similarity search could sort out such unpromising candidates
early in the pipeline. Additionally, further analysis of promising candidates is
simpli�ed by already knowing the compound class and eventually some structural
features. Similarities calculated between a large number of analytes could also be
used to postulate metabolic networks and biosynthesis pathways, thus improving our
knowledge about the less common parts of the metabolism.

To present the analysis pipeline, this thesis is structured as follows: We start with
introducing the main concepts of metabolomics and mass spectrometry in Chapter 2.
In Chapter 3, the method to automatically annotate the spectra is presented. For
the annotation, we use fragmentation trees, which assign molecular formulas to peaks
and connect these formulas with fragmentation reactions. We have developed several
algorithms for the calculation of fragmentations trees. These are presented in the
chapter and their performance is assessed on several sets of spectra. Chapter 4 contains
a manual evaluation of the automatically generated annotations. Additionally some
fragmentation reactions have been veri�ed by multi-stage mass spectrometry. The
results of this validation can also be found in the chapter.

Chapter 5 presents the algorithm used to compare the fragmentation trees, that is,
the annotations of the spectra. The alignment concept is used for the comparison,
allowing for insertions and deletions as well as mismatches of neutral losses. We
evaluate the tree comparison by comparing the chemical similarity of reference
compounds with the fragmentation tree similarity of their mass spectra. We also
show that a clustering based on fragmentation tree similarity agrees well with
known compound classes. Lastly, we demonstrate the capabilities of the database
search approach using a leave-one-out evaluation. In addition, we use biological
measurements from poppy to show that the approach is applicable to high-throughput
metabolomics data.

In Chapter 6, we investigate an alternative use for fragmentation trees. Given
a structure hypothesis, we try to annnotate the fragmentation tree with structural
formulas. This can be useful in two ways: On the one hand, reference fragmentation
trees may be checked for agreement with the structure of the reference compound.
On the other hand, it can assessed how well a structure hypothesis �ts to the given
fragmentation tree, and thus, to the spectrum. Structure hypotheses may be taken
from compound databases, which are much larger than spectrum databases. The
chapter present two algorithms for the problem and evaluates their performance.

Finally, we conclude in Chapter 7 with a summary of the results as well as an outlook
to future improvements and possible applications of the approach.

1.2 Graph Theoretical Notation

In this thesis we will use graphs to formalize tasks and problems. Thus, we give a
short introduction on graph theory here.



4 1. Introduction

De�nition 1.1 (Graph). An undirected graph G = (V,E) is a pair of a vertex set V
and an edge set E ⊆

(
V
2

)
, where

(
V
2

)
denotes the collection of all two-element subsets

of V . An undirected edge e = {u.v} connects vertices u and v. In a directed graph,
edges are ordered pairs e = (u, v) and hence E ⊆ V × V . We often use e = uv, instead
of e = (u, v) for directed edges to improve readability.

As our graphs represent real-world processes, we link vertices and edges of the graph
to arbitrary objects called labels. In this work, labels are molecular formulas and thus
multi-sets of elements. Note that with this de�nition, a label need not be unique. This
is sometimes de�ned di�erently, depending on the application at hand. Real-valued
weights can be used to de�ne the importance of an edge or vertex.

De�nition 1.2 (Weighted Graph). If there is a function w : E 7→ R de�ned on the
edge set, a graph G = (V,E) is edge-weighted. We call w(e) the weight of the edge e.
Analogously, if a function wV : V 7→ R exists, we call G vertex-weighted.

A weighted graph is usually assumed to be edge-weighted. Another property vertices
may have is a color.

De�nition 1.3 (Colored Graph). Given a set of colors C, if there is a function c :
V 7→ C a graph G = (V,E) is vertex-colored. We call c(v) the color of the vertex v.

Often, color is used to denote the type of a vertex, or, in our case, vertices that
share the same origin. Colors may also be de�ned on edges, but edge colors are not
used in this work.

De�nition 1.4 (Colorful). A graph is colorful if every color occurs at most once in
the graph, that is every vertex possesses a unique color.

Selection of parts of a graph leads to subgraphs. This can be helpful, e.g., to
distinguish between meaningful and less important information for the application at
hand.

De�nition 1.5 (Subgraph). A graph G′ = (V ′, E′) is a subgraph of the graph G =
(V,E) i� V ′ ⊆ V and E′ ⊆ E.

A directed graph which contains no directed cycles is called a directed acyclic graph
(DAG). It represents a hierarchy of objects. We call a DAG transitive, if its edge
relation E ⊆ V × V is transitive.
An arborescence is a DAG, that does not contain cycles even if its edges were

considered undirected and whose edges all point away from a particular vertex called
the root. For simplicity, we call arborescences trees in the rest this work, although
trees are commonly de�ned on undirected graphs. We will call the vertices of such a
tree nodes, to easily distinguish them from the vertices of general graphs.
In such trees, each node can have only one incoming edge, coming from a node

called its parent. Outgoing edges from a node lead to its children. All nodes on the
path from the root to a node are called this node's predecessors. This includes the
root node. Lastly, the out-degree of a node (and also a vertex) is the number of its
outgoing edges.



2 Biochemical Background and Mass

Spectrometry Concepts

This chapter introduces the biochemical concepts and mass spectrometric techniques
required for the understanding of this work. We start by introducing the chemical
objects analyzed throughout this work, namely molecules. Small molecules active
in a biological cell are called metabolites, thus a short overview on the study of
metabolites follows. Afterwards mass spectrometry is introduced as the analytical
technique producing the data this thesis aims to analyze. Finally, we present previous
work on the computational analysis of small molecule mass spectra.
This chapter can only present a brief overview on the topics mentioned, the

following books give more details: Mortimer on general chemistry [66], Weckwerth
on metabolomics [102], Gross on mass spectrometry [38], and Eidhammer et al. on
computational approaches in mass spectrometry [31].

2.1 Molecules

Living cells contain a multitude of di�erent molecules, ful�lling diverse tasks like energy
supply, information storage and compartment separation. Molecules (or in some cases
compounds, see below) are the chemical entities detectable using mass spectrometry.
Thus, we will introduce their basic concepts here, starting with the atoms.

Atoms Atoms are the building blocks of all matter. Atoms consist of a nucleus
surrounded by electrons. The nucleus in turn contains protons and neutrons. The
number of protons in the nucleus, called atomic number, mainly determines the
chemical properties of the atom. All atoms with the same proton number belong to
the same chemical element. Carbon, for example, has six protons in the nucleus. As
protons are positively charged, neutrons prevent the protons from repelling each other
and thus keep the nucleus stable. For this work neutrons are mostly relevant because
they change the mass of an atom. For a certain element several numbers of neutrons
can occur in the nucleus, resulting in atoms with the same chemical properties, but a
di�erent mass. These variants are called the isotopes of an element. An electrically
neutral atom contains as many negatively charged electrons as there are protons in
the nucleus.

Covalent bonds Electrons are organized in shells around the nucleus. The �rst shell
may contain two electrons, the second eight, and further shells even more electrons.

5
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Figure 2.1: Lewis (left) and skeletal formula (right) of isoamyl acetate, a banana �avor.

Possessing a complete shell full of electrons is energetically optimal. Atoms may share
electrons to reach this state, e.g., two hydrogen atoms share their two electrons to
complete their �rst shell and form the molecule H2. The electrons now circle both
nuclei, which connects the atoms. Chemists refer to this connection as a covalent
bond. The group of atoms connected this way is a molecule. In contrast to a molecule,
a compound can also be connected by other types of chemical bonds, such as hydrogen
bonds or van-der-Waals-forces. If there are enough weak bonds between molecules,
they may stay connected during mass spectrometric measurements. Thus, we will use
the term compound throughout this thesis, although in most cases molecule would be
correct, too.

Molecular formulas By counting the di�erent types of atoms in a molecule or
compound, one obtains its molecular formula. Ethanol, for example, has the molecular
formula C2H6O. This elemental composition determines the mass of the compound.
Thus, the molecular formula is the only information that can be obtained by mass
spectrometry without fragmenting the molecule.

Structural formulas The widespread Lewis structure visualizes the structure of an
molecule by displaying the atoms by their elemental symbol and drawing lines between
them to represent bonds, see �gure 2.1 for an example. A complete Lewis structure
also contains lines next to the atoms to represent electron pairs not involved in bonds.
These are often omitted for simplicity. Also, the carbon symbol, and hydrogens
attached to carbon atoms can be omitted, resulting in skeletal formulas. Such a
structure can be represented as a graph in computer science. It must be understood
that it contains no information about the three-dimensional layout of the molecule.
As it is already hard to determine information about the 2D structure using mass
spectrometry, we ignore that molecules are in fact three dimensional in this work.

Compound classes The term compound class is not exactly de�ned. Molecules may
fall into the same group, because they share a common reactive group (e.g. amino
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acids), a substructure (e.g. �avonoids), have certain chemical properties (e.g. alkaloids)
or similar biological functions (e.g. nucleotides). Which property is used to de�ne
compound classes depends on the application at hand. For the evaluation of our
newly developed methods, we will use a mixture of all these class types, as we retained
the annotation of the data performed by biochemistry experts. The IUPAC retains
an o�cial list of structure-based compound classes [67]. But the most comprehensive
database of compound classes are the medical subject headings (MeSH) with nearly
20 000 chemistry related entries [68]. MeSH terms are organized in a tree structure
from general to speci�c terms. A compound may have several MeSH terms.

Molecular mass The weight of atoms, molecules and compounds is measured in
Dalton (Da). By de�nition, an atom of the carbon isotope 12C in its ground state
has a mass of 12 Da. Thus, a proton weighs approximately 1 Da. One Dalton equals
1.660538921 × 10−27 kg. Another name for the Dalton is uni�ed atomic mass unit,
abbreviated as u. The mass of a molecule or compound can be calculated by summing
the masses of its atoms. Due to bond energies this is not absolutely accurate, but
de�nitively accurate enough for the analyses presented here.

2.2 Metabolites

Metabolites are the substrates and products of chemical reactions taking place in living
cells. This would include all compounds in the cell, but the term is usually restricted
to small molecules, with the threshold being somewhere around 1000Da. Usually,
the products of polymerisation are no longer considered metabolites. This implies
that proteins and DNA are not metabolites, but amino acids and nucleotides are. A
notable exception are polyketides, which are metabolites.
Traditionally, metabolites are divided into primary and secondary metabolites.

The metabolites necessary for growth, development and reproduction are classi�ed
as primary metabolites, all others are called secondary. Signalling, defense against
pathogens, protection against abiotic stress, and attraction of mating partners through
smell or colour are some of the various functions ful�lled by secondary metabolites.
Most primary metabolites are well investigated, as they occur in large amounts and

are usually present in several, if not all, organisms. In contrast, secondary metabolites
are only produced in small quantities and are often speci�c to a species. Their
structures are highly diverse, only restricted by the limitations of organic chemistry,
see for example the cubic-shaped structure of tetrodotoxin, the famous poison of pu�er
�sh (Figure 2.2).
There exist several metabolite databases, all with a slightly di�erent focus: The

Kyoto Encyclopedia of Genes and Genomes (KEGG) [49], the Human Metabolome
database (HMDB) [107], the METLIN database [91], and the Madison Metabolomics
Consortium Database (MMDB) [23]. The KNApSAck database aggregates species-
metabolite relationships [88] and the MetaCyc database focuses on metabolic pathways
[20]. The PubChem database is not focused on metabolites, but is the largest freely
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Figure 2.2: Structural formula (left) and ball-and-stick model of tetrodotoxin. It has
a roughly cubic three dimensional structure. By convention, carbon atoms
are coloured grey, oxygen red, nitrogen blue and hydrogen white.

accessible collection of chemical compounds in general [100]. It currently contains 30
million structures. Additionally, there exists several databases for speci�c metabolite
classes, such as lipids (LMSD [97]) or natural products (DNP [18]).
Despite the huge number of structures stored in such databases, many secondary

metabolites can still not be found in any of these databases and thus remain unknown.
On the other hand secondary metabolites are of interest in many areas of biotechnology.
They often serve as leads in drug development: Li and Vederas [61] estimate that
by 1990 80% of drugs where either metabolites or analogs inspired by them. Fields
of application include antibiotics, antimalarials, immunosuppressants and anticancer
drugs.
Therefore, a sensitive high-throughput method for the identi�cation of new

metabolites is highly sought.

2.3 Mass Spectrometry

Mass spectrometry allows for high-throughput analysis of chemical compounds. As
the name implies, it is able to record the masses of the analyzed compounds with
an accuracy of a few parts-per-million. In its simplest form it can thus be seen as a
very exact scale. A typical mass spectrometer consists of three parts: An ion source,
where the molecules get charged, a mass analyzer, that separates the molecules by
their mass-to-charge ratio, and a detector, which approximately measures the number
of incoming ions.

2.3.1 Ion Sources

Most processes in a spectrometer are based on electric �elds and currents.
Unfortunately, neutral molecules are only little in�uenced by electricity. Thus, the
molecules have to be charged to respond to the measurement. This so called ionization
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is performed in the ion source. Several methods to ionize a sample exist. They
can either keep the analyte molecule intact (soft ionization) or fragment it (hard
ionization).
The soft electrospray ionization (ESI) is most relevant in this thesis [106]. Here,

the liquid sample is pressed through a small metal capillary, whose tip is one pole of
an electric �eld. At this tip, sample and solvent molecules get charged, and through
electro magnetic repulsion small drops of about 10 µm diameter emerge. From these
drops more and more solvent evaporates. This increases surface charge, which at some
point forces the drops to divide. The end result of this process are charged sample
ions in the gas phase. There are several theories, how exactly these arise, for details,
see [38]. Typically, the resulting ions either carry an additional proton ([M+H]+, M
denotes the sample molecule), or have lost one in negative mode ([M-H]-), but sample
ions may also form through the addition of other ions, such as sodium ([M+Na]+) or
ammonium ([M+NH4]+). Larger sample molecules often receive multiple charges.
Other soft ionization techniques include the matrix assisted laser desorp-

tion/ionization (MALDI) [50]. Here the sample is embedded into a cristalline matrix.
In the ion source, the matrix is then evaporated by laser pulses, releasing charged
molecules into the gas phase. This is typically applied for the analysis of proteins.
Atmospheric pressure chemical ionization (APCI) is similar to ESI [16]. Here sample
and solvent are evaporated through heat �rst, and then the solvent is ionized in the
gas phase by applying a high voltage. The solvent then transfers the charge to the
sample molecules, thus the name chemical ionization. For some compound classes this
works better than ESI, but has the disadvantage that more molecules are fragmented
during ionization.
Hard ionization techniques, that fragment the molecule, do not play a role in this

thesis, as the adaption of the presented methods to these techniques requires major
modi�cations [45]. Nevertheless, electron ionization (EI) will be described here shortly,
as it is the most widely used ionization technique in metabolomics [36]. When EI is
applied, the sample is usually already in the gas phase, e.g., since a gas chromatography
has been performed beforehand. For ionization, a high energy electron beam is shot
at the sample. This results in the removal of electrons from the sample molecules and
thus the formation of radical ions. Additionally the molecules fragment due to the
high energy applied by the beam.

2.3.2 Mass Analyzers

A mass analyzer separates ions by their mass-to-charge ratiom/z. The unit Thompson
(Th) is sometimes used for this ratio in mass spectrometry, although it is o�cially
dimensionless. Various methods exist to achieve separation by mass-to-charge. For
this work, four of them are relevant, namely time-of-�ight (ToF), quadrupole, linear
ion trap and Orbitrap mass analyzers.
Time-of-�ight mass spectrometry is based on the fact that objects of di�erent mass

gain di�erent velocities if accelerated by the same force (~a =
~F
m). Acceleration

is performed by a uniform electric �eld. Thus, the force acting on a molecule is



10 2. Biochemical Background and Mass Spectrometry Concepts

Figure 2.3: Schematic drawing of an LTQ Orbitrap spectrometer. The sample is
injected on the left, the Orbitrap analyzer is located bottom right. To
the very right the HCD collision cell is shown. Figure taken from [73].

proportional to its charge (~F = z · ~E). Resolving the two equations we get m
z =

~E
~a .

Here, both mass and charge are unknown, thus only their ratio can be determined.
This holds for all mass analyzers, since electric �elds are always used to in�uence
the ions. The velocity of an ion is determined by measuring the time an ion takes
to �y through a �eld free �ight tube. The longer the �ight tube the more accurate
the measurement. Therefore current high performance instruments possess long �ight
tubes. The tube of the Bruker MaXis, for example, has a length of 2.5m.
Quadrupole analyzers follow a completely di�erent principle. Here, four parallel rods

are connected to an AC power source. The resulting electro magnetic �elds cause ions
to spiral through the center of the rods. For a �xed AC frequency, only ions with a
certain mass to charge ratio can safely �y through the rods, without colliding with
them. Thus, the quadrupole allows for �ltering of certain ions. Quadrupole analyzers
are not very accurate compared to ToF or Orbitrap analyzers, since it is di�cult to
achieve a narrow isolation window due to the underlying physics.
A linear ion trap like a quadrupole consists of four parallel rod-shaped electrodes.

But in the linear trap the ends of the rod are insulated from the centers allowing
to create electric �elds that are di�erent from the center at both ends of the unit.
By holding all three �elds at the correct AC frequencies, there are di�erent modes
of operation: The trap can store all ions, store only ions of a certain mass and
let all others pass, or let only ions of a certain mass pass through the trap. As
with quadrupole analyzers the disadvantage is the low mass accuracy. State-of-the-
art instruments can reach 150 ppm, but 500 ppm are not uncommon. Their huge
advantage is that fragmentation spectra can be measured with only one analyzer: By
�lling the trap with gas, the ions currently stored can be fragmented, allowing for
multi-stage fragmentation spectra.
Orbitrap analyzers trap ions on a trajectory around a spindle shaped electrode

(Figure 2.3). Ions of the same mass-to-charge ratios have the same trajectory in
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moving back and forth along the spindle. These oscillations of the ions induce an
alternating current in two metal plates located near the electrode. This current can be
detected and its frequency allows for a very accurate calculation of the mass-to-charge
ratio. No further detector is required. To ensure the ions enter their stable trajectories,
they are bundled by a C-shaped ion trap and focused through several electrodes before
entering the trap. With their high mass accuracy, their wide dynamic range and low
maintenance requirements, Orbitraps have become a common instrument in biological
sample analysis.

2.3.3 Detectors

The Faraday cup is the most simple type of detector. When ions hit a metal cup, it
is slightly charged. In regular intervals, the cup is discharged by grounding it. The
current �owing during the grounding is proportional to the number of ions detected
during the last interval. But since the current induced by a low number of ions is
extremely small, this method is not very sensitive.
Thus, it is necessary to amplify the ion signal before measuring it electronically.

This is achieved by electron multipliers. Here, the ions hit a special material that
emits electrons when hit by charged particles of high energy. Through this process,
called secondary emission, the material releases more electrons than charged particles
previously hit the plate. A strong ampli�cation is achieved by a cascade of such plates.
The charge increase on the last plate is then high enough to be detected even if the
original ion input was not.
Photo multipliers are based on the same principles, but amplify a photon beam

instead of electrons. The ions to be measured therefore need to be converted
to photons by a phosphorescent screen. This additional conversion renders photo
multipliers a little less sensitive than electron multipliers. But in a photo multiplier less
contaminants assemble, as it can be completely sealed. This results in less maintenance
and higher lifetime.
Micro channel plates (MCPs) consist of millions of small multipliers assembled

together. Each multiplier is about 10 µm in diameter. Due to their fast response time
and their large detection area, they are used in most up-to-date mass spectrometers.

2.4 Tandem Mass Spectrometry

Using the three components above, either intact molecules can be measured (using a
soft ionization technique) or fragments are recorded, but the information about the
original molecule is lost (using hard ionization). In the latter case, even fragments of
several sample molecules may occur in the same spectrum. To gain both, information
about the intact molecule and the fragment spectrum, two mass spectrometric
measurements are required, one before and one after fragmentation. Two concepts
to achieve this exist.
For the �rst concept coupling of mass analyzers is required. The �rst analyzer �lters

for ions of a speci�c mass. These �y through a collision cell where fragmentation
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occurs. Afterwards, the fragment ions are separated in the second analyzer and �nally
detected, resulting in a fragment spectrum. The collision cell is usually a quadrupole,
hexapole or octopole, operated in such a way that all ions can pass the cell. Since �rst
and second measurements take place in di�erent analyzers, this is called tandem-in-
space.
The second concept is tandem-in-time. Here, the two measurements take place in

the same analyzer, which has to be able to trap ions. A �rst measurement is performed,
then all ions that shall not be fragmented are released. The ions remaining in the trap
are then fragmented (usually by releasing a gas into it), and the second measurement
is performed. Multiple fragmentation (MSn) is possible by repeating the procedure.
Since a trap is required, this approach only produces low accuracy data not suitable
for the methods presented in this thesis.
In both cases, the ion selected for fragmentation is called the precursor ion of the

resulting fragmentation spectrum. For fragmentation between the analysis steps several
techniques are available, the most relevant will be described here.

2.4.1 Collision Induced Dissociation

Collision induced dissociation (CID) is the technique most commonly used with small
molecules. Most data presented here have been measured using this technique. Here,
the collision cell is �lled with a neutral gas (hydrogen, nitrogen or argon). The fast ions
collide with these molecules resulting in fragmentation determined by complex rules
of the gas phase chemistry. In case of singly charged ions, one part, the fragment ion,
retains the charge, where as the other part becomes a so called neutral loss or radical
loss, that can no longer be detected in the spectrometer. Through an acceleration
�eld in front of the collision cell, the intensity of the collisions and thus the degree of
fragmentation can be adjusted. This acceleration energy is measured in electron volt
(eV) and typically ranges from 5 to 100 eV.

2.4.2 Higher-Energy Collisional Dissociation

In an Orbitrap instrument fragmentation using higher-energy collisional dissociation
(HCD) is possible. Normal CID fragmentation in the Orbitrap happens in the �rst
mass analyzer, a linear ion trap. Even at high energies, this can lead to poor
fragmentation [72]. An octopole collision cell can be attached to the C-trap of the
instrument and �lled with gas to enable collisions. This usually results in a larger
diversity of fragment ions. Some spectra analyzed in this work were measured using
this technique.
A plethora of other fragmentation methods exist, but most of them are not regularly

applied to analyze small biological molecules. Electron capture dissociation (ECD) and
its variants electron transfer dissociation (ETD) and electron detachment dissociation
(EDD) are becoming widespread in proteomics. They produce fragments that do
not from when using CID. Unfortunately, the e�ciency of these techniques grows
quadratically with the charge of the sample ion. Thus, it is not too useful for the
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analysis of mostly singly charged small molecules. For a recent overview of all mass-
spectrometric techniques applied to analyze small molecules, see [54].

2.4.3 Common Tandem MS Instruments

Certain combinations of mass analyzers have proven useful and are commercially
available:

Triple Quadrupole In triple quadrupoles (QqQ) the �rst quadrupole is used to �lter
the precursor ion and the second serves as collision cell. The third quadrupole scans
through the whole mass range, and thus allows for recording a fragment spectrum.
Since quadrupoles only allow for a resolution of 0.1 Th, spectra measured on triple
quadrupoles do not possess a high mass accuracy. The advantage of a triple quadrupole
is that it can also detect which intact ions produce fragments of a �xed mass, by
exchanging the operation modes of quadrupoles one and three.

Quadrupole Time-of-Flight Quadrupole time-of-�ight (QToF) instruments work
similar to triple quadrupoles. The �rst analyzer is a quadrupole, followed by a
quadrupole or hexapole collision cell. As the name implies, the di�erence lies in the
second analyzer. It is a time-of-�ight analyzer which allows for much higher mass
accuracy. Current instruments such as the Bruker Maxis can reach a mass accuracy
of 1 ppm. It is thus a good choice for the analysis of unknown small molecules and
several data sets presented in this thesis have been measured using QToF instruments
with accuracies between 20 and 50 ppm.

LTQ Orbitrap Orbitrap analyzers are commonly coupled with a linear trap, resulting
in an LTQ Orbitrap mass spectrometer. The linear trap serves as a mass �lter by
letting ions of a speci�c mass out of the linear trap into either the collision cell, or
the Orbitrap analyzer directly. This results in fragment ion spectra with high mass
accuracy. A major advantage of this setup is that the ions can be transferred back and
forth between the linear trap and the Orbitrap allowing for multiple fragmentation.
This is the second instrument setup suitable for analyzing unknown metabolites, and
data from this type of instrument is used in this thesis.
Several other combinations of analyzers are possible, but less relevant in the analysis

of small molecules. See [38] for a detailed list.

2.5 Chromatography Methods

For complex microbiological samples, e.g. cell extracts, a separation is necessary
to obtain fragmentation spectra of only a single compound. In metabolomics,
chromatography is commonly used to achieve this. It separates components of a
mixture between a stationary and a mobile phase. It makes use of the fact that
some compounds of the mixture will interact stronger with the mobile phase, others
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stronger with the stationary phase, thus requiring di�erent times to pass along the
stationary phase. Column chromatography, where the stationary phase is placed in a
tube called the column, can easily be coupled with a mass spectrometer. Thus, this is
the type of chromatography relevant here.
The chromatographic method most widely applied in metabolomics is gas

chromatography (GC). Here, the mobile phase is an inert gas such as helium or
nitrogen. Gas chromatography is cheaper than other chromatography methods and
o�ers a high resolution. Unfortunately, it has two major disadvantages: Firstly,
it is usually coupled with electron ionization, leading to a fragmentation of the
sample molecules before mass spectrometric measurement. Thus, the mass of the
unfragmented molecule remains unknown. Secondly, non-gasous samples, such as
cell extracts, have to be evaporated. For this, the analytes must be volatile and
temperature stable, which is the case only for a fraction of the metabolites.
Liquid chromatography (LC) avoids these disadvantages. Here the mobile phase is

liquid and the stationary phase consists of porous beads packed into a metal tube.
See [31] for a short introduction. The measurements presented in this thesis use
silica beads with C18 hydrocarbon chains attached. These interact strongly with non-
polar substances of the mixture through van-der-Waals forces. The mobile phase
is gradually changed from water to non-polar acetonitrile, which �rst washes out the
polar analytes and later the unpolar ones. This leads to a separation that is orthogonal
to the separation by mass in the spectrometer. In modern chromatography systems
pressures up to 100 MPa are used to allow for a dense stationary phase with good
separation and still retain short �ow times between 30 and 60 minutes.
The time a substance requires to pass through the column is called retention time.

Due to the complexity of the interactions in the column, it is nearly impossible to
relate this time to a measure of polarity, e.g., dielectric constants. Thus, the retention
time is used together with its mass to refer to a certain compound, although this is
only valid for this speci�c experiment.
LC requires only small amounts of sample (typically 25 mg of tissue or about

1 million cells) [74]. Since no evaporation is necessary, a much wider range of
metabolites can be analyzed. Additionally, a soft non-fragmenting ionization is usually
applied after LC, allowing the mass of the unfragmented analyte to be recorded. This
is the reason why only data from LC-MS and those where the sample was directly
injected into the spectrometer are interpreted in this thesis.

2.6 Signal Processing in Mass Spectrometry

In the following chapters, we will assume that the result of a mass spectrometric
measurement is a list of peaks, that is mass-over-charge and intensity pairs. In reality,
this list is the result of several signal processing steps which we will shortly describe
here. For more details refer to [31].
The instrument measures the ion current as an analog signal, the results are then

converted by an analog digital converter, and transmitted to a computer. The plot
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Figure 2.4: Data preprocessing steps: (a) Unprocessed raw spectrum (b) Spectrum
after smoothing (c) Smoothed and baseline corrected spectrum (d) Peaks
identi�ed in the spectrum. Figure taken from [110].

obtained this way is called the pro�le spectrum. The following steps are required to
obtain a high quality peaklist from these raw data:

• Smoothing To �lter electronic noise, a gaussian �lter with a small width below
1 Da is often applied [31].

• Baseline correction The baseline stems from ubiquitous ions, see Figure 2.4 (a)
for an example. It has to be subtracted to obtain meaningful peak intensities.
Unfortunately, the baseline level varies over m/z values. Commonly, a sliding
window approach is used to determine the baseline in a certain m/z region, see
for example [4].

• Peak picking In this step the (pseudo-)continuous pro�le spectrum is converted
into the histogram-like peak list spectrum. The simplest approach would be to
calculate the minima and maxima of the pro�le spectrum, where the maxima
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denote peak centers and the minima denote transition between peaks. The
maximal peak height, peak area or its full-width at half mean can then be
used as intensity, whereas the weighted average determines its m/z value. More
sophisticated methods use wavelet transformations to detect peaks [58]. This
has the additional advantage of rendering baseline correction unnecessary.

• Calibration In order to achieve high accuracy a calibration of the measurement
is required. For tandem MS experiments, this is performed by measuring a
standard solution from time to time. This is called external calibration as
opposed to internal calibration, where known standards are added to the sample,
resulting in reference peaks within the spectrum. The latter method is more
accurate, but not applicable as soon as ion are �ltered during the experiments.

Only after these steps have been performed, manual or automated interpretation of
the spectra is possible. Methods for the automated analysis of such peaklists are the
main part of this thesis. Before we present these in the next chapter, we will give a
short overview of other methods for this task.

2.7 Spectral Libraries

The most straightforward approach to automatically analyze a fragmentation mass
spectrum is to compare it to reference spectra from a database. If a very similar
spectrum is found, the compound generating the sample spectrum has been identi�ed.
Several algorithms exist for this task [95]. Unfortunately, such an identi�cation requires
that a reference measurement of the compound exists and that the two spectra are
su�ciently similar. The latter may not be the case for tandem MS measurements,
where many di�erent experimental setups exist. Thus, reference spectra need to
be available from the same instrument type [5], ideally even on exactly the same
instrument. As this is usually impossible, Oberacher et al. developed a more
sophisticated comparison, detecting small but signi�cant similarities [70,71].
The fact that many molecules detected cannot be found in any database or

metabolite repository can make library search unsuccessful, even with the best search
methods [74]. Demuth et al. developed a search algorithm optimized to retrieve similar
compounds in case a compound is not in the database [25], but they cannot assess the
quality of the hits.
Several databases storing tandem MS spectra exist. The MassBank database

contains about 30 000 spectra [43]. Its most notable feature is that most of its data
is publicly available, which is unusual among spectral libraries. It is developed and
maintained by a consortium of mainly Japanese metabolomics research institutes.
The METLIN database is provided by the Scripps Center for Metabolomics and

Mass Spectrometry [91]. It contains 55 000 spectra of 10 000 metabolites. It can be
searched free of charge via a web-interface, but its data is not available for download.
The Human Metabolome Database (HMDB) stores mostly NMR spectra, but for about
900 compounds, mass spectra are also available [107]. Similar to the METLIN database
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it can be freely searched, but the spectra cannot be downloaded for automated
processing.
With nearly 100 000 tandem MS spectra of 13 000 compounds the NIST library is

one of the most comprehensive spectral libraries [98]. It is not restricted to metabolites,
but covers all sorts of compounds. Unfortunately, access to it is only commercially
available, but even then the spectra can only be searched using the software included.
Full access to the data for di�erent analyses is prohibited.

Databases of EI spectra The NIST library contains an even larger number of
EI spectra (nearly 250 000), but the restrictions above apply. Fortunately, smaller,
but publicly available databases exist: Probably, the most renowned are the Golm
Metabolome Database (GMD) with 1 400 spectra [56] and the FiehnLib with 2 200
spectra.

2.8 Related Work

This section describes several methods that can be used if a reference spectrum is not
available. They either form the basis for the work of this thesis or complement it.

2.8.1 Molecular Formula Determination Using Isotope Pattern

When analyzing single MS spectra the �rst step is to �nd all molecular formulas that
have the measured mass. Formally, this leads to the Money Changing Problem,
which asks for all combinations of coins that can be used to pay a certain amount.
Böcker et al. proposed a fast solution for this problem [10] and adapted it to real
valued masses [9]. But even at high mass accuracy, there are usually many molecular
formulas for a given mass.
As additional information we can use the fact, that nearly every element has several

stable isotopes. These isotopes are integrated in molecules in exactly the proportion
they occur in the environment. Thus, a molecular ion creates a cluster of peaks with
distances of about one proton mass between neighboring peaks, an isotopic pattern.
For a given molecular formula, the relative intensities of the cluster peaks as well as
their exact masses can be calculated by folding [9, 21].
The candidate formulas are now ranked by the similarity between their theoretical

isotopic pattern and the measured one. Böcker et al. derived a similarity score using
Baysian statistics [9], which performs well on spectra from a ToF instrument. Recently,
Pluskal et al. showed that a straightforward spectrum comparison performs better on
a dataset from an Orbitrap instrument [75].
Such an analysis of the isotopic pattern is the foundation to determine the molecular

formula of an unknown metabolite. Its results can be improved using fragmentation
information, see Chapter 3. Fragmentation information alone seems to be insu�cient
to determine the molecular formula.
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2.8.2 Substructure Identi�cation Using Spectral Trees

Sheldon et al. introduced spectral trees as a means to visualize the relationships
between several MSn spectra of the same compound [87]. In 2011, Rojas-Chertó et al.
presented a method to identify the molecular formula of an unknown based on spectral
trees [81]. As relationships between the spectra are known, and they do not aim
to produce a representation of the fragmentation events, they can assume that the
spectral tree also represents relationships between the peaks. To identify the formula
they use a bottom up approach. Small peaks will likely have few explanations, and
these restrict the explanations on the next level. Their approach works well for
compounds below 500 Da, if there are no noise peaks in the spectra. They ensure this
by repeating the measurements as often as the chromatography allows and using only
peaks that occur in at least 40% of these repetitions [82]. This limits its applicability
in a high-throughput setup, where the compounds of interest often appear at low
concentrations and thus quickly elute from the chromatography column.
This method also results in spectral trees annotated with molecular formulas (from

the bottom-up formula calculation). In [82], Rojas-Chertó et al. develop a method to
compare these trees based on calculating binary �ngerprints. This comparison is then
used for database searching and common substructures are extracted from the hit lists.
These substructures are chemically meaningful and allow for conclusions about the
sample compound. The method displays a so-called �neighborhood behavior�, meaning
that a high spectral tree similarity implies a high chemical similarity. Unfortunately,
the reverse is not true, thus the method currently is not very sensitive.

2.8.3 In-Silico Fragmentation

Chemical compound databases contain many more compound structures than reference
spectra. The free PubChem database, for example, contains 30 million structures
[100]. Thus, being able to calculate a theoretical spectrum from a structure would
dramatically increase the number of reference spectra available. The calculation of
such a spectrum is called in-silico fragmentation. This approach is followed by the
commercial software �Mass Frontier�1. It uses a set of rules, derived by experts, to
predict the spectrum. This rule-based approach makes it less applicable to compound
classes whose fragmentation is not fully understood. Additionally, they show low
accuracy for compounds above 300 Da, as to many fragmentation pathways can
explain any fragment mass. The same drawbacks apply for its competitor, �ACD/MS
Fragmenter�2. Hill et al. demonstrated that spectra predicted by �Mass Frontier� can
at least help identify the molecular formula of a compound for which no reference
spectrum exists [41].
A di�erent approach of in-silico fragmentation tries to explain as many peaks in

the spectrum as possible using a given structure. This can then be performed for all
candidate structures with the correct weight, or the correct formula. Heinonen et al.

1Mass Frontier 7.0 Spectral Interpretation Software, Thermo Fisher Scienti�c, Waltham (MA), USA
2ACD/MS Fragmenter, ACD/Labs, Toronto, Canada
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presented the �rst algorithm for this task, a mixed iteger linear program [40].
Unfortunately, even the subproblem of deciding whether a fragment of �xed weight
can be cut from the molecule using at most a given amount of energy is NP-hard.
Calculations on molecules above 500 Da are thus quite slow. A common query with
�ve to ten candidates often takes days to calculate. A problem similar to this one is
presented in Chapter 6.
Wolf et al. use a heuristic to solve this problem in their MetFrag software [108]. To

my knowledge this is the only usable and free approach for in-silico fragmentation. It
can account for fragmentation spectra annotated with molecular formulas by passing it
the exact masses of the annotations and setting a low mass error. Thus, it can include
fragmentation tree information. The major disadvantage of the approach is that it
cannot handle structural rearrangements which occur regularly during fragmentation.

2.8.4 Compound classi�cation by machine learning

Varmuza et al. present a machine learning approach to classify spectra of unknown
compounds [99]. For GC-EI-MS spectra, they de�ne several features based on general
knowledge about EI spectra. Then they choose certain substructures and compound
classes for which they train classi�ers. The classi�ers are based on linear discriminant
analysis and neural networks using radial basis functions, which were state of the art
back in 1996. Unfortunately, to reach a precision of at least 90% their classi�ers had
to reject 40�70% of the spectra, leading to only a little reliable information about the
unknown compound.
A similar method has already been proposed by Buchanan et al. as part of the

DENDRAL project [17]. Except from a few examples, no evaluation of that tool is
available, but given the machine learning methods of the time I speculate that it was
not suitable for practical use.

2.8.5 Assessing Statistical Signi�cance of Database Hits

When searching a database it is important to di�erentiate between true and spurious
hits. One of the database entries will always have the highest similarity to the query
but that does not make it a meaningful hit. This is where BLAST pioneered in
the �eld of sequence similarity search. For the analysis of protein spectra, methods
have been developed to assess the signi�cance of a spectral library hit [69]. They
can be subdivided into two types: Target-decoy searching [48] and empirical Bayes
approaches [51].
Here, I will only cover the target-decoy strategy, as it will be applied in Chapter 5.

To employ the approach, a decoy database with random entries is generated. It has
to ful�ll three criteria: It should have no entries in common with the real database, it
should not contain real peptides, and a hit in the decoy database should be as likely
as a wrong hit in the real database. Exceptions from this criteria are possible, as
long as they are unlikely. In proteomics, a decoy database can simply be generated by
reversing the peptide sequences of the real database, except for the last letter. (Due
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to experimental setup, true peptides always end in K or R.) Of course, more involved
approaches for this task exist.
The query is then searched in both databases and results are combined. Now, it

can be assumed that in a given result list, there are as many spurious hits from the
real database as there are hits from the decoy database. Thus a false discovery rate
(FDR) can be calculated by dividing the number of decoy hits by the number of hits
from the real database. Usually, an FDR threshold is de�ned, and the longest result
list with an FDR below the threshold is returned. To assess the quality not only of a
result list, but of an individual hit in that list, the q-value is used. The q-value of a
single hit is the smallest FDR for which this hit still occurs in the output list.
Kim et al. developed an approach to really calculate the number of peptide spectra

that will receive a score large or equal to the score of a given hit [52]. This enables
the calculation of FDRs without the need for a decoy database.



3 Calculation of Fragmentation Trees

When using tandem mass spectrometry, fragments usually result from a subsequent
series of fragmentation events. We model these fragmentation cascades using
fragmentation trees (Fig. 3.1): The nodes of this tree are labeled with the molecular
formulas of the molecule and its fragments, whereas the (directed) edges correspond
to fragmentation reactions and, equivalently, neutral or radical losses. The root of
the fragmentation tree is labeled with the unfragmented ion. Fragmentation trees
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Figure 3.1: Left: Fragmentation graph for (S,R)-noscapine (C22H23NO7) using
Orbitrap data. Nodes of the same color correspond to annotations of one
measured peak (m/z, intensity, and collision energies). Edges correspond
to potential neutral losses. The weight of edgess is encoded by di�erent
line types. Right: The corresponding hypothetical fragmentation tree of
noscapine computed by our method. Nodes (blue) correspond to peaks in
the tandem mass spectra and their annotated molecular formula (CE is
range of collision energies), edges (red) correspond to hypothetical neutral
losses.
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can be easily represented in a computer. Additionally, they render even complicated
fragmentation processes easily susceptible, see Figure 4.4 on page 43.
Here, we present a method to calculate fragmentation trees solely from the spectral

data, without the use of any database. Thus, this approach can be used to interpret
the spectra of unknowns, that have never been characterized before. In Chapter 5, we
will demonstrate the application of the method on such unknowns.
In this chapter, we describe how to transform the problem of �nding the most

likely fragmentation tree into a graph theoretical problem, namely, the Maximum

Colorful Subtree problem. For this, we need the calculate meaningful weights
for both fragments and fragmnetation reaction annotations, which are also presented
here. We will develop exact algorithms as well as heuristics for solving the Maximum

Colorful Subtree problem and evaluate the performance of these algorithms on
real spectra as well as randomly generated data. We conclude by describing not only
how we can use the fragmentation tree calculation for molecular formula prediction of
an unknown compound.

3.1 Generation of the Fragmentation Graph

For ease of presentation, we will assume in this chapter, that the molecular formula of
the compound is known. Thus, we can assume that there is only one molecular formula
for the precursor ion peak. Section 3.8 shows how to overcome this assumption and
use fragmentation trees for the prediction of molecular formulas.
To obtain a high number of fragments it is bene�cial to measure spectra of the same

precursor peak at several collision energies. Before the calculation, we merge these
spectra back into a single peaklist. For that, we consider peaks with less than 50
mDa distance to represent the same fragment ion and combined to a single one by
calculating their signal intensity weighted mean. This relatively large mass window
was found to improve the mass accuracy of the data. We do not scale intensities,
since this would compromise comparisons between the peaks between spectra taken at
di�erent collision energies.
To calculate a fragmentation tree, we �rst transform the spectrum into a

fragmentation graph. Fragment masses are replaced by a set of molecular formulas
within mass accuracy around the fragment mass and every possible reaction between
fragments is drawn. This graph contains all possible fragmentation trees as subgraphs.
In detail, for every peak of the fragmentation spectrum, we compute all molecular
formulas that are within the mass accuracy of the instrument, and that are sub-
formulas of the compound molecular formula. Additionally, we discarded formulas
that did not obey Senior's third theorem [85]. It states that the sum of valences has
to be greater than or equal to twice the number of atoms minus one. We considered
this reasonable, since in the KEGG COMPOUND database, only 0.16% of substances
violate this rule [9].
We use these molecular formulas as the vertices of a fragmentation graph, see

Figure 3.1 for an example. Vertices are colored so that two molecular formulas
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corresponding to the same peak, also receive the same color. Two vertices are
connected by a directed edge if the second molecular formula is a sub-formula of
the �rst. We assign a weight to the vertices representing the likelihood that the
molecular formula of this vertex is the correct fragment formula that resulted in
the corresponding peak. Edges receive a weight relative to the likelihood that the
corresponding fragmentation reaction is real. The detailed calculation of these weights
is described in the next sections. A fragmentation graph is a directed acyclic graph,
since fragments can only loose, never gain, weight. More mathematically speaking,
since the sub-formula relation de�nes a partial order on the molecular formulas and
thus on the vertices. This graph has only one vertex with no incoming edges (commonly
called source), namely the one annotating the molecular ion peak. This will become
the root of the fragmentation tree.

3.2 Scoring Fragments � Weighting Vertices

The scoring or weighting of the fragmentation graph is based on the probability that
a certain vertex or edge is �true�: Trees will be assessed by our algorithm based
on the sum of these scores. To this end, it is reasonable to assign scores based on
log likelihoods or log odds, which enable a statistical interpretation of the outcome
(i.e., maximum likelihood): Summing log likelihood equals the log product of these
likelihoods, and the location of the maximum is identical with both likelihood and log
likelihood. This concept is used for both vertices, that is fragments and edges, that is
fragmentation reactions or neutral losses.

Scoring Mass Accuracy. For vertices, we use log odds to di�erentiate between the
model (the peak is truly a fragment with the proposed molecular formula) and the
background (the peak is noise). We can use the mass di�erence between the measured
peak and the molecular formula to assess the likelihood of the peak being true (model):
Mass di�erences are usually assumed to be normally distributed [46, 111], and we
calculate this likelihood as the two-sided area under the Gaussian curve with standard
deviation 1/3 of the relative mass error [9].

Scoring Peak Intensity. For the background model, we cannot use the mass of the
peak since, in general, noise peaks may appear at any mass. But we can use the
peak intensity for this purpose: Evaluations have shown that noise peak intensities
are roughly exponentially distributed; see for instance Fig. 4 in [37]. Let λ expλx be
the exponential distribution with parameter λ, where x is the peak intensity. The
likelihood of observing a noise peak with intensity y or higher is

P(intensity ≥ y) =

∫ ∞
y
λ expλxdx = exp−λy (3.1)

Taking the natural logarithm, we reach −λy for intensity y. Since this likelihood
appears in the denominator of the log odds term, we simply add the peak intensity,
multiplied by a constant representing the noise in the spectrum, to the score.
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Hetero to carbon ratio. All biochemical compounds possess a backbone of carbon
atoms. Thus it is reasonable to punish molecular formulas that possess an
extraordinary high number of non-hydrogen, non-carbon atoms (called hetero atoms)
in relation to the carbon atoms. The hetero to carbon ratio of the KEGG database [49]
is normal distributed with mean 0.59 and standard deviation 0.56. We use the log value
of this distribution at the hetero to carbon ratio of the candidate molecule. But the
ratio of a fragment is strongly in�uenced by the ratio of its predecessor. Hence, we
only apply this score to the formula candidates of the precursor ion. The hetero to
carbon ratio of the fragments is taken into account di�erently, see next section.

Prior probabilities Finally, we can use prior probabilities, computing the odds ratio
that any peak is not noise: We add a constant b, being the logarithm of this odds
ratio, to each vertex score. This has proven unnecessary when using raw intensities of
the instrument, but is mentioned here for completeness.

The resulting score for a vertex is pulled to each of its incoming edges, so that the
resulting graph is solely edge-weighted. This simpli�es further calculations.

3.3 Scoring Fragmentation Reactions � Weighting Edges

When weighing edges and thus fragmentation reactions, we consider common neutral
losses, implausible losses, radical losses, unlikely neutral losses containing only one
atom type, the mass of the loss, collision energies, and the ratio between carbon and
hetero atoms.

Scoring neutral losses There are certain neutral losses that appear often when
analyzing organic and biological compounds. We have created a short list of these
common neutral losses; see Table 3.1. We reward the occurrence of a combination of
up to three losses from the list by adding log(γ/n); γ > 1 to the score, where γ is a
parameter that has to be chosen individually for each dataset, and n is the number of
combined common losses. Combinations may represent groups detaching together or
the loss of an intermediate peak, but these cases are not as strongly rewarded.
Analysis by MS experts revealed that certain neutral losses are usually not occurring

during fragmentation, but are chosen from time to time by our algorithm. Thus, we
have created a list of �implausible� losses, see Table 3.2. If a neutral loss equals an
entry of this list, its score is signi�cantly decreased.
Additionally, we penalize losses consisting purely of carbon or purely of nitrogen

with log(ε), ε� 1, as these are unlikely neutral losses.

Radical losses. The formation of radical fragments is possible by CID fragmentation,
though not very common. If a radical fragment is formed, one of the radical losses of
Table 3.3 is usually involved. Thus a radical formation with one of these losses is not
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loss name loss formula
Hydrogen H2

Water H2O
Methane CH4

Ethene C2H4

Ethine C2H2

Butene C4H8

Pentene C5H8

Benzene C6H6

Formaldehyde CH2O
Carbon monoxide CO
Formic acid CH2O2

Carbon dioxide CO2

Acetic acid C2H4O2

Ketene C2H2O
Propionic acid C3H6O2

Malonic acid C3H4O4

Malonic anhydride C3H2O3

Pentose equivalent C5H8O4

Deoxyhexose equivalent C6H10O4

Hexose equivalent C6H10O5

Hexuronic equivalent acid C6H8O6

Ammonia NH3

Methylamine CH5N
Methylimine CH3N
Trimethylamine C3H9N
Cyanic Acid CHNO
Urea CH4N2O
Phosphonic acid H3PO3

Phosphoric acid H3PO4

Metaphosphoric acid HPO3

Dihydrogen vinyl phosphate C2H5O4P
Hydrogen sul�de H2S
Sulfur S
Sulfur dioxide SO2

Sulfur trioxide SO3

Sulfuric acid H2SO4

Table 3.1: The common neutral losses used for fragmentation tree calculations. If an
entry of this table occurs in a fragmentation step, the score of the step is
signi�cantly increased.
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�loss name� loss formula
�Dicarbon monoxide� C2O
�Tetracarbon monoxide� C4O
�Unsaturated cyclopropane� C3H2

�Unsaturated cyclopentane� C5H2

�Unsaturated cycloheptane� C7H2

Table 3.2: The implausible losses used for fragmentation tree calculation in Chapter 5.
If an entry from this table occurs in a hypothetical fragmentation step, the
score of this step is signi�cantly decreased.

loss name loss formula
Atomar hydrogen H·

Oxygen radical O·

Hydroxy radical .OH
Methyl radical .CH3

Methoxy radical CH3O
·

Propyl radical .C3H7

tert-Butyl radical .C4H9

Phenoxy radical C6H5O
·

Table 3.3: The radical losses used for fragmentation tree calculation in Chapter 5. If
an entry from this table occurs in a hypothetical fragmentation step, this is
not penalized. Other radical losses are not forbidden, but the score of the
corresponding step is signi�cantly decreased.

penalized. All other radical formations are punished by subtracting a certain amount
from their score.

Mass of the loss. We penalize large losses by log(1 − mass neutral loss
parent mass

). This is
not justi�able chemically, as large losses are equally likely to occur as small ones.
But this score favors fragmentation cascades over fragmentations directly from the
precursor ion. This is desirable as star-like trees do not give much information on the
fragmentation process. By this score, we ensure that fragments may only be inserted
too deep, never or rarely too high in the tree. This results in the phenomenon of
�pull-ups� described in Section 3.4

Collision energies Measuring tandem spectra at several distinct collision energies,
allows to deduce that some peak cannot be a direct fragment of another peak, if it
appears at a lower energy than its presumed predecessor. This conclusion also applies,
if there is a spectrum with an intermediate energy, where neither the peak nor its
predecessor appear. These cases are strongly punished by adding logα, α� 1 to the
score. If there is no spectrum where both peaks appear, but neither a spectrum where
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none of the peaks occurs, the peaks may or may not be directly connected. Thus, this
situation is slightly punished with log β, α < β < 1 [11].

Hetero to carbon ratio As described in the previous section, the hetero to carbon
ratio is a good measure for the biochemical plausibility of a formula. But, since the
ratio of a fragment is strongly in�uenced by the ratio of its predecessor, we do not
want to punish an unusual ratio multiple times. Thus a penalty is only given if the
ratio of this fragment is worse than its predecessor, i.e. further away from the mean.
This is achieved by subtracting the hetero to carbon ratio score of the predecessor
from this fragments score. Only if this results in a negative value, this value is added
to the edge score [11].

3.4 Assumptions for Fragmentation Tree Calculation

To be able to calculate Here, we describe the assumption made, when describing
the complex fragmentation process by a fragmentation tree. Another assumption is
necessary to be able to formulate the calculation as an optimization problem.
Di�erent fragmentation pathways may lead to fragments with identical molecular

formulas or even identical structure. This is quite easy to see but, unfortunately,
makes it practically impossible to formulate our task as an optimization problem: a
small fragment may be generated from almost all other fragments, but we only want
to record the most likely explanation. Hence, we slightly oversimplify the problem:
We demand that each fragment in the fragmentation spectrum is generated by a
single fragmentation pathway. That means that any fragment may have at most
one �parent fragment� from which it is generated. Thus, we search for a tree inside
the fragmentation graph. This allows us to simplify our problem: For every vertex
in the fragmentation tree except for the root, which corresponds to the unfragmented
compound, we select exactly one incoming edge. Hence, we can move the weight of
each vertex into the incoming edges and assume that the fragmentation graph is edge-
weighted.
There is one exception to the above reasoning: Assume that some fragment f3 is

cleaved from fragment f2, and that f2 is in turn cleaved from f1. Solely from the
tandem MS data and without additional structural information, we cannot rule out
that f3 is directly cleaved from f1. But this information is implicitly encoded in a
fragmentation tree: the fragmentation may occur from the fragment's direct parent
in the tree, or from any of its parents. If it is later decided by manual inspection
(Chapter 4) or automated annotation using structural information (Chapter 6) that the
fragment should rather originate from a fragment higher in the cascade, the fragment
is �pulled up� in the tree. Thus we refer to such an event as �pull-up�.
Similar to fragmentation pathways resulting in the same fragment, several fragments

may result in a single peak in the fragmentation spectrum. We argue that this is
extremely rare. On the other side, we have to make sure, that each peak intensity and
mass accuracy contributes to the score only once. Thus, we consider it reasonable, to
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demand that every peak is annotated and thus scored at most once. In our formalism
the fragmentation tree has to be colorful: Each vertex color and, hence, each peak
in the fragmentation spectrum may occur at most once. Think of it as forcing the
algorithm to make a decision. If this restriction were not applied, the algorithm always
would choose all explanations.

3.5 Formal Problem De�nition

Calculating fragmentation trees under the above mentioned restrictions leads to the
Maximum Colorful Subtree problem [11].

Maximum Colorful Subtree problem.

Given a vertex-colored DAG G = (V,E) with colors C and weights w : E → R.
Find the induced colorful subtree T = (VT , ET ) of G of maximum weight w(T ) :=∑

e∈ET
w(e).

This is a special case of the edge-weighted Graph Motif problem, see [89] for
an overview. Scheubert et al. [84] present the related Colorful Subtree Closure
problem for analyzing multiple mass spectrometry data. Ljubíc et al. [62] presented an
Integer Linear Program for the related Prize-Collecting Steiner Tree problem.
The Maximum Colorful Subtree problem is NP-hard [34] as well as APX-hard
[28] even on binary trees. Furthermore, on general trees it has no constant factor
approximation [28,90].

3.6 Algorithms for the Maximum Colorful Subtree

Problem

In this section, we brie�y review exact algorithms as well as heuristics for the
Maximum Colorful Subtree problem. We conclude the section with two new
heuristics for the problem.

For vertices u and v, let c(v) be the color assigned to v and w(u, v) ∈ R the weight
of the edge uv. Throughout the rest of the paper we denote the number of colors in
G = (V,E) by k. Note that k ≤ p can be as large as the number of peaks in the
spectrum; but we can also choose a smaller k to decrease running times, limiting our
attention to, say, the k most intense peaks.

3.6.1 Exact Methods

Dynamic programming The problem can be solved exactly using dynamic program-
ming over vertices and color subsets [29]. Let W (v, S) be the maximal score of a
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colorful tree with root v and color set S ⊆ C. Now, table W can be computed by the
following recurrence [11]:

W (v, S) = max


max

u:c(u)∈S\{c(v)},vu∈E
W (u, S \ {c(v)}) + w(v, u)

max
(S1,S2):S1∩S2={c(v)},S1∪S2=S

W (v, S1) +W (v, S2)

where, obviously, we have to exclude the cases S1 = {c(v)} and S2 = {c(v)} from
the computation of the second maximum. Using the above recurrence with the initial
condition W (v, {c(v)}) = 0, we can compute a maximum colorful tree in O(3kk |E|)
time and O(2k |V |) space. The exponential running time and space make the algorithm
useful only for small size instances. The running time can be somewhat improved to
O(2k · poly(|V | , k)) by using the Möbius transform and the inversion technique of
Björklund et al. [6]. However, the technique only works for suitably small integer
weights.
Guillemot and Sikora [39] suggest a di�erent approach using multilinear detec-

tion [57] for input graphs with unit weights. Their algorithm requires O(2k ·
poly(|E| , k)) time and only polynomial space. The algorithm can be adopted to
integer weight graphs in a straight forward manner but the resulting algorithm would
be pseudo-polynomial, i.e., its running time would depend polynomially on the integer
weights thus making it impractical for our purposes. To the best of our knowledge,
neither the above algorithm nor the dynamic programming with Möbius transform of
the previous paragraph have been used in implementations.

Brute force For small instances a brute-force approach is suggested in [11]. The
idea is to �nd a maximum subtree for each possible combination of vertices forming
a colorful set. We then search a maximum subtree in a colorful DAG. Clearly, when
all edge weights are positive, then the maximum subtree is a spanning tree. This
can be found by a simple greedy algorithm, choosing the maximum weight incoming
edge for each vertex but the root. With arbitrary edge weights, the problem becomes
NP-hard. We solve the problem naively by iterating over all combinations of vertices
whose best incoming edge has a negative weight. The brute-force approach is obviously
not practical when either the number of combinations is large or when there are many
vertices whose maximum incoming edge has negative weight.

Integer Linear Programming. Integer Linear Programs (ILPs) have proven useful
in providing quick exact solutions to NP-hard problems. To construct an ILP for the
Maximum Colourful Subtree problem, let us de�ne a binary variable xuv for each
edge uv of the input graph. For each color c ∈ C let V (c) be the set of all vertices in
G = (V,E) which are colored with c. Then, the following objective and constraints
represent the problem:

max
∑
uv∈E

w(u, v) · xuv (3.2)
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s.t.
∑

u with uv ∈ E

xuv ≤ 1 for all v ∈ V \ {r}, (3.3)

xvw ≤
∑

u with uv ∈ E

xuv for all vw ∈ E with v 6= r, (3.4)∑
uv ∈ E with v ∈ V (c)

xuv ≤ 1 for all c ∈ C, (3.5)

xuv ∈ {0, 1} for all uv ∈ E. (3.6)

In the above integer program, the constraints set (3.3) ensures that the feasible solution
is a forest, whereas the constraints set (3.5) make sure that there is at most one
vertex of each color present in the solution. Finally, (3.4) requires the solution to be
connected. Note that in general graphs, we would have to ensure for every cut of
the graph to be connected to some parent vertex. That would require an exponential
number of constraints [62]. But since our graph is directed and acyclic, a linear number
of constraints su�ce.

3.6.2 Heuristics

Greedy Heuristic A simple greedy heuristic has been proposed in [11]. It works by
considering the edges according to their weights in descending order. The edge being
considered is added to the result, if it does not con�ict with the previously picked edges.
The algorithm continues until all positive edges are considered and the resulting graph
is connected. An edge con�icts with another if they either are incoming edges to the
same vertex or are incident edges to di�erent vertices of the same color. Finally, we
prune the leaves which are attached by negative weight edges in the resulting spanning
tree. We refer to the above heuristic as greedy in the rest of the paper.

Insertion Heuristic Another greedy strategy is to consider colors in some ordering
and for the current color add an vertex of that color that promises the maximum
increase of the score and attaches it to the already calculated tree. The resulting
heuristic, called insertion heuristic in the rest of the paper, begins with only the root
as the current partial solution. The heuristic greedily attaches vertices labeled with
unused colors. For every vertex u with unused color, and every vertex v already part
of the solution, we calculate how much we gain by attaching u to v. To calculate
the gain of attaching u to v, we take into account the score of the edge vu, as well
as the possibility of rerouting other outgoing edges of v through u. The vertex with
maximum gain is then attached to the solution, and edges are rerouted as required.

Tree Completion Heuristic As noted before, the dynamic programming approach of
Section 3.6.1 works only for small inputs. We now present a heuristic that combines
DP with the greedy approaches. For a small enough constant b, the heuristic works by
�rst computing the maximum colorful subtree consisting of at most b vertices, which
we call backbone of a candidate solution. Next, we complete the backbone by using
one of the greedy heuristics discussed above.
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When using the insertion heuristic, vertices of the remaining colours are now added
to the computed backbone according to the rules of this heuristic. Similarly, the greedy
heuristic can be used to complete the tree by starting with the backbone and applying
the greedy heuristic on the remaining edges. In our experiments, we use the insertion
heuristic for tree completion since it achieved consistently better scores. This heuristic
is referred to as DPb, where b is the size of the backbone computed exactly.

3.7 Algorithm Evaluation

In our study, we analyze spectra from three real and two randomly generated datasets.
The Orbitrap dataset consists of mass spectra of 38 compounds with a mass accuracy
of 10 ppm [77]. The Micromass dataset [41] contains spectra of 100 compounds with
an accuracy of 50 ppm, while the QSTAR dataset [11] consists of 36 mass spectra
with 20 ppm accuracy. Except for one additional compound in the Orbitrap dataset,
these datasets are identical to those used for tree evaluation, see Section 4.1 and the
respective publications for details.
For each compound in the above three datasets, we assume that we know the correct

molecular formula and construct a directed acyclic graph as described in Section 3.1.
We use the same scoring as the tree evaluation in Chapter 4 to weight the edges.
Our �rst randomly generated dataset, called Random, consists of 17 DAGs with the

number of colors ranging from 20 to 100 in steps of 5. We generate 3 vertices for
every color except the root, which is a unique vertex with color 0. For k colors, our
DAG consists of 3(k − 1) + 1 vertices and 9

2k(k − 1) − 6(k − 1) edges, where each
vertex with color i is connected to all vertices colored i + 1, . . . , k and has weight
drawn from normal distribution with mean −8 and standard deviation 10. And �nally
the last dataset we consider is called Hard which is generated with Model RB of
Xu and Li [109] that produces instances of constraint satisfaction problem (CSP) with
exponential resolution proof complexity (with high probability). For each 10 < c ≤ 30,
we generate a CSP instance with constraint sizes c and convert these CSP instances
to the instances of Maximum Subtree problem using a standard reduction to the
maximum independent set problem and the reduction presented in [78].
We implemented the exact algorithms based on the dynamic program, the integer

linear program and the brute-force approach of Section 3.6.1. We also implemented
the greedy heuristic and the tree completion heuristic with backbone size 10 and 15
(DP10, DP15) that use insertion to complete the backbone. To evaluate an heuristic
on an instance of the problem, we consider its performance ratio, i. e., the ratio of the
weight of generated solutions versus the optimal.
The algorithms are implemented in Java 1.6 by using an adjacency list representation

for graphs. In the DP algorithm, we use the Java long data type to represent
sets of colors as bitsets. This limits the maximum possible size of the color set to
64. Memory usage becomes prohibitive long before this number is reached. The
experiments were run on a Lenovo T400 laptop powered with dual core Intel P8600 at
2.40 GHz with 2 GB of RAM and running Ubuntu Lucid Lynx as operating system.
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Our implementation is single threaded and does not exploit the availability of multiple
cores in the system. The integer linear programming solvers, however, use multiple
cores. We run the experiments with default heap size on a Sun Java server virtual
machine.
For our applications, an algorithm is su�ciently fast if it runs in less than ten

seconds, since this is usually faster than the data can be acquired. Among the exact
algorithms, only the ILP (Section 3.6.1) managed to solve all instances of our datasets.
With the Gurobi Optimizer1 the running time stayed under 5.6 minutes per instance
while for about 95% of the instances, it terminated in at most 5 seconds. With
CPLEX2, the running time was usually comparable and we were able to solve all
instances of the real world datasets except one in under 7.5 minutes. The CPLEX
solver was noticeably slow on the Hard dataset where it did not �nish in 2 hours for
larger instances in the dataset.
The brute force algorithm mentioned in Section 3.6.1 runs fast on most instances

of the Orbitrap and QSTAR dataset. Due to the high mass accuracy and the small
compound sizes in these datasets there are only few explanations per peak and thus
few vertices with the same color in the input graph. Edges with negative weights are
rare. Therefore only a few calls to the spanning tree algorithm are necessary, resulting
in short running times (under a second for all but three instances in Orbitrap and
QSTAR) and exact solutions. But for two compounds from the Orbitrap dataset and
37 compounds in the Micromass dataset, the algorithm does not terminate in 12 hours
and a week, respectively.
The DP algorithm (Section 3.6.1) was able to solve the QSTAR instances exactly,

since the number of colors and vertices is small for this dataset. The algorithm failed
on the other two datasets, since either the exponential memory usage became infeasible
or running times exceeded several days.
In Figure 3.2 and 3.3, we present performance ratios achieved by several heuristics.

The tree completion heuristics (DP10 andDP15) work very well onMicromass, Orbitrap
and Random datasets with an output tree of weight at least 80 percent of the optimal
for the DP15 variant. On the other hand, the greedy heuristic performs inferior to both
DP10 and DP15.
The insertion heuristic performs better than the greedy heuristic in our experiments

on real datasets, while on the Random dataset, the greedy heuristic generate trees with
better scores. All heuristics completely fail on the Hard dataset, where most of the
time they return the empty tree as output. We also observe improved performance in
general for the tree completion heuristic as we increase the parameter, i. e., the size
of the backbone computed exactly. But the performance increase is only marginal
for real-world datasets, as can be seen in Figures 3.2 and 3.3. The tree completion
heuristic becomes infeasible when the size of the backbone is 25. In this case, more
than half of the instances from Orbitrap and Micromass datasets fail to terminate in
less than a week.

1Gurobi Optimizer 4.5. Houston, Texas: Gurobi Optimization Inc., April 2011.
2IBM ILOG CPLEX Optimization Studio 12.3. Armonk, New York: IBM Corporation, June 2011.
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Figure 3.2: Performance ratios achieved by di�erent heuristics onMicromass, Orbitrap,
and QSTAR datasets.

The insertion, greedy and DP10 heuristics are fast with running times well under a
second, whereas the DP15 heuristic terminates in less than 8 seconds for all instances.
The algorithm based on integer programming also �nished in at most 16 seconds for
any instance, while it was actually faster on most of the instances. Both integer
programming solvers showed comparable performance except on the Hard instances,
where CPLEX was noticeably slower than the Gurobi solver. Figure 3.4 and 3.5 present
the breakdown of datasets depending on how much time it took to solve them using
di�erent algorithms. Note that the running times mentioned do not include the time
needed to construct the graph representations from MS data.
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Figure 3.4: Running times taken by di�erent heuristics on Micromass, Orbitrap and
QSTAR datasets, where ILP denotes the algorithm based on integer
programming with Gurobi solver.

Since the structure of the tree is highly relevant for tree alignment (Chapter 5) and
strucutral annotation of trees (Chapter 6), it is most probably bene�cial to �nd exact
solutions. Our tests show that the integer linear program performs best on this task.

3.8 Using Fragmentation Trees to Determine Molecular

Formulas

Numerous methods to determine the molecular formula of small molecules without
any user interaction have been published recently [9, 11,41,53,80].
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To use fragmentation trees for molecular formula prediction, we use each molecular
formula within mass accuracy of the precursor ion mass as candidate formula. For
each of these formulas, we generate a fragmentation graph and calculate the best
scoring tree as described. The score of this tree is then used as score for its candidate
formula as proposed in [11]. When determining the molecular formula, hundreds of
instances (one per candidate formula) have to be solved for a single compound, but
only the scores are relevant. In this case, the tree completion heuristic with parameter
10 provides a good performance ratio of 95% on average, and very fast running times.
Unfortunately, this approach alone is insu�cient to determine the formulas of large,

complex metabolites. To this end, we use isotope pattern either from additional single
MS measurements or the precursor ion of the MS2 spectrum, if the mass �lter was wide
enough to let the isotopes pass. We calculate scores based on the isotopic pattern using
the method by Böcker et al. [9].
Finally, we combine results of the two identi�cation methods: This combined score

is 5 log piso + sfrag where piso is the likelihood from the Bayesian analysis of isotope
patterns, and sfrag is the score of the fragmentation pattern analysis. The constant is
chosen to make the scores comparable.





4 Evaluation of Fragmentation Tree

Quality

To ensure that fragmentation trees calculated in the previous chapter are a viable
explanation of the spectrum, we calculated trees from three di�erent datasets using
the DP15 heuristic as described in the previous chapter and experts evaluated their
quality in [77]. At the time of the evaluation, the DP15 algorithm was the most exact
algorithm that was computationally feasible. As manual evaluation is extremely time
consuming, we refrained from repeating this step after development of feasible exact
methods, but random samples indicate that tree quality further increases with an exact
method.to

In this chapter, we present the comparison of our trees against expert knowledge and
multi-stage mass spectrometry. We also evaluate our annotations against a software
tool with an entirely di�erent annotation approach.

4.1 Datasets and Parameter Choice

We will evaluate fragmentation trees from three data sets in the remainder of this
chapter (see Table 4.1). These were measured with two di�erent instrument types
from three di�erent manufacturers and demonstrate that our method is applicable to
a wide variety of data. The �rst data set consists of 37 compounds, mostly representing
plant secondary metabolites, measured on an Orbitrap mass spectrometer [77]. The
second contained 42 compounds measured on an API QSTAR [11]. The third data
set with 102 compounds was measured on a Micromass Q-TOF instrument [41]. Two
compounds from this data set were excluded, since precursor peaks had mass accuracy
worse than 50 ppm. Tables A.1, A.2 and A.3 in the appendix list the molecules of the
data sets.

Instrument ppma CID (eV) #b mass range average
Orbitrap [77] 5 35,45,55,70 37 152.0�822.4 Da 345.2 Da
API QSTAR [11] 20 15,25,45,55,90c 42 89.0�441.2 Da 207.5 Da
Micromass QTOF [41] 20 10,20,30,40,50 100 137.1�609.3 Da 372.5 Da

Table 4.1: Datasets used in this study. aMass accuracy of the measurement, bnumber
of compounds used for evaluation, cthree to �ve distinct collision energies
were measured of each compound.

37
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For the calculation of the fragmentation trees, we did not use the list of implausible
losses, as it is a result of this study. Additionally, we were not aware of the fact that
radical formation may occur during fragmentation. Thus, radical ions were completely
forbidden for this calculation. To merge the spectra we applied a relatively large mass
window of 50 mDa. This improved mass accuracy in the QSTAR dataset.
For our analysis, the following parameter values were used: For all datasets set

λ = 0.1 and ε = 10−4, as well as α = 0.1 and β = 0.8, the defaults in [11]. Parameters
γ, b were chosen to capture instrument-speci�c properties: For example, the QSTAR
instrument produces relatively few fragment peaks, but these often re�ect typical
losses. For the Orbitrap data, we use γ = 10 and b = 5; for the Micromass QTOF
data γ = 10 and b = 0; and for the API QSTAR data γ = 1000 and b = 0.
These parameters are either naturally occurring, such as the mass accuracy,

published as default values [9,11] or chosen ad-hoc. We did not optimize the parameters
used, since in this study the amount of training data is small compared to the number
of parameters in the optimization. In this case, an optimization may lead to so called
�over�tting�, resulting in poor generalization results.

4.2 Evaluation against Expert Knowledge

Mass spectrometry experts experienced in the structural elucidation of natural
products manually evaluated the fragmentation trees of all 79 compounds in the
Orbitrap and API QSTAR dataset.
For these two datasets, accurate isotopic patterns from single MS measurements

were available. We combined the isotopic pattern comparison from [9] with the
calculation of a fragmentation tree for each candidate molecular formula, as described
in Section 3.8. With this approach we assigned the correct molecular formula to each
of the compounds in these two datasets, see Tables A.1 and A.2 for detailed results.
From now on, we only consider the trees of the correct molecular formulas. As

manual evaluation, fragmentation trees were compared with expected fragmentation
patterns that the experts deduced from the provided chemical structures and merged
CID spectra. All known fragmentation reaction mechanisms were taken into account,
see [14, 42, 64, 86] for the details. First, the theoretical fragmentation pathway was
formulated based on the fragmentation rules for protonated even-numbered electron
ions. Individual edges in the pathway were compared to those in the fragmentation
tree, and matching losses were assigned as �correct�. Numerous agreements between
neutral losses listed in Table 3.1 and manually assigned fragmentation steps were
found. The experts found �pull-ups� as de�ned in Section 3.4 in some trees. We
evaluate those �pull-up� edges as �correct�, since without a given structural formula
and solely MS2 data the �correct� case cannot be distinguished from our method's
suggestion. Some losses assigned by the automated method cannot be ruled out, but
experts were unable to rationalize them in a fragmentation pathway; these losses are
annotated as �unsure�. Edges which result in molecular fragments with questionable
stability under experimental conditions, and those that cannot be explained via a
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Figure 4.1: Hypothetical fragmentation tree of (-)-epicatechine (C15H14O6) computed
by our method using Orbitrap data. Nodes (blue) correspond to peaks in
the tandem mass spectra and their annotate molecular formula (CE is the
range of collision energies), edges (red) correspond to hypothetical neutral
losses.

�pull-up�, were assigned as �wrong'. Whenever possible, literature sources were used
to support the assignment; however, not all references provided useful data due to a
lack of well-evaluated CID fragment spectra of metabolites in the literature.

For protonated (-)-epicatechine, we now describe in detail how we evaluated the
fragmentation tree (Figure 4.1): The fragmentation pathway was based on the CID
fragmentation of structurally related kaempferol [63] as no reliable literature on (-)-
epicatechin exists. Obvious water and C6H4O2 o-chinone neutral losses followed by
another water loss (nodes 291, 273, 165, 151) were found in the calculated tree and
annotated as �correct�. A loss of CO from node 151 is possible, but the abundant
m/z 123.045 is more likely formed by an retro Diehls-Alder reaction from protonated
(-)-epicatechin. Acetylene loss (edges between nodes 165-139) cannot be excluded;
however, carbene (CH2) loss is rather unlikely and considered �wrong�. For example,
edges between nodes 273-165-139 can be combined to the expected neutral loss of
3,4-dihydroxyphenyl acetylene, so the loss of acetylene was reconsidered as �correct�.
Pull-up of edges between nodes 291-273-165-151 results in a total loss of C7H8O3, and
the carbene loss can be considered as �correct� by pull-up. However, as this loss is not
very common, it was annotated as �unsure�. In all evaluated trees, similar reasoning
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processes were used to evaluate the hypothetical fragmentation trees. We �nd that
the losses of O, C, N, : CH2, C2O, C4O, C3H2, C5H2, C7H2 were the edges most
frequently annotated as �wrong�.
For the Orbitrap dataset, 352 of 458 neutral losses (76.9%) were assigned as �correct�,

57 (12.4%) as �unsure�, and 49 (10.7%) as �wrong�. In cases of methoxylated aromatic
compounds, well-pronounced radical losses, namely .CH3 ,HO· and CH3O

·, were not
presented in the calculated trees of compounds such as berberine or emetine although
the corresponding peaks were found in the spectra. It should be understood that this
is solely a problem of the objective function used, not of the general approach: We
will include radical losses in a subsequent program version. For the QSTAR dataset,
286 of 350 losses (81.7%) were assigned as �correct�, 51 (14.5%) as �unsure�, and only
13 (3.7%) as �wrong�. For 15 fragmentation trees in the Orbitrap dataset and 22
trees in the QSTAR dataset, all losses in the tree were annotated as �correct�. See
Tables A.4 and A.5 in the appendix for details. In general, the calculated trees are very
close to the experts' assignment, which is remarkable if we consider the comparatively
simple optimization objective the automated assignment is based on, compared to
years of experience on the human side. Note that the experts knew the correct
molecular structure during evaluation, whereas it is unknown to our method during
fragmentation tree calculation.

4.3 Evaluation Using Multi-stage MS

Since the Orbitrap mass spectrometer is capable of recording multi-stage spectra, the
experts evaluation could be re�ned by MS3 and MS4 spectra. Those were measured for
the ions of high abundance in the CID spectra, and of those forming branching nodes
of calculated trees. The resulting multi-stage MS spectra were manually annotated.
For (S,R)-noscapine, MS3 of m/z 414→396 and 414→220 transitions were recorded

using a linear trap for a precursor ion preparation/selection and an orbitrap analyzer
for ion detection. Additionally, MS4 of m/z 414→396→378 was obtained, see Fig. 4.2.
Transition 414→396 supported the direct formation of m/z 378 and 365 fragment
ions from m/z 396. A strong peak at m/z 381, not included in the calculated tree
and corresponding to radical loss (CH·

3), was noticed. Transition 414→396→378 did
not support the direct edge between m/z 378 and fragment ions 248 and 220. Those
are likely formed directly from protonated noscapine. The lineage of ions 179 from
m/z 220 was con�rmed by transition 414→220; however, the most intense is a methyl
radical loss providing m/z 205. When comparing the pathway this data suggests with
the tree calculated from MS2 data, �ve edges are �correct� and two are pull-ups. No
wrong assignment was made, see Fig. 4.3.
For the more complex tree of chelidonine in Fig. 4.4, MS3 data also strongly

supported the calculated fragmentation tree; see Fig. 4.5 and 4.6. The main backbone
pathway (354-323-295-293-275-247) was fully supported with one exception. The edge
connecting nodes 295-293 is incorrect (due to the loss of molecular hydrogen), as m/z
293 is formed from m/z 323 by the loss of formaldehyde, and nodes 323 and 293 are
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Figure 4.2: Multi-stage MS experiments performed with protonated (S,R)-noscapine
generated by electrospray and analyzed with an Orbitrap XL instrument.
Fragmentation was realized in linear trap using He as collision gas. (a)
CID MS2 spectrum generated from molecular adduct ion [M+H]+ using
15 V in linear trap (other used CID voltages given in brackets). (b�d) MS3

spectra; transitions are given in inserts in bold, used collision energies are
indicated in brackets.

directly connected. Node 295 remains in the tree but forms a new branch (323-295,
loss of CO). The third generation 305 node can be formed both from nodes 323 and
326. This connection is not visible in the calculated tree as this would violate the tree
property.
Altogether, the multi-stage MS experiments demonstrated the close similarity of

calculated trees and MSn-spectra-derived fragmentation pathways and supports the
annotation of �correct�, �unclear�, and �wrong� neutral losses in experts' evaluation;
see Tables A.4 and A.5 in the appendix.

4.4 Evaluation against Mass Frontier

For further evaluation of our method, we compare the molecular formulas our method
assigns to the peaks, with the predictions of the Mass Frontier software. For this,
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0.6 ppm 35 eV
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Figure 4.3: (S,R)-Noscapine experimental fragmentation pathway from MS3 and MS4

experiments; numbers below the formulas represent m/z ratios. Edges
in red and nodes in blue are present in the calculated fragmentation tree
(Fig. 3.1 on page 21); the dashed edges represent pull-ups. Black nodes
and dashed black edges represent intense ions which are missing in the tree.
Five correct edges, two pull-ups, and no wrong neutral loss annotations
were found by experimental validation and expert evaluation.
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Figure 4.4: Hypothetical fragmentation tree of chelidonine (C20H19NO5) computed
by our method using Orbitrap data. Nodes (blue) correspond to peaks
in the tandem mass spectra and their annotated molecular formula, edges
(red) correspond to hypothetical neutral losses.
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Figure 4.5: Multi-stage MS experiments performed with protonated chelidonine
generated by electrospray and analyzed with an Orbitrap XL instrument.
Fragmentation was realized in linear trap using He as collision gas. (a)
CID MS2 spectrum generated from molecular adduct ion [M+H]+ using
15 V in linear trap (other used CID voltages given in brackets). (b�e) MS3

tandem mass spectra; transitions are given in inserts in bold, used collision
energies are indicated in brackets.
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Figure 4.6: Fragmentation pathway from chelidonine MS3 and MS4 experiments.
Nodes in blue and edges in red correspond to the calculated tree (Fig. 4.4).
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calculated tree. Dashed black edges were not present in the tree. We
omitted peaks not occuring in the MS2 spectra. The annotation of some
peaks below one percent intensity could not be veri�ed by multi-stage MS,
these peaks are also not shown.
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we use the Micromass QTOF dataset. Hill et al. performed these predictions using
Mass Frontier Version 4 with a di�erent goal in mind [41]. They used Mass Frontier
in protonated ion mode with �rules� fragmentation mechanism and a reaction number
of 5. Given the molecular structure of the compound, Mass Frontier predicts tandem
mass spectra, which we match to the observed data.
For the 1072 peaks that both tools annotate, the same molecular formula is assigned

in 97.3% of the cases (1043 peaks). This is an excellent agreement, taking into account
the completely di�erent paradigms of the two tools: Mass Frontier knows the molecular
structure but not the experimental MS data, whereas our tool knows the experimental
MS data but not the molecular structure. The probability that such an agreement
can happen by chance (signi�cance) is below 10−167. This is the probability that, by
uniformly drawing a molecular formula at 50 ppm for each peak, we reach the observed
number of 1043 matching molecular formulas or an even higher number. See Table A.6
in the appendix for detailed results.
Because Mass Frontier tends to annotate peaks of small mass, the number of

candidate molecular formulas for a peak annotated by Mass Frontier is small. To
further demonstrate the good agreement between the tools, we discarded all matched
peaks with only one possible annotation, keeping 444 peaks with 3.9 explanations
on average. For these peaks, we reach a match with Mass Frontier in 93.7% of the
cases (signi�cance as above). To assess this agreement, we compared Mass Frontier
predictions against two other predictors: A random peak annotator that selects an
arbitrary molecular formula within the mass accuracy, reaches only 35.6% agreement
with Mass Frontier (signi�cance 0.51). The naive approach, which always uses the
molecular formula with the smallest mass di�erence to each peak, would reach 71.8%
agreement (signi�cance 10−61). Clearly, agreement between Mass Frontier and our
approach is much higher.



5 Alignment of Fragmentation Trees

This chapter presents a method the automated comparison of fragmentation trees
(FTs) and demonstrates various applications of this method using four di�erent
datasets. One of these has been measured in a high-throughput setup for an
untargeted metabolomics screen, underlining the applicability of the method in such
an experimental setup. The comparison is based on tree alignment. Alignments have
proven useful in many areas of bioinformatics due to their ability to accurately estimate
the similarity between structured objects, the most prominent example being sequence
alignments.
After presentation of the alignment algorithm and the introduction of the test

datasets, we will introduce three applications of fragmentation tree alignment, see
Figure 5.1 for an overview. The �rst approach is only applicable to reference datasets
of known compounds and used to evaluate the method and its parameters. It correlates
the similarity score of two fragmentation trees with the Tanimoto structural similarity
score of the corresponding compounds. This results in a single correlation coe�cient
per dataset, which we use to easily assess the methods quality.
In the second application we use the similarity scores to cluster a set of known

and/or unknown compounds. This can be helpful in two ways: On the one hand
by grouping unknowns together with reference compounds, the compound class of an
may be predicted, if it falls into a group of reference compounds of the same class.
On the other hand, even if no reference data is available, a clustering of the unknown
measurements gives a �rst overview over the dataset. An experienced experimenter
may even spot the compounds of interest for his study from such a clustering.
The third application is database searching. Here, we search an unknown compound

against a database of reference trees. As this results in an output similar to BLAST for
sequence alignment, we name this work�ow fragmentation tree local alignment search
tool, FT-BLAST for short. A major advantage of FT-BLAST over common spectral
library searches is, that FT-BLAST allows for a signi�cance estimation of its hits,
using a decoy database strategy similar to Section 2.8.5.

5.1 Alignment Algorithm

For the automated comparison of fragmentation trees we use pairwise local alignments.
To apply this concept it is necessary to de�ne a similarity measure on the edges (losses)
and nodes (fragments) of two fragmentation trees ( Table 5.1). The similarity of two
trees is then de�ned as the sum of the scores from all aligned edge pairs. Insertion and
deletion are possible through the introduction of �gap� nodes and edges. Additionally,
we allow two nodes to be joined and aligned against a single node of the other tree.

47
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This allows for a fragmentation to be matched, although an intermediate peak has not
been detected in one of the spectra. We search for subtrees of the original trees that
maximize the similarity score, because the molecular structures of the compounds are
not identical but subtree similarity indicates structural resemblance. Figure 5.2 shows
such an local fragmentation tree alignment.

Tree alignments have been proposed in the context of RNA structure comparison
and e�cient algorithms have been developed to compute them [47]. In contrast to
RNA trees, fragmentation trees are unordered, as there is no meaningful ordering
of the losses of some fragments. Aligning unordered trees is computationally hard,
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Figure 5.1: Work�ows elaborated for the analysis of tandem MS data. Apart from
choosing analysis parameters such as mass accuracy, no user interaction
is required. Work�ows (a) and (c) are targeted at compounds that are
not in any database. (a) Clustering of known and unknown compounds
using an all-against-all pairwise fragmentation tree alignment, followed
by hierarchical clustering. (b) Correlating fragmentation tree alignment
similarities and chemical similarities for a set of reference compounds.
(c) Searching for an unknown compound in databases of reference
compounds (either tandem mass spectra or fragmentation trees) using FT-
BLAST. This method will return hits (similar compounds) even if the true
compound is not in the database. Molecular structures are required only
to compute chemical similarities (correlation analysis) or to annotate FT-
BLAST hits.
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namely MAX SNP-hard [47]. The following exact dynamic programming algorithm
computes the alignment of unordered trees:

The goal is to compute the maximal score S(T1, T2) of a local alignment between
two trees T1, T2. Let N(v) denote the children of any node v in T1 or T2. In the
following, let u be a node of T1, and v a node of T2. Let D[u, v] be the maximal
score of a local alignment of two subtrees of T1, T2, where the subtree of T1 is rooted
in u, and the subtree of T2 is rooted in v. For A ⊆ N(u) and B ⊆ N(v) we de�ne
Du,v[A,B] to be the score of an optimal local alignment with subtree rooted in u and
v, respectively, such that at most the children A of u and B of v are used in the
alignment. Note that all children A of u and B of v can be used, but also, any subset
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is allowed, including the empty set. Clearly, we have Du,v[A, ∅] = Du,v[∅, B] = 0 for
all A,B. Now, D[u, v] = Du,v[N(u), N(v)] holds.
We initialize Du,v[A,B] = 0 for A = ∅ or B = ∅. In the recurrence, we distinguish

three cases, namely match (including mismatches), deletion, or insertion, where the
latter two are symmetric to each other. For non-empty sets A ⊆ N(u) and B ⊆ N(v)
we get

Du,v[A,B] = max
{

0,matchu,v[A,B], deleteu,v[A,B], insertu,v[A,B]
}

matchu,v[A,B] := max
a∈A,b∈B

{
D[a, b] +Du,v

[
A− {a}, B − {b}

]
+ δ(ua, vb)

}
deleteu,v[A,B] := max

a∈A,B′⊆B

{
Da,v

[
N(a), B′

]
+Du,v[A− {a}, B −B′] + δ(ua, λ)

}
insertu,v[A,B] := max

A′⊆A,b∈B

{
Du,b

[
A′, N(b)

]
+Du,v[A−A′, B − {b}] + δ(λ, vb)

}
where δ(ua, vb) denotes the score of the losses attached to edges ua and vb, and
δ(ua, λ), δ(λ, vb) accordingly. Finally, we compute the maximal score of a local
alignment of T1, T2 as

S(T1, T2) = max
u∈T1,v∈T2

D[u, v].

Merging two losses in T1 or T2 requires two additional symmetric cases, namely join
and disjoin for merging in tree T1 or T2, respectively. Here, we de�ne

Du,v[A,B] = max
{

0, . . . , insertu,v[A,B], joinu,v[A,B], disjoinu,v[A,B]
}

joinu,v[A,B] := max
a∈A
b∈B

max
ã∈N(a)

{
D[ã, b] +Du,v

[
A− {a}, B − {b}

]
+ δ(uã, vb)

}
+ δmerge

disjoinu,v[A,B] := max
a∈A
b∈B

max
b̃∈N(b)

{
D[a, b̃] +Du,v

[
A− {a}, B − {b}

]
+ δ(ua, vb̃)

}
+ δmerge

where δ(uã, vb) denotes the score for the combined losses on the path from u to ã with
the loss of edges vb, and δ(ua, vb̃) analogously.
This allows for only one child node to be joined with its parent, all other children

are discarded. As this is clearly not desirable, a new approach allowing a several child
nodes to be merged with their parent has been developed [44], but results presented
here are based on the above algorithm. First evaluations show that results improve
only marginally using the new algorithm.
Note that we modify the recurrence by Jiang et al. [47] for solving the problem

in three ways: First, we also consider edge similarities. Second, we computed local
alignments for maximum subtree similarity by adding a �zero-case� to the recurrence,
corresponding to the leaves of the subtree. Third, we score join nodes to account for
the non-appearance of intermediate fragmentation steps, as described above.
Computational complexity is normally not an issue as the algorithm is e�cient if the

trees do not contain nodes with many outgoing edges. This is usually not the case in
fragmentation trees, where fragments rarely have more than �ve daughter fragments.
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Event Score

losses

Basic match score +5
Modi�cation for each non-hydrogen atom +1

Basic mismatch score -2
Modi�cation for each non-hydrogen atom -0.5

fragments

Basic match score +5
Modi�cation for each non-hydrogen atom +1

Basic mismatch score -3
Modi�cation for each non-hydrogen atom ±0

Insertion/deletion score ±0
Merging losses modi�cation ±0

Table 5.1: Scoring neutral losses and fragments.

To be able to evaluate the tree alignment concept, we implemented this algorithm
in Java 1.6.

5.2 Scoring Fragmentation Tree Alignments

Since we base our fragmentation tree alignment on losses and fragments, we need a
scoring function to evaluate pairs of losses, as well as pairs of fragments. In our scoring
we distinguish three main cases for two losses nl1 and nl2. Those cases are a match
nl1 = nl2, a mismatch nl1 6= nl2, or an insertion/deletion (indel) where either nl1 = λ
or nl2 = λ is a gap symbol. A summary of scores can be found in Supplementary
Table 5.1. In detail, we de�ne:

• For a match, we assign a positive score. This score depends on the size of the
losses, since agreement between larger losses is more signi�cant than between
smaller ones. We set δ(nl, nl) := 5 + #atoms where #atoms is the number of
non-hydrogen atoms in the loss nl (that is, all carbon and hetero atoms).

• For a mismatch we assign a negative score, that increases when the losses get
more dissimilar. We set δ(nl1, nl2) := −5 − #diff where #diff is the number
of non-hydrogen atoms in the symmetric di�erence between the two losses.
As an example, nl1 = C2H3O2 and nl2 = C4H4O1N1 di�er in two carbon,
one oxygen, and one nitrogen atoms, a total of four non-hydrogen atoms, so
δ(C2H3O2,C4H4O1N1) = −5− 4 = −9.

• For an insertion/deletion we set δ(nl1, λ) = δ(λ, nl2) = 0, as deleting nodes from
the alignment implicitly reduces the score that can be reached.

• Finally, we will allow two subsequent losses to be merged in one of the tree.
Here, we set δmerge := ±0. We do not penalize merged losses, as merging losses
implicitly reduces the score that can be reached by the alignment.
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Scoring of fragment pairs is somewhat similar. For two fragments f1 and f2 we again
distinguish between match f1 = f2 and mismatch f1 6= f2. To correctly compare trees
measured in negative and positive mode, we �neutralize� the fragment ion formulas by
adding or subtracting a hydrogen atom.

• For a match, we assign a positive score depending on the size of the fragment.
We set δ(f, f) := 5 + #atoms where #atoms is the number of non-hydrogen
atoms in the fragment f (that is, all carbon and hetero atoms).

• For a mismatch we assign a negative score not depending on the symmetric
di�erence between the two fragments. We set δ(f1, f2) := −3 for f1 6= f2. In
this way, we allow for matching losses even when the corresponding fragments
show no similarity.

If compounds are isotopically labeled, we treat the labeled element as identical to
the unlabeled. As an example, losses H2O and HDO would receive a score of +6.

5.3 Test Data and Pre-computations

To evaluate the tree alignment we analyzed spectra from three reference datasets
(5.2). The Orbitrap dataset contains 97 compounds, measured on a Thermo Scienti�c
Orbitrap XL instrument. The MassBank dataset [43] consists of 370 compounds
measured on a Waters Q-Tof Premier spectrometer. The QSTAR dataset with its 44
compounds is the same as in the previous chapter [77]. The masses of all compounds
ranged from 75 Da to 1258 Da.
For the Orbitrap dataset, 26 spectra analyzed in the previous chapter have been

reused. Additionally, several zeatins, amino acids, glucosinolates, and sugars have
been newly measured to yield 97 compounds in total. Table B.1 in the appendix lists
all compounds of the dataset. For experimental details on the new data, see [76].
41 compounds (zeatins, sugars, lipids, bicuculline) were measured at a single collision
energy. Some of these compounds show rather few fragments.
The MassBank dataset was downloaded from the MassBank database [43] at http:

//www.massbank.jp/, accession numbers PR100001 to PR101056. These spectra were
measured on a Waters Q-Tof Premier instrument at the RIKEN Plant Science Center
(Yokohama, Japan) by F. Matsuda, M. Suzuki, and Y. Sawada. We discarded 47
compounds where the measurement of the unfragmented molecule mass deviated more
than 10 ppm from the theoretical mass, leaving us with 370 compounds. By visual
inspection of mass spectra and fragmentation trees, we decided to use an accuracy of
50 ppm. Table B.2 in the appendix lists all compounds of this dataset.

5.3.1 Biological Data from Icelandic Poppy

The fourth dataset stems from a biological sample that has been extracted from
di�erent organs of the plant Papaver nudicaule. Measurements were performed in
an untargeted mode, that is, the instrument selected intense peaks of the survey scan

http://www.massbank.jp/
http://www.massbank.jp/
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Name Orbitrap MassBank QSTAR

Mass accuracy (ppm) < 5 ≈ 50 20

collision energy (eV) between 5 and 150a ramp 5�60, 30b 15,25,45,55,90a

Number of compounds 97 370 44
Mass range (Dalton) 75.0 � 1257.4 90.0 � 822.4 89.0 � 450.2
Median / average mass 342.1 / 346.2 230.0 / 298.0 174.6 / 212.1
FTs with 1+ lossesc 93 343 44
FTs with 3+ losses 77 242 43
FTs with 5+ losses 65 157 32
FTs with 7+ losses 51 103 28
Major compound classes zeatins (24), amino acids

(19), glucosinolates (14),
sugars (12), benzopyrans
(11)

�avonoids (85),
carboxylic acids (76),
amino acids (73),
nucleotides (65), sugars
(22)

amino acids
(21), cholines
(18), amines
(4)

Compound details Table B.1 Table B.2 Table B.3

Table 5.2: Datasets used in this study. The MassBank dataset consists of ramp
spectra; the other datasets were measured at discrete collision energies.
26 compounds of the Orbitrap dataset were fragmented using higher-energy
collisional dissociation (HCD). For these compounds we used fragmentation
energies between 5 and 95 arbitrary units. aBetween 1 and 20 di�erent
collision energies. bSome compounds were also measured at 30 eV discrete
collision energy. cNumber of fragmentation trees (FT) with x or more losses

for fragmentation. For details on the experimental setup, see again [76]. The data
contained 489 non-empty fragmentation spectra of 89 potential compounds.
Unfortunately, the isotopic pattern recorded during the measurement were not of

the required quality. Thus, we apply the following procedure to ensure that the correct
molecular formula is chosen: We applied the method to determine the molecular
formula as described in Section 3.8. Then, we checked that the highest scoring
molecular formula of the combined analysis was among the TOP 5 formulas of the
isotope analysis, as well as among the TOP 5 of the fragmentation pattern analysis
alone. This was the case for 29 compounds, which formed our poppy dataset of
unknowns.
It must be understood that even in cases were we cannot unambiguously determine

the molecular formula from the data, it is possible to use the fragmentation tree
alignment setup described in this paper: In case of doubt about the molecular formula
of an unknown, we can use the trees of several molecular formula hypotheses as queries
or clustering input.

5.3.2 Calculation of Fragmentation Trees

From these data, we calculated fragmentation trees as described in Chapter 3. The
ILP was used to generate optimal trees. Di�erent from Table 3.1 hydrogen (H2) was
no longer considered common. Instead, methanol (CH4O) was added to the common
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losses. The punishment of implausible losses, as well as the calculation of radical losses
as described in Section 3.3 is enabled.

Some compounds did not fragment signi�cantly, resulting in hypothetical fragmenta-
tion trees with an insu�cient number of losses. Especially amino acids and carboxylic
acids have mostly less than three losses. This is due to current instruments limited
mass range at 50 Thomson, too high for small amino acids like glycine and alanine.

5.4 Normalization of Scores and Fingerprinting

After an alignment score of two trees has been calculated using the algorithm and
scoring described above, alignment scores have to be normalized, since the scores are
highly dependent on the size of the trees: Large trees may receive higher scores simply
because they possess more edges that can be matched. Therefore, we normalize by the
score that a perfect match would obtain. Since we do local alignments, a perfect match
means that the one tree is a subtree of the other one. The same score is obtained by
aligning this subtree with itself, S(Ti, Ti). So, we normalize the score by

S0(T1, T2) =
S(T1, T2)(

min
{
S(T1, T1), S(T2, T2)

})c (5.1)

where c ∈ [0, 1] is the normalization parameter. Here, c = 1 corresponds to a full
normalization by the perfect match score, whereas c = 1

2 corresponds to the square
root of this value. We do not to choose the full score for normalization, since it is
much more likely for a very small tree to be a subtree of another tree, than it is that a
medium-size or large tree is a subtree of another tree. To this end, c = 1 favors small
trees and discriminates against large trees, whereas no normalization (c = 0) favors
large trees. In our study, we choose c = 1

2 .

Instead of directly using normalized scores, we found that an additional re-evaluation
of similarities is useful: When two compounds are structurally similar, they should
show comparable fragmentation tree similarities to any other compound. To this
end, we use the scores of one compound against all others as its �ngerprint or feature
vector. We compare two compounds by comparing their �ngerprints using the Pearson
product-moment correlation coe�cient r (Pearson correlation coe�cient for short)
that measures the linear dependence of two variables X = (X1, . . . , Xn) and Y =
(Y1, . . . , Yn):

r =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2
(5.2)

with −1 ≤ r ≤ +1. Here, X̄ denotes the mean of X1, . . . , Xn. We refer to the resulting
score as FT �ngerprint similarity
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5.5 Clustering

To cluster compounds based on their fragmentation trees, we compute pairwise
alignments of fragmentation trees for all compound pairs, as explained in Section 5.1.
We normalize the alignment scores and compute �ngerprints. This results in a
matrix of pairwise similarities. To this matrix, we apply hierarchical clustering or,
more precisely, UPGMA (Unweighted Pair Group Method with Arithmetic Mean)
agglomerative clustering [92].
There might be better methods to cluster compounds based on fragmentation tree

similarity. We have chosen hierarchical clustering as it is well-known, particularly in
the context of analyzing gene expression data [26], and its outcome is easily susceptible.
It is understood that for fragmentation trees with few losses, clustering results

will become somewhat arbitrary: In the extreme case of a single neutral loss,
similarity or dissimilarity to any other fragmentation tree can easily be spurious.
Thus, we limit clustering to fragmentation trees with three ore more losses. See
Table 5.2 for the number of compounds included in the clustering. This is probably
not a shortcoming of the method, but rather the problem that certain compounds
do not �fragment su�ciently� under tandem MS, resulting in mostly uninformative
fragmentation spectra. This problem may possibly be overcome by using multiple MS.
We �rst analyze the Orbitrap dataset. We discarded 20 compounds as the resulting

fragmentation trees showed less than three losses. The resulting clustering is depicted
in Figure 5.3. We observe that clusters are very homogeneous: There is a perfect
glucosinolate cluster containing all 14 glucosinolates, a perfect zeatin cluster containing
all 21 zeatins, and an almost perfect sugar cluster containing all nine sugars, plus one
anthocyanin and one carboxylic acid. Furthermore, there is an almost perfect amino
acid clusters containing seven of the nine amino acids plus one alkaloid. Similarly,
there is a perfect benzopyran cluster containing six of the eleven benzopyrans.
For the MassBank dataset, we had to discard 128 compounds with less than three

losses. Here, we �nd a large group of �avonoids (81 with 3+ losses), nucleotides (54),
amino acids (33), carboxylic acids (26), and sugars (17). Clustering with collapsed
mostly-homogeneous clusters is depicted in Supplementary Figure 5.4. We observe an
almost perfect cluster of 64 �avonoids containing only two non-�avonoid compounds.
For amino acids we �nd �ve perfect clusters containing 22 of the 33 amino acids in total.
Similarly, we �nd four carboxylic acid clusters containing ten carboxylic acids plus one
other compound. For nucleotides there are seven small perfect clusters, containing 32
nucleotides in total, and a large cluster containing 16 nucleotides but also four sugars
and two sugar alcohols.
The QSTAR dataset contains biogenic amino acids and complex choline deriva-

tives [11]. We observe a well partitioning of the compounds into amino acids, amines
and cholines, see Figure 5.5 for the hierarchical clustering.
To show the applicability of our method between measurements from di�erent

instruments, we performed a combined dataset clustering: We cluster all compounds
from the Orbitrap, MassBank and QSTAR datasets for fragmentation trees with 5+
losses, leaving us with 157 compounds from the MassBank dataset, 65 compounds



56 5. Alignment of Fragmentation Trees

Benzopyran

Benzopyran

Benzopyran

Benzopyran
Benzopyran

Alkaloid

Lipid

Amino acid
Amino acid

2 Lipids

2 Alkaloids

6 Benzopyrans

2 Anthocyanins

7 Amino acids
1 other
2 Alkaloids

9 Sugars
2 others

14 Glucosinolates

21 Zeatins

Carboxylic Acid

Amino Acid

Glucosinolate

Zeatin

Sugar

Alkaloid

Benzopyran

Lipid

Anthocyanin

xanthohumol
phosphatidylcholine

bicuculline

phosphatidylethanolamine
D-ery-Sphinganine

vitexinrhamnoside

chelidonine
berberine

tyrosine
phenylalanine

laudanosin
chinchonine

epicatechin
kaempferol
quercetin
biochanin A

armentoflavone

bergapten

genistein

rotenone
emetine

tryptophan

rutin

glutamate
aspartate

arginine
glutamine

methionine
cystine

CID 44256802
CID 44256805

trimethoxycinnamic acid

mannitol
sorbitol

DP5
gentiobiose

lactose
DP7

galactose
cellobiose

mannose
delphinidin-3-rutinoside
glucoraphanin
glucoalyssin
indolylmethyl-glucosinolate

glucoraphenin

glucohirsutin

glucoiberin
8-methylthiooctyl-glucosinolate

7-methylthioheptyl-glucosinolate
4-methoxy-3-indolylmethyl-glucosinolate

glucoerucin
glucomalcommin

3-methylthiopropyl-glucosinolate
3-hydroxypropyl-glucosinolate

cis-zeatin-riboside-O-glucoside

glucoibarin
trans-zeatin-riboside-O-glucoside

d5-trans-zeatin-riboside
d5-trans-zeatin

cis-zeatin-riboside
d5-trans-zeatin-riboside-O-glucoside

trans-zeatin
d5-trans-zeatin-9-glucoside
trans-zeatin-9-glucoside
d5-trans-zeatin-7-glucoside

cis-zeatin
cis-zeatin-O-glucoside
cis-zeatin-9-glucoside
trans-zeatin-O-glucoside

d5-cis-zeatin-riboside
d6-isopentenyl-adenosine
isopentenyl-adenosine
d6-isopentenyl-adenine
isopentenyl-adenine-9-glucoside
isopentenyl-adenine-7-glucoside
d6-isopentenyl-adenine-9-glucoside

(b)(a)

Figure 5.3: (a) Hierarchical clustering of the Orbitrap dataset (compounds with 3+
losses) (b) The same clustering, where (mostly) homogeneous cluster have
been collapsed. homogeneous clusters.

from the Orbitrap dataset, and 32 compounds from the QSTAR dataset. We report
results in Figure 5.6. We observe a large amino acid cluster containing three amino
acids from the MassBank, three amino acids from the Orbitrap and 17 amino acids
from the QSTAR dataset. Furthermore, eight sugars from MassBank and eight sugars
from Orbitrap form a large cluster with six sugar alcohols and �ve carboxylic acids
from MassBank. The only remaining glucosinolate from MassBank forms a perfect
cluster with the 13 remaining glucosinolates from Orbitrap. Finally, an almost perfect
cluster of 27 nucleotides from MassBank forms a subcluster of the almost perfect zeatin
cluster, containing 15 zeatins from Orbitrap and four nucleotides from MassBank. This
demonstrates that the structures of the fragmentation trees are highly similar although
the fundamental di�erences between Q-Tof and Orbitrap mass analyzers.

5.5.1 Clustering of the Poppy Dataset

To determine compound classes of the unknown in the poppy dataset, we performed an
all-against-all alignment using the poppy fragmentation trees plus the Orbitrap treess.
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Figure 5.4: Hierarchical clustering of the MassBank dataset (compounds with 3+
losses) where (mostly) homogeneous clusters have been collapsed.
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Figure 5.5: Hierarchical clustering of the QStar dataset (compounds with 3+ losses).

Scores were normalized and �ngerprint similarities were calculated as described in
Section 5.4.

We cluster the unknowns together with the reference measurements from Orbitrap.
We used all fragmentation trees with at least one loss to include as many reference
compounds as possible. Figure 5.7 shows the clustering of the unknown compounds
from poppy together with the Orbitrap reference dataset. Mass spectrometry experts
identi�ed eight compounds in the sample by manual analysis of the spectra. All
manually identi�ed unknowns are grouped into their respective cluster. On top of
the �gure one can see the alkaloid cluster with four reference alkaloids and the four
manually identi�ed �unknowns�. The 400 Da compound probably is also an alkaloid.
Since it is located at the border of the cluster, more reference alkaloids are required for
a reliable classi�cation. Since the unknown at 229 Da falls into the amino acid cluster,
we consider it at least strongly related with amino acids. The 277 Da molecule is
probably a sugar, or contains a sugar moiety. With the limited reference data, it is
not possible to assign a group to the 438 and 537 Da compounds, but we may assume
that they are neither related to zeatins nor to glucosinolates, as no unknown falls
into these well-separated clusters. Manual interpretation also failed to identify the
compounds, NMR analysis is currently being performed. Additionally, our analysis
correctly shows that a contamination with mass 338 Da, measured during a blank
column run, is similar to the lipids. Database search and manual validation identi�ed
it as erucamide (PubChem CID 5365371), an additive originating from the plastic
ware used for sample collection.

Results from the FT-BLAST and clustering analysis should be seen as strong hints
towards a compound class. This can point towards unknowns of interest and simplify
a downstream analysis, e.g. using NMR.
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Figure 5.6: Combined dataset clustering, fragmentation trees with 5+ losses, N =
254. For better visualization, we have collapsed mostly homogeneous
clusters. Number of compounds from di�erent datasets are given
as �(MassBank/Orbitrap/QSTAR)�. Compounds of the same or similar
classes but from di�erent datasets, such as amino acids or sugars, cluster
together. A nucleotide cluster (from MassBank) forms a subcluster of the
zeatin cluster (from Orbitrap).
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Figure 5.7: Clustering of the poppy and the Orbitrap datasets, fragmentation trees
with 1+ losses. Colored compounds are known references. Many unknown
compounds form a cluster together with several alkaloids (top of the �gure).
Other unknowns end up in amino acid or sugar clusters. The poppy sample
most likely contained no glucosinolates and zeatins, as no unknowns can
be found among these clusters.
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5.6 Correlation with Chemical Similarity

As all of the compounds in our datasets are references with known molecular structure,
we can estimate their structural similarity, termed chemical similarity in the following.
This allows us to compare chemical similarities with our fragmentation tree alignment-
based similarities. This is meant as a proof-of-concept: In applications, we obviously
do not know the molecular structure of the unknown query compound. But our results
clearly show the correlation between these similarity values.
For measuring correlation, we Pearson correlation coe�cient r, that measures the

linear dependence of two variables, see Equation (5.2) in Section 5.4. We also compute
the Spearman correlation coe�cient ρ that is the Pearson correlation coe�cient of the
ranked variables. The values Xi, Yi are each converted to ranks xi, yi ∈ {1, . . . , n},
and

ρ =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
=

∑n
i=1

(
xi − n+1

2

) (
yi − n+1

2

)√∑n
i=1

(
xi − n+1

2

)2∑n
i=1

(
yi − n+1

2

)2 (5.3)

where again, −1 ≤ ρ ≤ +1. Ties can be broken by assigning fractional
ranks. Computations of correlation coe�cients were carried out using the program
language R.
To judge the level of correlation between the two similarities, we stress that these

are not two measurements where, say, by the laws of physics, one expects a linear
dependence. This being said, we argue that any Pearson correlation coe�cients r > 0.5
(r2 > 0.25) can be regarded as strong correlation. This is even more so since two
di�erent chemical similarity scores based on comparing molecular (sub-)structures,
namely PubChem/Tanimoto and another Tanimoto score that uses Molecular ACCess
System (MACCS) �ngerprints [30], show a Pearson correlation of less than r = +0.82.
This may be seen as the upper bound that any correlation between spectra and
molecular structures can reach. Similarly, a Spearman correlation coe�cient of ρ > 0.5
(ρ2 > 0.25) indicates a strong but possibly non-linear correlation.
Again, we normalize fragmentation tree alignment scores by perfect match score

using c = 1
2 in (5.1), and compute �ngerprints of the compounds as described in

Section 5.4. To show the e�ect of the fragmentation tree size on the correlation with
chemical similarity, we di�erentiate between those compounds with fragmentation trees
that have at least 1+, 3+, 5+, and 7+ losses, respectively. See Table 5.2 for the number
of compounds remaining in the di�erent datasets. For a dataset with n compounds,
this results in

(
n
2

)
= n(n−1)

2 compound pairs where we can correlate the two similarity
values. We stress that we do not measure the similarity of a compound against itself:
Any method for comparing fragmentation patterns should be able to pick up the
similarity of two identical patterns. Including such self-comparisons would result in
even higher correlation coe�cients.
Many di�erent similarity scores have been developed in chemoinformatics to compare

molecular structures [60]. We concentrate on one of the most commonly used
frameworks [3], namely binary �ngerprint representations with Tanimoto similarity
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only compounds with
Dataset correlation method 1+ losses 3+ losses 5+ losses 7+ losses
Orbitrap Pearson r 0.65 0.67 0.64 0.58

Pearson r2 0.42 0.45 0.41 0.34
Spearman ρ 0.45 0.47 0.48 0.51
Spearman ρ2 0.20 0.22 0.23 0.26

no. alignments N 4278 2926 2080 1275

MassBank Pearson r 0.50 0.60 0.67 0.68
Pearson r2 0.25 0.36 0.45 0.46
Spearman ρ 0.43 0.52 0.64 0.71
Spearman ρ2 0.18 0.27 0.41 0.50

no. alignments N 58653 29161 12246 5253

QSTAR Pearson r 0.63 0.62 0.55 0.51
Pearson r2 0.40 0.38 0.30 0.26
Spearman ρ 0.64 0.64 0.61 0.55
Spearman ρ2 0.41 0.41 0.37 0.30

no. alignments N 946 903 496 378

Between-dataset Pearson r 0.49 0.52 0.55 0.58
Pearson r2 0.24 0.27 0.30 0.34
Spearman ρ 0.37 0.40 0.38 0.43
Spearman ρ2 0.14 0.16 0.14 0.18

no. alignments N 51083 32351 17309 9565

Table 5.3: Correlation of chemical similarity (PubChem/Tanimoto) with fragmenta-
tion tree similarity, for all datasets and di�erent restrictions on the number
of losses. For the between-dataset correlation, only compound pairs from
di�erent datasets are considered. We also report the number of alignments
(compound pairs) N for every set.

scores (Jaccard indices) [79]. We use the �ngerprints of the PubChem database [100]
as implemented in the Chemistry Development Toolkit version 1.3.37 [96].

5.6.1 Results of the Correlation Analysis

The results of the correlation analysis are listed in Table 5.3. All three datasets show
a good correlation (r ≥ 0.50). We reach the best correlation (r = +0.65) for the
Orbitrap dataset that contains many compound classes (Figure 5.8, trees with 3+
losses). For the QSTAR dataset comprised of only two major compound classes we
still reach a very strong Pearson correlation of r = +0.63. But even for the MassBank
dataset with mass accuracy much worse than 10 ppm there is a good correlation, which
increases to very strong Spearman correlation ρ = +0.71 for fragmentation trees with
7+ neutral losses.
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Figure 5.8: Correlation and regression line: FT �ngerprint similarity (x-axis) plotted
against chemical similarity measured by PubChem/Tanimoto score (y-
axis). Top: Orbitrap dataset, fragmentation trees with 3+ losses, N =
2926. Pearson correlation is r = +0.67 (r2 = 0.45) and Spearman
correlation is ρ = +0.47 (ρ2 = 0.22). Bottom: between-datasets analysis,
each compound from one dataset is compared to all compounds from the
other two datasets. Only fragmentation trees with 7+ losses are considered,
N = 9565. Pearson correlation is r = +0.58 (r2 = 0.34) and Spearman
correlation is ρ = +0.43 (ρ2 = 0.18).
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The correlation coe�cients of the MassBank dataset increase by limiting the
correlation analysis to fragmentation trees with more neutral losses. This may
appear evident, since correlation with chemical similarity requires that information
is present in the fragmentation trees. Nevertheless, the correlation coe�cients of
the QSTAR and the Orbitrap datasets decrease when limiting the analysis to bigger
trees. Interestingly, also the correlation between the MACCS/Tanimoto scores and
the PubChem/Tanimoto scores of these two datasets decreases from r = +0.79 to
r = +0.74 for the QSTAR dataset, respectively from r = +0.81 to r = +0.74 for the
Orbitrap dataset. We believe that the weaker correlation of fragmentation trees with
more losses is an artifact of our data. Some compound classes fragment better than
others, and limiting the compounds to bigger fragmentation trees implies limiting the
compound subsets to less compound classes. For example, in the QSTAR dataset 13 of
the 16 fragmentation trees with less than seven losses are cholines. Thus, the reduced
subset consists of 64% amino acids. Possibly, a strong correlation within only one
or few compound classes is more di�cult, since fragmentation trees of one compound
class are very similar and not sensitive enough to predict small di�erences between the
structures.

5.6.2 Correlation between Datasets

To demonstrate that the strong correlation coe�cients are not artifacts (measuring
all compounds with one instrument and by one person), we performed a between-
datasets analysis: Each compound from each dataset (Orbitrap, MassBank, QSTAR)
is compared to each compound from the other two datasets. This is done to separate
the intra-dataset correlation from the inter-dataset correlation. We reach Pearson
correlation r = +0.49 (r2 = +0.24) for the between-datasets analysis, and r = +0.58
(r2 = +0.34) for fragmentation trees with 7+ losses (Figure 5.8). The results in
Table 5.3 indicate that the method is robust against di�erences in sample preparation,
instruments, and raw data processing methods. This may allow us to search for
compounds in �mixed� databases where we do not limit the search to reference
compounds measured under similar conditions as the query compound, see the next
section. In this way, we may considerably enlarge the set of reference compounds for
identifying the unknown.

5.6.3 Peak Counting Score

In this section, we would like to check whether the correlation is really attributed
to the fragmentation tree alignment, or whether it could also be reached by spectral
comparison.
For this, we tested di�erent variants of the shared peak counting score. First, beside

counting only similar peaks, also similar parent losses (mass di�erences to the parent
peak) were counted. We tried various combinations of scoring peak masses and/or loss
masses. Second, also considered the mass di�erences between two peaks, where two
peaks with a lower mass di�erence receive a higher score. We tested a log likelihood-
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based scoring, based on the observation that mass di�erences in a well-calibrated mass
spectrum are normally-distributed [9,111]. Third, we include the intensities and masses
of the matching peaks by scoring two matching peaks with peakmass3

√
peakintensity

as suggested by Stein and Scott [55, 95]. The second and the third attempt did not
improve the correlation with the chemical similarity score. It turned out that the
unweighted peak counting score gave best correlations, so we report its results here.
In the end, we normalized the shared peak counting score similar to the normalization
of the fragmentation tree alignment score by perfect match score using c = 1.0, and
compute the �ngerprints of the compounds as described in Section 5.4. Again, this
normalization produced best results.
We �nd that the correlation of the peak counting scores with chemical similarity

(Tanimoto/PubChem) is � in all cases but two � weaker than for the tree alignment
scores. Noteworthy is the large increase in Pearson correlation when analyzing the
between-dataset: Whereas the peak counting score reaches a Pearson correlation
coe�cient of only r = +0.38 (r2 = 0.14), Pearson correlation for the tree alignment
�ngerprint score is r = +0.49 (r2 = 0.24).

5.7 Fragmentation Tree Basic Local Alignment Search

Tool

The classic way of analyzing tandem MS data is database searching. fragmentation
tree alignments can also be used for this task. Given the tandem MS spectra of
an unknown compound, we computed its fragmentation tree, then aligned it to all
fragmentation trees in our target database, and ranked hits according to �ngerprint
similarity. Target fragmentation trees are constructed from tandem MS data, possibly
on the �y. Searching for a �known� compound in a target database is a task that has
already been thoroughly studied. We concentrated on the much more intriguing case
of where we could not �nd the query compound in the target database.
An important point is to di�erentiate between true and spurious hits. Obviously,

one of the fragmentation trees has maximal similarity among all trees in the database,
but this does not mean that this best hit is a good hit. We employ a decoy database
strategy, see Section 2.8.5.

5.7.1 Calculation of Decoy Fragmentation Trees

To assess the signi�cance of hits, we generated a decoy database: For each tree in the
target database, a tree in the decoy database is constructed. For a target tree with m
edges, we randomly generate a decoy tree with m edges. Unfortunately, we have no
statistical model of the structure of fragmentation trees; at the same time, we believe
that the topology of fragmentation trees is extremely important for the alignment. To
this end, we chose to generate decoy fragmentation trees from an independent dataset.
We computed trees for the fragmentation data from 102 compounds measured on a
Micromass QTOF, published by Hill et al. [41]. Using compounds from an independent
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dataset has two advantages: On the one hand, these are true fragmentation trees, so
decoy trees are structurally �similar� to the true trees. On the other hand, this is an
independent dataset, so any similarity to true fragmentation trees must be fully at
random. Using the Hill et al. dataset [41] has the additional advantage that resulting
trees are large, allowing us to compute subtrees more easily: To generate a random
tree with m losses, we �rst discard all decoy trees with less than m edges. From the
remaining, we randomly select one tree, where larger trees are chosen with higher
probability: A tree with m′ edges is chosen with weight m′ − m + 1. Starting with
a random edge, we build a subtree from this tree by randomly adding incident edges
to the subtree, until the subtree has size m edges. The root of the decoy tree is
assigned the same molecular formula as the root of the target tree. We then label the
edges and remaining nodes of the decoy tree: We randomly choose a loss from the
target database, respecting multiplicities. So, whereas the structure of the tree and
the succession of losses is random, the losses of a decoy fragmentation tree have the
same �occurrence pattern� as those in the target database. The label for the target
node of this edge is de�ned by subtracting the chosen loss from the label of its source
node. In case the resulting molecular formula is invalid (the loss is not a sub-formula
of the source node molecular formula), a new loss is selected. If no loss that would
result in a valid formula exists, the whole tree is discarded, and the tree generation is
restarted from scratch.

5.7.2 False Discovery Rate Calculation

From this construction, we may assume that spurious hits in the target database and
hits in the decoy database are equally likely: The decoy trees are similar to true
fragmentation trees with respect to size, tree topology, losses, and molecular formula
of the parent compound. We also assume that hits in the decoy database are never
�true� hits: It is extremely unlikely to construct a tree which, by chance, is also part
of the target database.
We align our sample tree to every tree in the combined database, containing both

target and decoy trees, and sort the results with respect to score (�ngerprint similarity).
We report hits from the true database only. Assume we are given a False Discovery
Rate (FDR) threshold t, such as t = 30 %. If the TOP nT+nD in the combined search
contains nT hits from the target database and nD hits from the decoy database, then
we calculate a FDR of nD/nT for this list. We search for the largest set of top hits
with FDR nD/nT ≤ t. For each hit, we compute the q-value as the smallest FDR
under which this hit is reported in the output.

5.7.3 Leave-one-out Evaluation

We want to evaluate our method for those cases where the compound is not found in
the database. To this end, we pursue a leave-one-out evaluation: For each compound,
we deliberately delete the corresponding fragmentation tree from the database before
searching for it. We then compute an alignment score against all remaining compounds
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(both targets and decoys) in our dataset. As usual, these values are normalized by
perfect match score with exponent 0.5 and used as �ngerprints. Pearson correlation
between the �ngerprints is calculated and used as �nal �ngerprint similarity score.
We sort compounds with respect to �ngerprint similarity, and estimate the FDR as
described above.

In Table 5.4 we report search results for the Orbitrap dataset (compounds with 1+
losses, N = 93) with FDR threshold t = 30%. In the table, we report the following
compound classes as being similar: Since anthocyanins are made up of sugars and
benzopyrans, they are regarded as being similar to both classes; as glucosinolates
contain a sugar moiety, these classes are also regarded as being similar. One can see
that the search results of glucosinolates, sugars and zeatins contain almost exclusively
compounds of the respective group. Some benzopyrans receive several hits from their
own and similar groups, whereas for other benzopyrans, no hits are found. Possibly,
the corresponding spectra are of lower quality, or the chemical similarity to other
benzopyrans is weak. Only few hits were found for the alkaloids. We attribute this
to the fact that we have relatively few reference compounds available for the diverse
class of alkaloids. We �nd almost no hits for amino acids, carboxylic acids, and lipids.
Here, fragmentation trees were often too small to identify any hits.

Overall, we return 557 compounds from the same group, 63 compounds from a
similar group, 270 compounds with best or high PubChem/Tanimoto score, and only
31 compounds which do not fall into any of the above categories. In 33 cases (35%)
we return the compound with highest chemical similarity at the top position; in 56
cases (60%) this compound is in the TOP 3.

In case we search for a fragmentation tree in the database where we did not exclude
the query tree, our method recovered the correct tree in all cases. More precisely, the
similarity of a fragmentation tree to itself, is highest among all trees in the dataset.
Finding a �known compound� in a database is not a complicated task, and could be
also done using methods based on spectral comparison. But we report this result here
to show that our method will also ��nd the knowns�, not only the unknowns.

5.7.4 Average Tanimoto Structural Similarity of FT-BLAST Hits

To assess the quality of the FT-BLAST hitlists, we report the average Tanimoto
structural similarity score of the hits returned by FT-BLAST. We calculated the
Tanimoto score of the query compound and each hitlist entry. We then averaged either
over all hits with an FDR below the threshold of 30% for the FT-BLAST approach,
the �ve best scoring hits disregarding the FDR for the TOP 5 approach, or only those
hits both within the FDR threshold and the TOP 5 for the combined approach. Now
we average over all 93 queries (Orbitrap trees with 1+ losses) to reach the �nal values
of 0.76 for FT-BLAST, 0.67 for TOP 5, 0.78 for the combined approach. The TOP 5
approach is identical to Demuth et al. [25], the others are only adapted to the fact
that an FDR estimation is available. Of course, this analysis is performed on the
leave-one-out results.
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Identical to Demuth et al. [25] we analyzed the Tanimoto scores T (h) of the �rst h
hits with h ranging from one to the number of compounds. Again, we did not use the
FDR estimation but considered all scores obtained by a leave-one-out analysis. We
then averaged over all compounds (Fig. 5.9). As Demuth et al. we compared these
results with pseudo hitlists containing randomly ordered compounds (minimum value)
and compounds arranged in descending order in accordance with the Tanimoto scores
(upper limit). The average Tanimoto scores of our hitlists decrease from 0.78 (h = 1)
to 0.34 (h = 92). The upper limit is between 0.90 (h = 1) and 0.34 (h = 92), and the

compound FT-BLAST results

delphinidin-3-rutinoside

CID 44256805

CID 44256802

indole-3-carboxylic acid

anisicacid

trimethoxycinnamic acid

phosphatidylcholine

D-ery-sphingosine

D-ery-sphinganine

phosphatidylethanolamine

d5-trans-zeatin-7-glucoside

isopentenyl-adenine-7-glucoside

trans-zeatin

d5-cis-zeatin-riboside

d5-trans-zeatin

trans-zeatin-O-glucoside

cis-zeatin

d5-trans-zeatin-9-glucoside

cis-zeatin-riboside

d6-isopentenyl-adenine

trans-zeatin-riboside-O-glucoside

cis-zeatin-riboside-O-glucoside

cis-zeatin-O-glucoside

isopentenyl-adenosine

isopentenyl-adenine

d6-isopentenyl-adenine-7-glucoside

d6-isopentenyl-adenine-9-glucoside

isopentenyl-adenine-9-glucoside

d5-trans-zeatin-riboside-O-glucoside

cis-zeatin-9-glucoside

trans-zeatin-riboside

d6-isopentenyl-adenosine

trans-zeatin-9-glucoside

d5-trans-zeatin-riboside

armentoflavone

quercetin

epicatechin

rutin

bergapten

kaempferol

vitexinrhamnoside

biochanin A

genistein

rotenone

xanthohumol

emetine

berberine

chelidonine

harmane

cinchonine

bicuculline

laudanosin

indolylmethyl-glucosinolate

glucoraphanin

3-hydroxypropyl-glucosinolate

glucomalcommin

8-methylthiooctyl-glucosinolate

glucoibarin

glucoraphenin

glucoerucin

glucoalyssin

7-methylthioheptyl-glucosinolate

glucoiberin

4-methoxy-3-indolylmethyl-glucosinolate

glucohirsutin

3-methylthiopropyl-glucosinolate

glutamine

serine

tryptophan

isoleucine

phenylalanine

arginine

cystine

proline

valine

glutamate

aspartate

tyrosine

threonine

leucine

methionine

mannose

rhamnose

mannitol

sorbitol

fucose

trehalose

galactose

DP5

lactose

cellobiose

DP7

gentiobiose

losses

18

18

9

9

13

19

18

21

4

30

19

24

28

25

8

16

22

10

16

17

2

4

6

10

12

6

2

14

2

7

4

11

4

5

2

2

6

7

1

2

2

6

7

1

15

10

19

8

17

26

23

8

9

13

3

1

2

16

6

25

12

66

62

1

9

7

5

6

4

4

15

8

8

8

15

10

1

1

6

6

6

1

4

4

4

5

5

5

12

3

3

2

9

anthocyanins

glucosinolates

sugars

amino acids

benzopyrans

carboxylic acids

alkaloids

zeatins

lipids

unknown

compound losses FT-BLAST results

Table 5.4: Results of the leave-one-out FT-BLAST analysis for the Orbitrap dataset,
see text for details. Results are ordered according to �ngerprint similarity
score. Circles correspond to hits in the same compound class as the
query compound, hexagons to hits from a �similar� compound class, see
text for details. Boxes correspond to hits from all other classes. A
large asterisk indicates the compound with the highest chemical similarity
(PubChem/Tanimoto), and small asterisks indicate other hits with chemical
similarity above 0.85. Symbols are colored by the class of the compound.
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Figure 5.9: Average Tanimoto scores T (h) between query structures and the
�rst h structures from hitlists obtained by FT-BLAST without using
FDR estimation (FT-BLAST), pseudo hitlists containing the database
structures with maximum Tanimoto score to query structure (BEST) and
randomly selected pseudo hitlists (RANDOM). All three analyses were
performed on the Orbitrap dataset.

minimum value is about 0.34 for all h. All three values converge to 0.34 as this is the
average Tanimoto score of all pairwise di�erent compounds. Compared to Figure 1
in [25], the correlation values of FT-BLAST are considerably higher.

5.7.5 FT-BLAST Analysis of Poppy Data

To search for the unknown compounds in the icelandic poppy extracts, we calculated
the all-against-all alignment of the fragmentation trees from poppy, those from
the Orbitrap dataset, and the decoy trees generated from Orbitrap data. Again,
normalization and �ngerprint calculation was performed based on this similarity
matrix. We then searched for the unknown compounds in the database of knowns
(Orbitrap). The FDR was again 30%. Results of this analysis are shown in Table 5.5.

As mentioned above, eight compounds of the dataset were manually identi�ed by
experts. FT-BLAST identi�ed glutamine, arginine and quercetin by returning the
respective references from the Orbitrap dataset as �rst hit. For the hexose (179 Da)
galactose and mannose are the �rst hits. The unknown is most likely glucose,
which was not in our reference, so FT-BLAST suggests other hexoses. Four other
compounds were manually identi�ed as alkaloids. The 328 Da feature is corytuberine,
the 330 Da compound is reticuline. We consider the 370 Da feature as hydrogenated
and hydroxylated palmatine. The 386 Da unknown is again hydrogenated and
hydroxylated palmatine, but additionally with an methyl-group and a broken double
bond. Unfortunately, our reference dataset only contained few alkaloids. Our list of
search results always contains the alkaloid laudanosine, which is most similar to the
manual identi�cations. In case of corytuberine, chelidonine is always among the TOP3.
These two alkaloids are extremely similar. The non-alkaloid hits are also reasonable:
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147 Da stamen (pos) glutamine

173 Da stamen (neg)

175 Da petal (neg)

175 Da stamen w base (pos) arginine

179 Da stamen (neg) hexose

191 Da stamen (neg)

209 Da stamen (neg)

229 Da stamen (neg)

277 Da petal (neg)

285 Da petal (neg)

301 Da stamen (neg) quercetin

328 Da petal (pos) corytuberine

328 Da stamen with base (pos) corytuberine

328 Da stem (pos) corytuberine

330 Da petal (pos) reticuline

330 Da stamen with base (pos) reticuline

330 Da stem (pos) reticuline

370 Da petal (pos) palmatine derivate

370 Da stamen (pos) palmatine derivate

386 Da petal (pos) palmatine derivate

386 Da stamen with base (pos) palmatine derivate

400 Da stamen (pos)

400 Da stamen w base (pos)

400 Da stem (pos)

438 Da petal (pos)

438 Da stamen (pos)

487 Da stamen (neg)

537 Da petal (pos)

537 Da stamen (pos)
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compound FT-BLAST resultslosses compound losses FT-BLAST results

anthocyanins

glucosinolates

sugars

amino acids

benzopyrans

carboxylic acids

alkaloids

zeatins

lipids

unknown

Table 5.5: Searching poppy data in the Orbitrap dataset. A large asterisk indicates
the correct identi�cation. Search results mentioned in text and frequent
search results are indicated by a boxed number, namely chelidonine (1),
phenylalanine (2), laudanosine (3), rotenone (4), bergapten (5), tyrosine (6),
trimethoxycinnamic acid (7), glutamate (8), and anisic acid (9). Symbols
are colored by compound class.

Phenylalanine is the biosynthetic precursor of these alkaloids. Benzopyrans and
hydroxylated alkaloids only di�er by the fact that the oxygen is not in the ring system
but attached to it as hydroxy group, and anisic acid (the carboxylic acid occurring in
all hit lists) is again very similar to phenylalanine.



6 Structural Annotation of

Fragmentation Trees

In this chapter, we develop an automated method to annotate the fragment peaks
of a known compound with molecular structures. This process is called in-silico
fragmentation, and several approaches for it exist, see Section 2.8.3 for an overview on
these approaches.
The new feature of our approach is that we use previously calculated fragmentation

trees to guide the prediction of fragment structural formulas. We combine this idea
with the multi-step fragmentation model by Heinonen et al. [40]. In this optimization-
based concept, the overall bond energy of the bonds broken during fragmentation is
minimized.
There exist various applications for this approach. The typical use of in-silico

fragmentation is the assessment of structure database hits. This has been proposed
by Hill et al. [41] and fully automated by Wolf et al. [108]. It works as follows: If
you have a list of database hits for your unknown compound, based on exact mass or
molecular formula alone, you perform in-silico fragmentation for each of the hits based
on the measured tandem MS spectrum. The database structure that can explain the
most peaks with the lowest fragmentation energy is then ranked as the most likely
compound for the measurement.
Another application is the veri�cation of reference fragmentation trees. For the

work�ows of the previous chapter, we require reference trees. Results of these
work�ows are likely to become better if the quality of reference trees is increased.
Here we will show how reference trees can be improved using in-silico fragmentation.
The third application is closely related to the second: If we are able to annotate

the reference fragmentation trees with structures and �nd an unknown whose tree is
similar to, say, two reference trees, then we can check which fragmentation cascades
are shared by the trees and try to identify the structural feature responsible for this
cascade based on the structural annotations of the reference trees.

6.1 One-step Fragmentation Problem

To be able to annotate complete trees, we need to be able to annotate a node, given a
structural annotation of its parent. As this annotates one fragmentation step, we name
this problem One-step fragmentation. Note, that single-step fragmentation [40] is a
special case of one-step fragmentation. With single-step fragmentation, the fragments
are always cleaved from the parent molecule, whereas one-step fragmentation allows
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an arbitrary starting fragment. Formal de�nition of one-step fragmentation based on
molecular graphs leads to the Edge-Weighted Graph Motif problem.
Let Σ be the alphabet of elements in our molecules, such as Σ = {C,H,N,O,P,S}.

A molecular structure M consists of a simple, undirected, connected graph where all
vertices are labeled with elements from Σ, and edges are weighted by positive weights
w(e) > 0. The elements of Σ will be called colors in this context. The molecular
formula indicates how many vertices of each color are present in a molecular structure,
e.g., C20H30NO8. For one-step fragmentation, we are given a molecular structure M
and a molecular formula f over Σ, and we try to �nd a connected subgraph of M
that can be cleaved out with minimum costs, that is, minimum sum of energies for all
cleaved bonds, and that has colors corresponding to f .

Edge-Weighted Graph Motif problem. Given a vertex-colored edge-weighted
graph G = (V,E) and a multiset of colors C of size k, �nd a connected subgraph
H = (U,F ) of G such that the multiset of colors of U equals C, and H has minimum
weight w(H) :=

∑
{u,v}∈E,u∈U,v∈V \U w({u, v}).

This problem is NP-hard [34] as well as APX-hard [28] even on binary trees.
Sikoraet al. give an overview of the problem [89]. The releated Graph Motif

problem, where no edge weights exist, and one asks whether any such subgraph exists,
is NP hard even for bipartite graphs of bounded degree and two colors [33].
In the following, we will present a randomized and an exact branch-and-bound

algorithm to solve the Edge-Weighted Graph Motif problem. Note that both
algorithms can also calculate sub-optimal solutions. This will be required to annotate
complete fragmentation trees. A third algorithm is given in [12], but its results were
inferior to those presented here.

6.1.1 Random Separation

Cai et al. [19] proposed a randomized technique called random separation based on
color-coding [1]. The key idea of random separation is to partition the vertices by
coloring them randomly with two di�erent colors. Then, connected components are
identi�ed and appropriate components are tested for optimality. Random separation
has proven useful especially when the input graph has bounded degree. This is the
case for molecular structures, where vertex degrees are bounded by the valences of
elements.
We now apply random separation to the Edge-Weighted Graph Motif problem.

Let k be the cardinality of the color multiset C. We search for a substructure H =
(U,F ) that minimizes w(H), where |U | = k. Let N(U) denote the neighborhood of U
in G. Given a graph G = (V,E) and a random separation of G that partitions V into
V1 and V2, there is a 2−(k+|N(U)|)+1 chance that U is entirely in V1 and its neighborhood
N(U) is entirely in V2 or vice versa. We use depth-�rst search to identify the connected
components in V1 and V2. Simultaneously, colors are counted and costs for the partition
are calculated. If the colors of a connected component correspond to the colors of the
given multiset C and the costs are smaller than the costs of the best solution so far,
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the connected component is stored. In order to �nd the optimal solution with error
probability ε, the procedure has to be repeated

⌈
|log ε| /

∣∣log(1− 2−(k+kd)+1)
∣∣⌉ times,

where d is the maximum vertex degree in G.
The worst-case running time of this approach is as follows: Coloring takes

O(|V |) time. Depth �rst search has a running time of O(|V | + |E|) but since
molecular structures have bounded degree, the overall running time of one trial is
O(|V |). Accordingly, the overall running time of the random separation algorithm is
O(|log ε| 2(k+kd) · |V |). Recall that d is bounded in molecular structures. Also note that
the term kd is due to the neighborhood of U in G. In our experiments, we observe
that one-step fragmentation usually requires only few bonds to break. In this case, we
can substitute the worst case estimation kd with maximal number b of bonds breaking
in a fragmentation step. In our implementation, b is an input parameter that can be
used to reduce the number of trials and, hence, to decrease running time. Obviously,
b has to be chosen large enough to guarantee that the optimal solution is found with
high probability.

6.1.2 Branch-and-Bound

The second algorithm is a classical branch-and-bound algorithm. It branches over
edge sets that might break during a fragmentation step. Given an edge set, its deletion
might separateG into a set of connected components. Similar to the random separation
approach, depth �rst search is used to identify components that might be selected as a
solution. If a solution has been found, its costs are used as an upper bound for pruning.
The user can specify the maximum number of bonds b that may break during one single
fragmentation step. We then try to cut out a solution with exactly b′ = 1, . . . , b edges.
Since the costs of a solution correspond to the sum of weights of deleted edges, it is

not necessary to iterate over all possible edge sets. To e�ciently traverse the search
tree, we use an edge set iterator that avoids edge sets with too high costs. Edges are
sorted in increasing order with respect to their weight. Now, we can easily iterate over
all edge sets of a �xed cardinality such that the edge sets have increasing costs. Thus,
as soon as a solution with b′ edges has been found, or the costs exceed that of the best
solution found so far, all following edge sets of the same cardinality will have higher
costs and can be omitted.
Sorting edges costs O(|E| log |E|) time. Running time of the depth �rst search is

O(|V |), as explained for random separation. The branch-and-bound algorithm iterates
over O(|V |b) edge sets. This results in an overall running time of O(|E| log |E|+ |V |b).
Unfortunately, running time is exponentially in b. But if the number of bonds that
break in one single fragmentation step is small and bounded, b can be assumed as a
constant and hence, the algorithm can be executed in polynomial time.

6.1.3 Enabling Structural Rearrangements

In general, this model assumes that bonds break during fragmentation, but no new
bonds are formed. Unfortunately, this is not the case. The process of atoms changing
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Figure 6.1: Left: The rearrangement of the carboxyl group. Without rearrangement,
cleavage of carbon monoxide from this structure would also release
hydroxide. Right: Pseudo edge (dashed) added to the molecular graph
to account for this rearrangement. Figure taken from [94]

place in the molecule due to new bond formation is called rearrangement. In the
following, we describe how we cater for some types of rearrangements.
Since hydrogen atoms are often subject to rearrangements, we do not include them

in our calculations. We can support minor structural rearrangements such as carboxyl
group rearrangements. These occur frequently as a result of cyclizations, see Figure 6.1.
We model this using pseudo-edges as shown in the �gure. As a result, we have to
adapt the edge weights of all involved edges. Our model is not biochemically correct
but enables us to reconstruct fragmentation trees with minor rearrangements.

6.2 Multistep Fragmentation Model

Unfortunately, solving the one-step fragmentation problem is not su�cient, since
fragmentation pathways consist of consecutive fragmentation steps [40], where
fragments can be cleaved from other fragments. Here, we represent such pathways
by fragmentation trees.
For the multistep fragmentation model, we are given a molecular structure M

and a fragmentation tree T . We want to assign sub-structures to the nodes of
the fragmentation tree that match their molecular formulas, such that the total
cost of cutting out the substructures, over all edges of the fragmentation tree, is
minimized. Clearly, it does not su�ce to search for the optimal graph motif in every
fragmentation step independently, since following fragmentation steps may be cleaved
from a suboptimal substructure with lower total costs.
With this approach not use prior information about metabolite fragmentation such

as fragmentation rules except edge weights that represent bond energies. Thus, our
approach is applicable for any compound, even if fragmentation of its class has not
been thoroughly studied.

6.2.1 A Beam Search Algorithm for Multistep Fragmentation

In order to �nd a fragmentation process consistent with the given fragmentation tree,
we use a search tree. Since it does not su�ce to take the fragment with minimum
costs in every fragmentation step, our heuristic allows the user to specify a number p
so that in every step, the best p fragments are considered. For each such fragment,
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multistep heuristic
Mass (Da) #comp. RS BB-3 BB-5
< 100 1 < 1 s < 1 s < 1 s
100�200 17 23.2 s 0.1 s 0.2 s
200�300 16 50.7 min 0.7 s 6.0 s
300�400 3 4.8 h 6.7 s 55.7 s
400�500 5 > 1 day 0.5 s 5.6 s
> 500 1 > 1 week 10.2 min 4.6 h

Table 6.1: The average running times of the algorithms: neighborhood for random
separation has been estimated with b = 5, branch-and-bound allowed
b = 3 (BB-3) and b = 5 (BB-5) bonds to break. Multistep fragmentation
considered the 5 best fragments in every step.

we build up the search tree recursively, and accept the fragment that results in lowest
total costs. Additionally, we check whether moving up a node in a fragmentation tree
by one level will decrease the total cost of fragmentation. To do so, we compare the
total costs of cleaving fragment f and all subsequent fragments from its parent, with
the total costs of cleaving them from its grandfather. This way, we allow and can
identify pull-ups in the tree (See Section 3.4). In our calculations, we found that p = 5
results in good annotations, while keeping running times feasible.

6.3 Experimental Results

We implemented our algorithms in Java 1.5. Running times were measured on an
Intel Core 2 Duo processor, 2.5 GHz with 3 GB memory. For the random separation
algorithm, we use an error probability ε = 0.1%, so that the optimal solution will be
found with a probability of 99.9%. In the multistep fragmentation evaluation, we set
p = 5, thus, keeping the �ve best substructures in each fragmentation step.
As test data we used 35 fragmentation trees of the QStar dataset from Section 4.1

on page 37 and 8 trees of spectra from an LTQ Orbitrap XL instrument (Thermo
Fisher Scienti�c) using the same experimental setup as described in Section 4.1 except
for using PQD fragmentation, calculated using the parameters of the Orbitrap dataset
in Section 4.1 and the DP10 heuristic.
Detailed information about running times of the multistep heuristic using the

di�erent approaches can be found in Table 6.1. One can see that the branch-and-bound
algorithms outperforms the more sophisticated algorithm. The random separation
algorithm performs fast for small instances, but requires several days for molecules
> 400 Da.
Fig. 6.2 shows how the running times of the algorithms depend on the size of the

molecular structureM and on the size of the fragments. It illustrates that the running
time of the branch-and-bound algorithm mainly depends on the size ofM , particularly
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Figure 6.2: Running time comparison of the three algorithms: The left diagram shows
the average running time depending on the molecule size |M | given a �xed
fragment size of six. In the right diagram the average running time for
several molecule sizes in dependence on the fragment's size is displayed.

for larger b. Finally, running time of the random separation algorithm depends mainly
on fragment size.
For all instances that �nished computation using the random separation algorithm,

we reach identical total costs as for the branch-and-bound algorithm. Annotations
di�er only marginally in the sequence of cleavages. The annotations found by the
branch-and-bound algorithm with b = 3 and b = 5 also have identical costs. This
supports our assumption that instances based on molecular graphs do not resemble
the full complexity of the Edge-Weighted Graph Motif problem.
Our annotations turned out to be valuable to validate the fragmentation trees

proposed by the methods of Chapter 3. Our analysis of the annotated fragmentation
trees identi�ed peaks in several fragmentation trees that were annotated with a
molecular formula but probably are noise peaks. These peaks have a low intensity and
are also scored very low. In our analysis, we were unable to assign a fragment to the
molecular formula. For example, the 250 Da fragment of hexosyloxycinnamoyl choline
was identi�ed as noise peak. The score of the corresponding fragmentation step is very
low compared to the others, and a fragment with formula C10H20NO6 cannot be cleaved
from the corresponding structure without major rearrangements. We also identi�ed
an intense peak that could not be annotated with any fragment. Consultation with
an expert resulted in the conclusion that the spectrum was contaminated.
Furthermore, we identi�ed three nodes in two fragmentation trees that had been

inserted too low into the fragmentation tree, and pulling them up one level resulted
in a fragmentation pattern with signi�cantly decreased total costs. In two other
fragmentation trees, we identi�ed nodes where pulling-up results in slightly reduced
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costs. A closer look at the fragmentation patterns revealed that in these cases, two
competitive paths might co-occur.





7 Conclusion

In this thesis, we have presented several algorithms and concepts for the analysis
of small compounds using high-accuracy tandem mass spectrometry. Whereas
previous approaches are based heavily on databases, this work focuses mainly on
the identi�cation of novel compounds, which are neither contained in spectral nor
in compound databases.
We developed fragmentation trees as a means to annotate fragmentation spectra

and formulated their calculation as a graph theoretical problem. Unfortunately, the
underlying problem is NP-hard. A �rst heuristic already produced good results on real
mass spectra from three di�erent instruments. Manual inspection of the fragmentation
trees showed that 78.9% predicted fragmentation reactions were correct according
to mass spectrometry experts. Some trees have been validated by multi-stage mass
spectrometry, which can to a certain extent reveal the occurring reactions. Again,
a good agreement between the experimental data and the predictions was found.
For one dataset, computationally predicted spectra were available and most of their
annotations matched our annotations of the measured spectra. Thus, good quality of
the fragmentation trees was established.
We have developed an integer linear program (ILP) for the calculation of

fragmentation trees. This enables the evaluation of our heuristic results against exact
solutions. To determine an exact solution for an instance the ILP takes at most 15
seconds. Although this is slower than several heuristics also proposed in this work,
it is still clearly faster than the spectra can be acquired. Evaluations show that the
exact solution is preferable in case the tree structure is relevant for further processing,
whereas a good heuristic is su�cient, when only the score of the tree is relevant, to
determine the molecular formula of a fragmented compound, for example.
Fragmentation trees are already helpful as they save the investigator the tedious

work of manually annotating the spectrum with molecular formulas, but still do
not provide an automated identi�cation of the measured compound. Full structural
elucidation will most likely be impossible using only mass spectrometry. But by using
the fragmentation tree alignment concept presented in this work, information about
the compound class, similar compounds and structural elements can be revealed. This
is achieved by comparing the fragmentation tree of the unknown against reference
fragmentation trees. To achieve a high quality similarity search, we were able to
transfer the local alignment concept from sequence comparisons as well as a signi�cance
calculation technique from proteomics to fragmentation trees.
Evaluations on three di�erent real datasets show that fragmentation tree �ngerprint

similarities correlate well with structural similarities of the compounds. Correlation
with the Tanimoto score used by PubChem ranged as high as r = +0.68 (r2 = 0.46) for
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large enough trees from one dataset. Intriguingly, we also reached a good correlation
between the datasets, indicating that fragmentation tree alignment is independent
of the instrument type used. Hierarchical clustering based on the similarity matrix
grouped compounds of the same class together. Thus, we were able to predict the
compound class of some unknown molecules from Icelandic poppy as they fell into
well-separated clusters of reference compounds. Finally, we presented FT-BLAST, a
database search tool, which can not only retrieve similar compounds from a reference
database, but also assess their signi�cance using a decoy database strategy. By using
an FDR threshold of 30 % the hits had an average structural similarity of 0.76 to
the query, indicating that only highly similar hits are returned. Thus, our method
predicts compound classes as well as similar compounds of an unknown molecule in a
fully automated pipeline.
An alternative path is to use fragmentation trees as basis for an in silico

fragmentation approach. Given the structure and the fragmentation tree of a
compound, we search for an assignment of fragment structures that is energetically
optimal. For this, we developed a branch-and-bound heuristic that repeatedly
needs to solve the NP-hard Edge-Weighted Graph Motif problem. For this
problem, we present two algorithms, one based on a randomized technique and an
exact branch-and-bound algorithm. In evaluations on real data, we found that the
simple branch-and-bound approach performs best. By applying this approach to
fragmentation trees from reference data, we were able to detect some inconsistencies in
the trees. Improving the quality of reference trees will likely also improve the results
of an alignment against those trees. Additionally, the method could be used to assess
structure hypotheses for the compound, e.g. retrieved from a compound database.

7.1 Future Work

As the concept of fragmentation trees is still relatively young, it yet has to uncover its
full potential. Current scores for fragmentation tree calculation have been chosen ad-
hoc based on the suggestions of a few experts and minor improvements have been made
to address frequently occurring errors. With su�cient data available a statistically
sound scoring could be learned from the loss frequencies in the data. This, of course,
has to be done under the cautious eye of a mass spectrometry expert, to prevent
ampli�cation of erroneous assignments.
In a similar fashion, scores for the tree alignment may be improved as well. Due

to an easily susceptible outcome (e.g. the correlation with structural similarity or the
average structural similarity of all FT-BLAST hits) a straightforward optimization
approach is possible, if over�tting can be avoided. Currently, the method also has
di�culties to compare small trees with rather large ones, due to the fact that several
losses in the large tree are combined to a single loss in the small tree. The join
operation has been introduced to cover this case, but it currently combines only two
losses to keep calculations feasible. Improved alignment algorithms may allow for joins
over three or more nodes. An improved generation of decoy trees would increase the
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accuracy of q-values, but this requires a thorough understanding of fragmentation tree
characteristics.

A tool for database querying, like FT-BLAST, is only as good as the database it
searches. Currently, FT-BLAST is based on �at �les and reference measurements the
user supplies. To make it a success a fragmentation tree database has to be developed.
Depositing data in such a repository should be as easy as possible to encourage its use.
Fragmentation trees in the database could either be calculated automatically from the
spectra, or curated trees could be uploaded manually.

The idea to use fragmentation trees as an aid to predict fragmentation in silico could
be combined with the faster heuristic by Wolf et al. [108]. This might improve the
search in compound databases, although structural rearrangements will still present a
major di�culty.

Approaches to calculate fragmentation trees from di�erent types of fragmentation
data are already under development by my colleagues. Scheubert et al. proposed
an algorithm for the calculation of fragmentation trees from multi-stage mass
spectrometry data [84]. The resulting Combined Colorful Subtree Problem

turns out to be computationally hard to approximate. Results based on an heuristic
look promising, but a su�ciently fast exact algorithm is still to be found.

When trying to calculate a fragmentation tree from GC-MS data with the hard EI
fragmentation, another problem arises: The mass of the unfragmented compound is
unknown. Thus, Hufsky et al. focus on detecting the molecular ion peak and predicting
a molecular formula for the compound [45]. This can be done by calculating all trees
rooted in one of the peaks in the higher mass range and selecting the best scoring one.

Various applications of the fragmentation tree alignment concept are possible: The
identi�cation of the compound class may be helpful for the dereplication of novel
drug leads, for example, potential antibiotics. In this �eld, a large amount of time
and money is often wasted by identifying a compound, of which a derivate is already
known. Compound classi�cation could be improved and adjusted to this application
by using more involved classi�ers based on machine learning.

Recently, Watrous et al. published an approach to generate metabolic networks
from tandem MS data [101]. This concept was pioneered by Breitling et al. [15] using
single MS data. The idea is to use the similarity between the spectra and a set of
known bio-reactions to infer potential metabolic reactions between compounds, which
do not even have to be identi�ed. But current approaches lack speci�city. Here,
FT-BLAST could help by assigning q-values rather than similarities to the reaction
candidate. This might help to �lter spurious candidates. Still, problems arise as such
an inferred network tends to be �somewhat� transitive: If A is made from B and B
from C, then A and C will be similar. Here, a graph algorithm will be necessary to
thin-out the network in a sensible way. Less complex, but also highly relevant is the
analysis of drug degradation. Here, all compounds a body produces by converting a
certain drug have to be identi�ed. This may be achieved by similar methods as above.
Full identi�cation of the degradation process is a requirement for the approval of a
drug by health authorities.
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Finally, the results of an FT-BLAST analysis might help in elucidating the structure
of an unknown compound. By identifying the compound class and perhaps detecting
a common substructure among the related compounds found by FT-BLAST, hints
can be given towards molecular structure. It might then be possible to generate all
structures ful�lling these criteria, e.g., using MOLGEN [65]. To select among such
a reduced number of candidates, a simple 1D NMR or an NMR measurement with
a small amount of sample might be su�cient. This would greatly reduce the e�ort
necessary for structure elucidation.
Although the molecules playing the central part in this thesis are small, even from

a molecular part of view, they may have a huge impact on the macroscopic level.
Hopefully, these approaches may aid to gain insight into new metabolic processes,
ultimately leading to a better understanding of life by bridging the gap between
genotype and phenotype. Eventually, these methods might lead to the discovery of
new drugs or at least give hints, where not to search. But even if all of that is not
the case, it has been fun to �nd out how much information you can get by smashing
something into pieces and then putting these pieces onto a scale.
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A Datasets for Fragmentation Tree

Evaluation

268,092 C10H13N5O4 4 1 1 1
153,055 C8H8O3 2 1 1 1
268,134 C17H17NO2 10 1 2 1
539,098 C30H18O10 18 1 19 1

11 1 4 1
217.050 C12H8O4 73 1 1 1
368,113 C20H17NO6 55 1 4 1
285.076 C16H12O5 74 2 2 1
354.134 C20H19NO5 69 1 2 1
295.181 C19H22N2O 29 3 1 1
481.307 C29H40N2O4 62 1 5 1
291.087 C15H14O6 11 2 1 1
734.469 C37H67NO13 2 2 18 1
271.061 C15H10O5 36 1 1 1
183.092 C12H10N2 4 1 1 1
275.140 C15H18N2O3 6 1 1 1
162.056 C9H7NO2 3 1 1 1
287.056 C15H10O6 47 1 1 1
216.089 C10H9N5O 8 1 2 1
358.202 C21H27NO4 7 1 1 1
353.087 C16H16O9 4 1 1 1
414.155 C22H23NO7 1 2 3 1
166.087 C9H11NO2 5 1 1 1
437.145 C21H24O10 10 1 3 1
303.050 C15H10O7 45 1 1 1
609.281 C33H40N2O9 31 1 7 1
229.086 C14H12O3 20 1 1 1
395.149 C23H22O6 83 2 5 1
611.161 C27H30O16 3 1 30 1
315.161 C20H18N4 22 1 3 1
180.102 C10H13NO2 5 1 1 1

5 1 1 1
288.124 C16H17NO4 8 1 2 1
239.092 C12H14O5 9 1 1 1
205.098 C11H12N2O2 2 1 2 1

Vitexin-2-O-rhamnoside 579.171 C27H30O14 15 1 58 1
355.155 C21H22O5 8 2 1 1

molecular measured rankusing rankusing rank
Compoundname m/za formulab peaksc isotopesd fragmentationd combinedd

Adenosine
Anisic acid
Apomorphine
Armentoflavone
Berberine 335.116e C20H17NO4+

Bergapten
Bicuculline
Biochanin A
Chelidonine
Cinchonine
Emetine
(-)-Epicatechine
Erythromycin
Genistein
Harmane
IAA-Val
Indol-3-carboxylic acid
Kaempherol
Kinetin
Laudanosin
Methylumbelliferrylglucoronide
(S,R)-Noscapine
Phenylalanine
Phlorizin
Quercetin
Reserpine
Resveratrol
Rotenone
Rutine
Safranin
Salsolinol
Sinapine 310.166e C16H24NO5+

Tetrahydropapaveroline
3,4,5-Trimethoxycinnamic acid
Tryptophan

Xanthohumol

Table A.1: Molecular formula identi�cation for the Orbitrap dataset: Compound,
am/z value for [M+H]+ adduct precursor; bmolecular formula of the
compounds; cnumber of peaks in the merged spectra; drank of molecular
formula identi�cation using isotope patterns, using fragmentation patterns,
and combined identi�cation; eValue for M+, as quaternary nitrogen in the
compound.
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C20H32NO8+ 25, 40, 55 5 1 1 1
C14H20NO3+ 15, 25, 40 5 1 1 1
C21H32NO9+ 15, 25, 40, 55 7 1 3 1
C18H28NO8+ 15, 25, 40, 55, 90 7 4 1 1
C20H30NO8+ 25, 40, 55 6 3 2 1
C19H30NO9+ 15, 25, 40, 55, 70 5 7 3 1

C12H18NO3+ 15, 25, 40, 55 5 1 1 1
C15H22NO5+ 15, 25, 40, 55 13 2 5 1

132103.000 C6H13NO2 15, 20, 30, 40 29 1 1 1
C7H16NO2+ 10, 20,30 4 1 1 1

90.056 C3H7NO2 10, 15, 20 2 1 1 1
175.120 C6H14N4O2 20, 25, 30 17 1 1 1
133.062 C4H8N2O3 10, 15, 20, 30, 40 26 1 1 1
134.046 C4H7NO4 10, 15, 20, 30 13 3 1 1

C12H18NO2 15, 25, 40, 55 4 1 1 1
C14H20NO4+ 15, 25, 40, 55 10 1 1 1

C14H20NO2+ 15, 25, 40, 55 4 1 1 1
176.104 C6H13N3O3 10, 15, 20, 25, 30 25 1 1 1
122.028 C3H8NO2S 10, 15, 20, 30 10 1 1 1
241.033 C6H12N2O4S2 10, 15, 20, 30, 40 55 1 1 1
154.088 C8H11NO2 10, 20, 30, 40, 50 19 1 1 1

C15H22NO4+ 15, 25, 40 9 1 3 1
148.062 C5H9NO4 10, 15, 20, 30 8 2 1 1
147.078 C5H10N2O3 10, 15, 20, 30 10 1 1 1
156.078 C6H9N3O2 15, 25, 35, 45 17 1 1 1
132.103 C6H13NO2 10, 15, 25, 40, 18 1 1 1
132.103 C6H13NO2 15, 25, 40 19 1 1 1
150.060 C5H11NO2S 10, 15, 20, 30 13 1 1 1

C11H17N2O2+ 15, 25, 40, 55 4 1 1 1
166.088 C9H11NO2 15, 25, 40 15 1 1 1
116.072 C5H9NO2 10, 15, 55 9 1 1 1
106.051 C3H7NO3 10, 15, 20, 30 7 1 1 1

C16H24NO5+ 15, 25, 40 6 2 1 1
146.167 C7H19N3 15, 25, 35, 45 21 1 1 1
203.224 C10H26N4 15, 25, 35, 45 13 1 1 1

C14H22NO5+ 15, 25, 40, 55 17 2 1 1
120.067 C4H9NO3 10, 15, 20, 30 9 1 1 1
205.099 C11H12N2O2 15, 25, 40, 55 33 1 1 1
138.093 C8H12NO 15, 20, 30, 40, 50 21 1 1 1
182.083 C9H11NO3 10, 15, 25, 30, 40 25 1 1 1
118.088 C5H11NO2 10, 25, 40, 55 15 1 1 1

C13H20NO4+ 15, 25, 40, 55 10 1 1 1

molecular collision measured rank using rank using rank
Compound name m/za formulab energiesc peaksd isotopese fragmentatione combinede

3-(4-Hexosyloxyphenyl)propanoyl choline 414.214f

4-Coumaroyl choline 250.145f

4-Hexosylferuloyl choline 442.209f

4-Hexosyloxybenzoyl choline 386.182f

4-Hexosyloxycinnamoyl choline 412.198f

4-Hexosylvanilloyl choline 416.193f

4-Hydroxybenzoyl choline 224.130f

5-Hydroxyferuloyl choline 296.151f

6-Aminocapronic acid
Acetyl choline 146.119f

Alanine
Arginine
Asparagine
Aspartic acid
Benzoyl choline 207.126f

Cafeoyl choline 266.140f

Cinnamoyl choline 234.150f

Citrulline
Cysteine
Cystine
Dopamine
Feruloyl choline 280.156f

Glutamic acid
Glutamine
Histidine
Isoleucine
Leucine
Methionine
Nicotinic acid choline ester 209.130f

Phenylalanine
Proline
Serine
Sinapoyl choline 310.166f

Spermidine
Spermine
Syringoyl choline 284.151f

Threonine
Tryptophane
Tyramine
Tyrosine
Valine
Vanilloyl choline 254.140f

Table A.2: Molecular formula identi�cation for the QSTAR dataset: Compound,
am/z value for [M+H]+ adduct precursor; bmolecular formula of the
compounds; ccollision energies at which spectra have been recorded in
eV; dnumber of peaks in the merged spectra; erank of molecular formula
identi�cation using isotope patterns, using fragmentation patterns, and
combined identi�cation; fValue for M+.
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ID

6a-Methylprednisolone 4159 374.209 192
6077 326.145 44

441185 411.198 47
197 427.029 16
2031 311.189 15
2083 239.152 45
51263 416.254 60
2136 255.090 59
2153 180.065 36
2174 349.110 58
8944 352.215 16
2206 188.095 71

Antipyrine-4-amino 2151 203.106 57
2215 267.126 16
71428 539.280 105
2369 307.215 95
25702 452.329 45
2471 364.109 73
2476 467.304 241
2477 385.248 39
304 386.355 25
2882 468.069 51

539061 548.299 114
2958 527.179 35
3008 271.194 62
3066 583.279 51
3078 323.152 16
13505 452.246 91
36811 301.168 16
1691 543.174 72
3166 317.235 19
3222 376.200 22

5362033 348.169 21
5032 165.115 30
98255 609.295 50
592735 591.342 16
28329 279.170 62
3308 287.152 66
3334 299.073 38
3343 303.147 15
3405 441.140 19
3450 510.463 24
3473 294.183 34
11103 598.279 79
3640 362.209 174

3064246 343.215 101
5610 137.084 26
3783 301.168 51
3826 255.090 18
3903 555.269 53

PubChem molecular monoisotopic measured

Compound formula mass peaks
C22H30O5

Acepromazine C19H22N2OS
Acetophenazine C23H29N3O2S
Adenosine Diphosphate C10H15N5O10P2

Adiphenine C20H25NO2

Albuterol C13H21NO3

Alfentanil C21H32N6O3

Amfenac C15H13NO3

Aminophylline C7H8N4O2

Ampicillin C16H19N3O4S
Anileridine C22H28N2O2

Antipyrine C11H12N2O
C11H13N3O

Apomorphine C17H17NO2

Apramycin C21H41N5O11

Betaxolol C18H29NO3

Boldenone Undecylenate C30H44O3

Bumetanide C17H20N2O5S
Buprenorphine C29H41NO4

Buspirone C21H31N5O2

Cholesterol C27H46O
Cromolyn C23H16O11

Cymarin C30H44O9

Daunorubicin C27H29NO10

Dextromethorphan C18H25NO
Dihydroergotamine C33H37N5O5

Dimefline C20H21NO3

Diphenoxylate C30H32N2O2

Dobutamine C18H23NO3

Doxorubicin C27H29NO11

Drofenine C20H31NO2

Enalapril C20H28N2O5

Enalaprilat C18H24N2O5

Ephedrine C10H15NO
Ergocristine C35H39N5O5

ErgoloidMesylate C33H45N5O5

Etamiphylline C13H21N5O2

Etodolac C17H21NO3

Fenbendazole C15H13N3O2S
Fenoterol C17H21NO4

Folic Acid C19H19N7O6

Gallamine C30H60N3O3

Gingerol C17H26O4

Hematoporphyrin I C34H38N4O6

Hydrocortisone C21H30O5

Hydroxybutorphanol C21H29NO3

Hydroxyphenethylamine C8H11NO
Isoxsuprine C18H23NO3

Ketorolac C15H13NO3

Leucine Enkephalin C28H37N5O7

Table A.3: Compounds of the Micromass QTOF dataset: Name, PubChem ID,
molecular formula, mass, and number of measured peaks.
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ID

4031 429.252 12
4044 241.110 28
4064 218.127 13
42785 573.226 62
4112 454.171 15
4140 339.195 53

Morphine-3-Glucuronide 4318740 461.169 56
4428 341.163 138
9904 274.193 80
4495 308.047 42
18804 325.204 10
4544 413.147 165
23418 274.143 94
4614 293.105 23
4634 357.230 64
4635 315.147 146

5280972 460.148 152
107807 368.231 17
19675 410.203 22
11018 340.191 34
4893 383.159 71
4894 360.194 172
4898 458.267 161
4900 358.178 194
14592 217.183 8
4992 285.184 11
60815 376.200 55
5052 608.273 122

6420073 527.227 17
5152 415.272 71
2021 332.158 122
19649 581.266 147
5304 334.168 148
73393 350.163 181
41693 386.203 34
5323 310.074 54

5384001 398.068 76
8959 515.292 134

5282194 337.019 30
5403 225.136 35
5405 471.314 101

5701990 344.235 69
5411 264.184 30

5353990 444.153 149
3913 204.072 42
5429 180.065 45
5440 399.180 33
5452 370.154 25

941651 443.170 89
5456 511.438 6
5587 255.174 11
39765 557.432 58

PubChem molecular monoisotopic measured

Compound formula mass peaks

Mebeverine C25H35NO5

Mefenamic Acid C15H15NO2

Meprobamate C9H18N2O4

Methionine Enkephalin C27H35N5O7S
Methotrexate C20H22N8O5

Methylergonovine C20H25N3O2

C23H27NO9

Naltrexone C20H23NO4

Nandrolone C18H26O2

Nimesulide C13H12N2O5S
Norpropoxyphene C21H27NO2

Noscapine C22H23NO7

Ormetoprim C14H18N4O2

Oxaprozin C18H15NO3

Oxybutynin C22H31NO3

Oxycodone C18H21NO4

Oxytetracycline C22H24N2O9

Perindopril C19H32N2O5

Piperacetazine C24H30N2O2S
Poldine C21H26NO3

Prazosin C19H21N5O4

Prednisolone C21H28O5

Prednisolone Tebutate C27H38O6

Prednisone C21H26O5

Prolintane C15H23N
Pyrilamine C17H23N3O
Remifentanil C20H28N2O5

Reserpine C33H40N2O9

Rolitetracycline C27H33N3O8

Salmeterol C25H37NO4

Spectinomycin C14H24N2O7

Streptomycin C21H39N7O12

Strychnine C21H22N2O2

Strychnine N-oxide C21H22N2O3

Sufentanil C22H30N2O2S
Sulfadimethoxine C12H14N4O4S
Sulfasalazine C18H14N4O5S
Taurocholate C26H45NO7S
Tenoxicam C13H11N3O4S2

Terbutaline C12H19NO3

Terfenadine C32H41NO2

Testosterone Propionate C22H32O3

Tetracaine C15H24N2O2

Tetracycline C22H24N2O8

Tetramisole C11H12N2S
Theobromine C7H8N4O2

Thiethylperazine C22H29N3S2

Thioridazine C21H26N2S2

Thiothixene C23H29N3O2S2

Thonzide C32H55N4O
Tripelennamine C16H21N3

Vecuronium C34H57N2O4

Table A.3: Compound of the Micromass QTOF dataset (continued)
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1 1 0 0

1 1 0 0

6 5 1 0

13 11 2 0

3 3 0 0

12 8 3 1

34 22 9 3

36 27 3 6

19 15 4 0

23 18 4 1

36 31 2 3

6 5 1 0

1 1 0 0

31 23 2 6

2 2 0 0

3 2 0 1

2 2 0 0

38 24 5 9

7 5 0 2

6 6 0 0

1 1 0 0

7 5 2 0

3 3 0 0

7 7 0 0

36 26 3 7

19 13 6 0

19 15 0 4

45 34 8 3

2 2 0 0

7 5 0 2

4 4 0 0

1 1 0 0

6 6 0 0

5 4 1 0

1 1 0 0

Vitexin-2-O-rhamnoside 12 11 1 0

3 2 0 1

458 352 57 49

annotated evaluationbyexperts

Compoundname NLa correctb unclearb wrongb note
Adenosine

Anisic acid

Apomorphine

Armentoflavone

Berberine radical loss, pull-up

Bergapten

Bicuculline

Biochanin A

Chelidonine radical loss, pull-up

Cinchonine

Emetine

(-)-Epicatechine pull-up

Erythromycin

Genistein radical loss, pull-up

Harmane

IAA-Val pull-up

Indol-3-carboxylic acid

Kaempherol

Kinetin pull-up

Laudanosin pull-up

Methylumbelliferrylglucoronide

(S,R)-Noscapine radical loss

Phenylalanine

Phlorizin

Quercetin

Reserpine pull-up

Resveratrol

Rotenone

Rutine

Safranin

Salsolinol

Sinapine

Tetrahydropapaveroline pull-up

3,4,5-Trimethoxycinnamic acid

Tryptophan

Xanthohumol pull-up

Table A.4: Results for the Orbitrap dataset, expert evaluation: Compound, anumber
of annotated neutral losses (edges) in hypothetical fragmentation trees,
bnumber of neutral losses marked �correct�, �unclear�, or �wrong� by an MS
expert. �Radical loss� denotes that MS experts have identi�ed a radical
loss in the MS data not annotated by the program, and �pull-up� indicates
that neutral losses may be inserted too deep in the fragmentation tree.
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4 4 0 0

4 4 0 0

4 4 0 0

5 5 0 0

4 4 0 0

3 3 0 0

4 4 0 0

11 8 0 3

17 13 4 0

3 3 0 0

1 1 0 0

14 13 1 0

20 14 3 3

7 7 0 0

3 3 0 0

8 7 0 1

3 3 0 0

11 11 0 0

6 6 0 0

16 8 8 0

14 10 4 0

5 5 0 0

4 4 0 0

8 8 0 0

13 12 0 1

9 7 2 0

10 8 2 0

10 9 1 0

3 3 0 0

12 8 4 0

5 5 0 0

4 4 0 0

5 5 0 0

13 10 3 0

12 7 4 1

9 6 3 0

5 5 0 0

22 15 4 3

10 7 3 0

13 11 1 1

10 7 3 0

6 5 1 0

350 286 51 13

annotated evaluationbyexperts
Compoundname Nla correctb unclearb wrongb note
3-(4-Hexosyloxyphenyl)propanoyl choline

4-Coumaroyl choline

4-Hexosylferuloyl choline

4-Hexosyloxybenzoyl choline

4-Hexosyloxycinnamoyl choline

4-Hexosylvanilloyl choline

4-Hydroxybenzoyl choline

5-Hydroxyferuloyl choline radical loss

6-Aminocapronic acid

Acetyl choline

Alanine

Arginine

Asparagine

Aspartic acid

Benzoyl choline

Cafeoyl choline

Cinnamoyl choline

Citrulline

Cysteine

Cystine

Dopamine

Feruloyl choline

Glutamic acid

Glutamine

Histidine

Isoleucine

Leucine

Methionine

Nicotinic acid choline ester

Phenylalanine

Proline

Serine

Sinapoyl choline

Spermidine

Spermine pull-up

Syringoyl choline

Threonine

Tryptophane radical loss

Tyramine

Tyrosine

Valine

Vanilloyl choline

Table A.5: Results for the QSTAR dataset, expert evaluation: Compound, anumber
of annotated neutral losses (edges) in hypothetical fragmentation trees,
bnumber of neutral losses marked �correct�, �unclear�, or �wrong� by an MS
expert. �Radical loss� denotes that MS experts have identi�ed a radical
loss in the MS data not annotated by the program, and �pull-up� indicates
that neutral losses may be inserted too deep in the fragmentation tree.
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6a-Methylprednisolone 0.135 0.268 0.180 0.479 17 0 0
0.182 0.421 0.254 0.591 8 4 0
0.404 0.250 0.309 0.660 18 14 1
0.313 0.238 0.270 0.750 5 5 1
0.333 0.076 0.123 0.733 5 0 0
0.133 0.133 0.133 0.644 6 1 0
0.350 0.119 0.178 0.783 19 11 0
0.119 0.350 0.177 0.695 7 0 0
0.139 0.357 0.200 0.556 5 3 0
0.328 0.066 0.110 0.845 18 14 3
0.188 0.046 0.074 0.813 3 0 0
0.085 0.500 0.145 0.592 6 0 0

Antipyrine-4-amino 0.105 0.207 0.140 0.702 6 0 0
0.063 0.077 0.069 0.438 1 0 0
0.410 0.139 0.207 0.857 42 40 4
0.400 0.380 0.390 0.674 32 4 0
0.311 0.132 0.185 0.867 11 0 0
0.068 0.135 0.091 0.808 4 1 0
0.012 0.030 0.018 0.598 3 1 0
0.436 0.142 0.214 0.846 14 11 0
0.120 0.088 0.102 0.480 2 0 0
0.333 0.293 0.312 0.824 17 1 0
0.219 0.116 0.152 0.649 16 5 0
0.200 0.035 0.060 0.943 7 3 0
0.097 0.222 0.135 0.645 6 0 0
0.216 0.039 0.066 0.922 11 8 0
0.188 0.136 0.158 0.625 1 0 0
0.176 0.229 0.199 0.593 16 1 0
0.500 0.178 0.262 0.938 8 1 0
0.208 0.068 0.103 0.972 15 7 0
0.474 0.143 0.220 0.947 9 0 0
0.636 0.046 0.085 0.909 14 5 0
0.619 0.053 0.098 0.952 13 4 0
0.267 0.348 0.302 0.700 8 0 0
0.340 0.059 0.101 0.960 17 15 4
0.250 0.011 0.022 0.938 4 3 1
0.194 0.203 0.198 0.726 12 3 0
0.197 0.151 0.171 0.773 13 7 0
0.053 0.222 0.085 0.632 2 0 0
0.467 0.117 0.187 0.867 7 1 0
0.368 0.040 0.073 1.000 7 7 1
0.167 0.060 0.088 0.625 4 3 0
0.265 0.180 0.214 0.794 9 0 0
0.038 0.056 0.045 0.949 3 2 0
0.161 0.246 0.194 0.477 20 0 0
0.198 0.190 0.194 0.743 19 1 0
0.077 0.400 0.129 0.615 2 0 0
0.373 0.279 0.319 0.706 18 1 0
0.278 0.125 0.172 0.722 4 0 0
0.811 0.088 0.159 0.943 39 36 0

Mass Frontier prediction our method common non-trivial non-matching

Compound sensitivity specificity F-value sensitivity peaks common peaks explanations

Acepromazine
Acetophenazine
Adenosine Diphosphate
Adiphenine
Albuterol
Alfentanil
Amfenac
Aminophylline
Ampicillin
Anileridine
Antipyrine

Apomorphine
Apramycin
Betaxolol
Boldenone Undecylenate
Bumetanide
Buprenorphine
Buspirone
Cholesterol
Cromolyn
Cymarin
Daunorubicin
Dextromethorphan
Dihydroergotamine
Dimefline
Diphenoxylate
Dobutamine
Doxorubicin
Drofenine
Enalapril
Enalaprilat
Ephedrine
Ergocristine
ErgoloidMesylate
Etamiphylline
Etodolac
Fenbendazole
Fenoterol
Folic Acid
Gallamine
Gingerol
Hematoporphyrin I
Hydrocortisone
Hydroxybutorphanol
Hydroxyphenethylamine
Isoxsuprine
Ketorolac
Leucine Enkephalin

Table A.6: Results for the evaluation against MassFrontier based on the Micromass
QTOF dataset: Compound sensitivity, speci�city, and F-value of the
Mass Frontier prediction; sensitivity of our prediction; number of common
peaks, number of non-trivial common peaks, and number of non-matching
explanations. Zero non-matching explanations indicate perfect agreement.
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0.500 0.052 0.094 0.833 6 2 0
0.036 0.071 0.048 0.643 1 0 0
0.154 0.250 0.190 1.000 2 0 0
0.710 0.085 0.153 0.968 44 42 5
0.200 0.024 0.000 0.800 3 3 3
0.302 0.131 0.183 0.698 16 0 0

Morphine-3-Glucuronide 0.071 0.033 0.045 0.732 4 4 0
0.087 0.128 0.103 0.587 12 1 0
0.225 0.419 0.293 0.650 13 0 0
0.000 0.000 0.000 0.714 0 0 0
0.500 0.051 0.093 0.600 4 0 0
0.055 0.155 0.081 0.600 7 3 0
0.011 0.125 0.020 0.660 1 1 0
0.087 0.095 0.091 0.609 2 0 0
0.328 0.206 0.253 0.859 20 5 0
0.068 0.169 0.098 0.541 9 1 0
0.092 0.125 0.106 0.914 13 7 3
0.706 0.042 0.079 0.882 11 2 0
0.409 0.184 0.254 0.909 9 8 0
0.118 0.125 0.121 0.471 4 0 0
0.169 0.375 0.233 0.915 12 12 0
0.140 0.253 0.180 0.483 17 0 0
0.106 0.106 0.106 0.516 12 0 0
0.124 0.235 0.162 0.500 20 0 0
0.500 0.129 0.205 0.875 4 0 0
0.182 0.105 0.133 0.909 2 1 0
0.400 0.125 0.190 0.891 22 6 0
0.164 0.096 0.121 0.877 19 19 0
0.294 0.029 0.053 1.000 5 5 0
0.282 0.171 0.213 0.789 19 2 0
0.393 0.251 0.307 0.672 33 18 0
0.184 0.088 0.119 0.755 25 24 0
0.014 0.051 0.021 0.520 2 0 0
0.011 0.069 0.019 0.630 2 0 0
0.441 0.097 0.160 0.882 14 5 0
0.037 0.333 0.067 0.778 1 1 0
0.053 0.364 0.092 0.908 4 3 1
0.060 0.052 0.055 0.806 7 3 0
0.233 0.318 0.269 0.900 7 7 0
0.229 0.242 0.235 0.771 6 1 0
0.129 0.171 0.147 0.653 13 0 0
0.232 0.213 0.222 0.826 14 0 0
0.267 0.136 0.180 0.667 8 0 0
0.060 0.074 0.066 0.799 8 5 1
0.310 0.481 0.377 0.690 11 5 0
0.111 0.333 0.167 0.556 3 1 0
0.212 0.175 0.192 0.576 8 7 0
0.280 0.241 0.259 0.600 7 1 0
0.213 0.613 0.317 0.764 18 10 0
0.333 0.080 0.129 0.667 2 1 0
0.364 0.222 0.276 0.727 4 0 0
0.155 0.040 0.064 0.966 9 5 0

Mass Frontier prediction our method common non-trivial non-matching
Compound sensitivity specificity F-value sensitivity peaks common peaks explanations

Mebeverine
Mefenamic Acid
Meprobamate
Methionine Enkephalin
Methotrexate
Methylergonovine

Naltrexone
Nandrolone
Nimesulide
Norpropoxyphene
Noscapine
Ormetoprim
Oxaprozin
Oxybutynin
Oxycodone
Oxytetracycline
Perindopril
Piperacetazine
Poldine
Prazosin
Prednisolone
Prednisolone Tebutate
Prednisone
Prolintane
Pyrilamine
Remifentanil
Reserpine
Rolitetracycline
Salmeterol
Spectinomycin
Streptomycin
Strychnine
Strychnine N-oxide
Sufentanil
Sulfadimethoxine
Sulfasalazine
Taurocholate
Tenoxicam
Terbutaline
Terfenadine
Testosterone Propionate
Tetracaine
Tetracycline
Tetramisole
Theobromine
Thiethylperazine
Thioridazine
Thiothixene
Thonzide
Tripelennamine
Vecuronium

Table A.6: Results for the MassFrontier evaluation (continued)
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Alignment

group compound PubChem ID molecular formula ion monoisotopic mass frag.method collision energies annotated NLs
Alkaloid Berberine 2353 C20H18NO4+ [M+H]+ 336.124 CID 35,45 6

Alkaloid Bicuculline 10237 C20H17NO6 [M+H]+ 367.106 CID 35 25

Alkaloid Chelidonine 10147 C20H19NO5 [M+H]+ 353.126 CID 35,45 12

Alkaloid Cinchonine 8350 C19H22N2O [M+H]+ 294.173 CID 35,45,55 66

Alkaloid Emetine 10219 C29H40N2O4 [M+H]+ 480.299 CID 35,45 62

Alkaloid Harmane 5281404 C12H10N2 [M+H]+ 182.084 CID 35,45,55 1

Alkaloid Laudanosin 15548 C21H27NO4 [M+H]+ 357.194 CID 35,45,55,70 9

Aminoacid Alanine 602C3H7NO2 [M-H]- 89.048 CID 5-90 0

Aminoacid Arginine 232C6H14N4O2 [M+H]+ 174.112 CID 5-80 7

Aminoacid Asparagine 236C4H8N2O3 [M+H]+ 132.053 CID 5-75 0

Aminoacid Aspartate 424C4H7NO4 [M-H]- 133.038 CID 5-90 4

Aminoacid Cysteine 594C3H7NO2S [M-H]- 121.02 CID 5-90,150 0

Aminoacid Cystine 595C6H12N2O4S2 [M+H]+ 240.024 CID 5-45 11

Aminoacid Glutamate 611C5H9NO4 [M+H]+ 147.053 CID 5-60 4

Aminoacid Glutamine 738C5H10N2O3 [M-H]- 146.069 CID 5-90 5

Aminoacid Glycine 750C2H5NO2 [M-H]- 75.032 HCD 5-95 0

Aminoacid Isoleucine 791C6H13NO2 [M+H]+ 131.095 CID 5-60 2

Aminoacid Leucine 857C6H13NO2 [M+H]+ 131.095 CID 5-50 2

Aminoacid Methionine 876C5H11NO2S [M+H]+ 149.051 CID 5-55 6

Aminoacid Phenylalanine 994C9H11NO2 [M+H]+ 165.079 CID 5-45 7

Aminoacid Proline 614C5H9NO2 [M+H]+ 115.063 CID 5-90 1

Aminoacid Serine 617C3H7NO3 [M+H]+ 105.043 HCD 5-75 2

Aminoacid Threonine 205C4H9NO3 [M-H]- 119.058 CID 5-95,9 2

Aminoacid Tryptophan 1148C11H12N2O2 [M-H]- 204.09 HCD 5-95 6

Aminoacid Tyrosine 1153C9H11NO3 [M+H]+ 181.074 CID 5-45 7

Aminoacid Valine 1182C5H11NO2 [M+H]+ 117.079 CID 5-90 1

Anthocyanin CID44256802 44256802C47H55O27+ [M+H]+ 1051.293 CID 5-45 9

Anthocyanin CID44256805 44256805C58H65O31+ [M+H]+ 1257.351HCD 5-45 18

Anthocyanin Delphinidin-3-rutinoside 5492231C27H31O16+ [M+H]+ 611.161 HCD 5-45 18

Benzopyran Armentoflavone 5281600 C30H18O10 [M+H]+ 538.09 CID 35,45,55,70 15

Benzopyran Bergapten 2355 C12H8O4 [M+H]+ 216.042 CID 35,45,55,70 10

Benzopyran BiochaninA 5280373 C16H12O5 [M+H]+ 284.068 CID 35,45,55,70 19

Benzopyran Epicatechin 72276 C15H14O6 [M+H]+ 290.079 CID 35,45,55,70 8

Benzopyran Genistein 5280961 C15H10O5 [M+H]+ 270.053 CID 35,45,55 17

Benzopyran Kaempferol 5280863 C15H10O6 [M+H]+ 286.048 CID 35,45,55 26

Benzopyran Quercetin 5280343 C15H10O7 [M+H]+ 302.043 CID 35,45,55 23

Benzopyran Rotenone 6758 C23H22O6 [M+H]+ 394.142 CID 35,45,55,70 8

Benzopyran Rutin 5280805 C27H30O16 [M+H]+ 610.153 CID 35,45,55,70 9

Benzopyran Vitexinrhamnoside 5282151 C27H30O14 [M+H]+ 578.164 CID 35,45,55,70 13

Benzopyran Xanthohumol 639665 C21H22O5 [M+H]+ 354.147 CID 35,45,55,70 3

Carboxylicacid Anisicacid 11370 C8H8O3 [M+H]+ 152.047 CID 35,45,55,70 1

Carboxylicacid Indole-3-carboxylicAcid 69867 C9H7NO2 [M+H]+ 161.048 CID 35,45,55,70 2

Carboxylicacid TrimethoxycinnamicAcid 735755C12H14O5 [M+H]+ 238.084 CID 35,45,55,70 16

Table B.1: Compound list for the Orbitrap dataset: Compound class, compound
name, PubChem ID, molecular formula, ion type, monoisotopic mass (Da),
fragmentation technique, collision energies, and number of annotated losses
(NLs) in hypothetical fragmentation trees. Collision energies are given in
electron volt for CID and arbitrary units for HCD fragmentation. If a range
is given, we used a step size of 5 units within this range. Compounds with
less than three (seven) annotated losses are colored red (yellow).
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group compound PubChem ID molecular formula ion monoisotopic mass frag.method collision energies annotated NLs
Glucosinolate 3-Hydroxypropyl-Glucosinolate 25245521C10H17NO10S2 [M-H]- 375.029 HCD 5-90 9

Glucosinolate 3-Methylthiopropyl-Glucosinolate 25244538C11H19NO9S3 [M-H]- 405.022 HCD 5-90 13

Glucosinolate 4-Methoxy-3-indolylmethyl glucosinolate 656562C17H20N2O10S2 [M-H]- 476.056 HCD 5-90 19

Glucosinolate 7-Methylthioheptyl glucosinolate 44237368C15H27NO9S3 [M-H]- 461.085 HCD 5-90 18

Glucosinolate 8-Methylthiooctyl glucosinolate 44237373C16H29NO9S3 [M-H]- 475.1 HCD 5,15-55,65-90 21

Glucosinolate Glucoalyssin 656523C13H25NO10S3 [M-H]- 451.064 HCD 5,15-50,60 4

Glucosinolate Glucoerucin 656538C12H21NO9S3 [M-H]- 419.038 HCD 5-90 19

Glucosinolate Glucohirsutin 44237257C16H29NO10S3 [M-H]- 491.095 HCD 5-90 24

Glucosinolate Glucoibarin 44237203C15H27NO10S3 [M-H]- 477.08 HCD 5-90 28

Glucosinolate Glucoiberin 9548621C11H19NO10S3 [M-H]- 421.017 HCD 55-90 30

Glucosinolate Glucomalcommin 25244201C17H21NO11S2 [M-H]- 479.056 HCD 5-90 25

Glucosinolate Glucoraphanin 9548633C12H21NO10S3 [M-H]- 435.033 HCD 5-90 8

Glucosinolate Glucoraphenin 6443008C12H21NO11S3 [M-H]- 451.028 HCD 5-90 16

Glucosinolate Indolylmethyl glucosinolate 25244590C16H18N2O9S2 [M-H]- 446.045 HCD 5-90 22

Lipid DErySphinganine 91486C18H39NO2 [M-H]- 301.298 CID 25 12

Lipid DErySphingosine 5280335C18H37NO2 [M+H]+ 299.282 CID 10 1

Lipid Phosphatidylcholine 129900C25H54NO6P [M+H]+ 495.369 HCD 30 3

Lipid Phosphatidylethanolamine 46891780C39H74NO8P [M-H]- 715.515 CID 20 6

Sugar Cellobiose 294C12H22O11 [M+H]+ 342.116 HCD 4 10

Sugar DP5 C30H52O26 [M+Na]+ 828.275 HCD 45 16

Sugar DP7 C42H72O36 [M+H]+ 1152.38 HCD 12 17

Sugar Fucose 17106C6H12O5 [M+Na]+ 164.068 CID 46 2

Sugar Galactose 6036C6H12O6 [M+NH4]+ 180.063 HCD 12 4

Sugar Gentiobiose 441422C12H22O11 [M+Na]+ 342.116 CID 20 6

Sugar Lactose 6134C12H22O11 [M+H]+ 342.116 HCD 4 10

Sugar Mannitol 6251C6H14O6 [M+H]+ 182.079 HCD 20 12

Sugar Mannose 18950C6H12O6 [M+H]+ 180.063 CID 15 6

Sugar Rhamnose 19233C6H12O5 [M+Na]+ 164.068 CID 46 2

Sugar Sorbitol 5780C6H14O6 [M+H]+ 182.079 CID 20 14

Sugar Trehalose 7427C12H22O11 [M+Na]+ 342.116 CID 20 2

Zeatin Cis-Zeatin 449093C10H13N5O [M+H]+ 219.112 CID 44 7

Zeatin Cis-Zeatin-9-glucoside 9842892C16H23N5O6 [M+H]+ 381.165 CID 17 5

Zeatin Cis-Zeatin-o-glucoside 25244165C16H23N5O6 [M+H]+ 381.165 CID 19 6

Zeatin Cis-Zeatin-riboside 6440982C15H21N5O5 [M+H]+ 351.154 CID 11 4

Zeatin Cis-Zeatin-riboside-O-glucoside 11713250C21H31N5O10 [M+H]+ 513.207 CID 20 4

Zeatin D5-Cis-Zeatin-riboside 6440982C15H21N5O5 [M+H]+ 351.154 CID 15 15

Zeatin D5-Trans-Zeatin 449093C10D5H8N5O [M+H]+ 224.143 CID 15 8

Zeatin D5-Trans-Zeatin-7-glucoside C16D5H18N5O6 [M+H]+ 386.196 CID 14 8

Zeatin D5-Trans-Zeatin-9-glucoside 9842892C16D5H18N5O6 [M+H]+ 386.196 CID 14 10

Zeatin D5-Trans-Zeatin-riboside 6440982C15H21N5O5 [M+H]+ 351.154 CID 13 8

Zeatin D5-Trans-Zeatin-riboside-o-glucoside 11713250C21H31N5O10 [M+H]+ 513.207 CID 23 15

Zeatin D6-isopentenyl-Adenine C10D6H7N5 [M+H]+ 209.155 CID 27 4

Zeatin D6-isopentenyl-Adenine-7-glucoside 330023C16D6H17N5O5 [M+H]+ 371.208 CID 30 1

Zeatin D6-isopentenyl-Adenine-9-glucoside 23197432C16D6H17N5O5 [M+H]+ 371.208 CID 15 6

Zeatin D6-isopentenyl-Adenosine 24405C15D6H15N5O4 [M+H]+ 341.197 CID 22 4

Zeatin Isopentenyl-Adenine C10H13N5 [M+H]+ 203.117 CID 35 2

Zeatin Isopentenyl-Adenine-7-glucoside 330023C16H23N5O5 [M+H]+ 365.17 CID 14 4

Zeatin Isopentenyl-Adenine-9-glucoside 23197432C16H23N5O5 [M+H]+ 365.17 CID 14 5

Zeatin Isopentenyl-Adenosine 24405C15H21N5O4 [M+H]+ 335.159 CID 13 3

Zeatin Trans-Zeatin 449093C10H13N5O [M+H]+ 219.112 CID 47 6

Zeatin Trans-Zeatin-9-glucoside 9842892C16H23N5O6 [M+H]+ 381.165 CID 28 5

Zeatin Trans-Zeatin-o-glucoside 25244165C16H23N5O6 [M+H]+ 381.165 CID 28 9

Zeatin Trans-Zeatin-riboside 6440982C15H21N5O5 [M+H]+ 351.154 CID 24 1

Zeatin Trans-Zeatin-riboside-O-glucoside 11713250C21H31N5O10 [M+H]+ 513.207 CID 12 5

Table B.1: Compound list for the Orbitrap dataset (continued)
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group compound PubChem ID molecular formula monoisotopic mass collision energies annotated NLs

Aldehyde 1-Methoxy-3-carbaldehyde 398554 C10H9NO2 175.063 Ramp 5-60 2

Aldehyde 4-Hydroxy-3-methoxycinnamaldehyde 5280536 C10H10O3 178.063 Ramp 5-60 2

Aldehyde Indole-3-acetaldehyde 800 C10H9NO 159.068 Ramp 5-60 2

Aldehyde Indole-3-carboxyaldehyde 10256 C9H7NO 145.053 30, Ramp 5-60 6

Aldehyde Syringaldehyde 8655 C9H10O4 182.058 Ramp 5-60 3

Amino acid 1-Aminocyclopropane-1-carboxylic_acid 535 C4H7NO2 101.048 Ramp 5-60 0

Amino acid 2-Aminoisobutyric_acid 6119 C4H9NO2 103.063 Ramp 5-60 0

Amino acid 3-Hydroxy-DL-kynurenine 89 C10H12N2O4 224.08 Ramp 5-60 6

Amino acid 3-Methyl-L-histidine 64969 C7H11N3O2 169.085 Ramp 5-60 3

Amino acid 5-Aminovaleric_acid 138 C5H11NO2 117.079 Ramp 5-60 0

Amino acid Alpha-Methyl-DL-histidine 4396761 C7H11N3O2 169.085 Ramp 5-60 7

Amino acid Alpha-Methyl-DL-serine 439656 C4H9NO3 119.058 Ramp 5-60 1

Amino acid Carbamoyl-DL-aspartic_acid 93072 C5H8N2O5 176.043 Ramp 5-60 3

Amino acid Creatine 586 C4H9N3O2 131.069 Ramp 5-60 1

Amino acid Cystathionine 834 C7H14N2O4S 222.067 Ramp 5-60 2

Amino acid D-Alloisoleucine 94206 C6H13NO2 131.095 Ramp 5-60 0

Amino acid D-beta-homophenylalanine 102530 C10H13NO2 179.095 Ramp 5-60 2

Amino acid D-beta-homoserine 779 C4H9NO3 119.058 Ramp 5-60 4

Amino acid Delta-Aminolevulinic_acid 137 C5H9NO3 131.058 Ramp 5-60 1

Amino acid DL-2-Aminobutyric_acid 80283 C4H9NO2 103.063 Ramp 5-60 0

Amino acid DL-5-Hydroxylysine 1029 C6H14N2O3 162.1 Ramp 5-60 3

Amino acid DL-alpha-epsilon-Diaminopimelic_acid 865 C7H14N2O4 190.095 Ramp 5-60 4

Amino acid DL-threo-beta-Methylaspartic_acid 852 C5H9NO4 147.053 Ramp 5-60 3

Amino acid D-Pantothenic_acid 6613 C9H17NO5 219.111 Ramp 5-60 4

Amino acid Folic_acid 6037 C19H19N7O6 441.14 Ramp 5-60 4

Amino acid Glutathione_(oxidized_form) 65359 C20H32N6O12S2 612.152 Ramp 5-60 13

Amino acid Glycocyamine 763 C3H7N3O2 117.054 Ramp 5-60 1

Amino acid Glycyl-L-proline 3013625 C7H12N2O3 172.085 Ramp 5-60 3

Amino acid Gly-Gly 11163 C4H8N2O3 132.053 Ramp 5-60 2

Amino acid L-(-)-Phenylalanine 6140 C9H11NO2 165.079 Ramp 5-60 4

Amino acid L(+)-Arginine 6322 C6H14N4O2 174.112 Ramp 5-60 1

Amino acid L-(+)-Lysine 5962 C6H14N2O2 146.106 Ramp 5-60 0

Amino acid L-2-Aminobutyric_acid 80283 C4H9NO2 103.063 Ramp 5-60 0

Amino acid L-allo-threonine 99289 C4H9NO3 119.058 Ramp 5-60 1

Amino acid L-Anserine 112072 C10H16N4O3 240.122 Ramp 5-60 3

Amino acid L-Arginine 6322 C6H14N4O2 174.112 Ramp 5-60 1

Amino acid L-beta-Homoisoleucine 16211048 C7H15NO2 145.11 Ramp 5-60 0

Amino acid L-beta-homoleucine 2761525 C7H15NO2 145.11 Ramp 5-60 0

Amino acid L-beta-homolysine 2761529 C7H16N2O2 160.121 Ramp 5-60 0

Amino acid L-beta-homomethionine 5706673 C6H13NO2S 163.067 Ramp 5-60 2

Amino acid L-beta-Homophenylalanine 2761537 C10H13NO2 179.095 Ramp 5-60 2

Amino acid L-beta-homoproline 2761541 C6H11NO2 129.079 Ramp 5-60 0

Amino acid L-beta-homoserine 1502076 C4H9NO3 119.058 Ramp 5-60 4

Amino acid L-beta-homothreonine 5706676 C5H11NO3 133.074 Ramp 5-60 3

Amino acid L-beta-homotryptophan 2761550 C12H14N2O2 218.106 Ramp 5-60 3

Amino acid L-beta-homotyrosine 2761554 C10H13NO3 195.09 Ramp 5-60 2

Amino acid L-beta-homovaline 2761558 C6H13NO2 131.095 Ramp 5-60 1

Amino acid L-Carnosine 439224 C9H14N4O3 226.107 Ramp 5-60 5

Amino acid L-Citrulline 9750 C6H13N3O3 175.096 Ramp 5-60 1

Amino acid L-Ethionine 25674 C6H13NO2S 163.067 Ramp 5-60 1

Amino acid Leucylleucyltyrosine 88513 C21H33N3O5 407.242 Ramp 5-60 6

Amino acid Leupeptin 439527 C20H38N6O4 426.295 Ramp 5-60 4

Amino acid L-Glutamic_acid 33032 C5H9NO4 147.053 Ramp 5-60 2

Amino acid L-Histidine 6274 C6H9N3O2 155.069 Ramp 5-60 8

Amino acid L-Homocarnosine 89235 C10H16N4O3 240.122 Ramp 5-60 3

Amino acid L-Homoserine 12647 C4H9NO3 119.058 Ramp 5-60 3

Amino acid L-Leucine 6106 C6H13NO2 131.095 Ramp 5-60 1

Amino acid L-Methionine_sulfone 445282 C5H11NO4S 181.041 Ramp 5-60 2

Amino acid L-Norleucine 21236 C6H13NO2 131.095 Ramp 5-60 1

Amino acid L-Norvaline 65098 C5H11NO2 117.079 Ramp 5-60 0

Amino acid L-Proline 145742 C5H9NO2 115.063 Ramp 5-60 0

Amino acid L-saccharopine 160556 C11H20N2O6 276.132 Ramp 5-60 4

Amino acid L-Threonine 6288 C4H9NO3 119.058 Ramp 5-60 1

Amino acid L-Tryptophane 6305 C11H12N2O2 204.09 Ramp 5-60 4

Amino acid L-Tyrosine 6057 C9H11NO3 181.074 Ramp 5-60 4

Amino acid L-Valine 6287 C5H11NO2 117.079 Ramp 5-60 0

Amino acid N-Acetyl-DL-aspartic_acid 65065 C6H9NO5 175.048 Ramp 5-60 6

Amino acid N-Acetyl-DL-glutamic_acid 70914 C7H11NO5 189.064 Ramp 5-60 6

Amino acid N-acetyl-DL-serine 352294 C5H9NO4 147.053 Ramp 5-60 2

Amino acid N-Acetylglycine 10972 C4H7NO3 117.043 Ramp 5-60 2

Amino acid N-alpha-Acetyl-L-ornithine 439232 C7H14N2O3 174.1 Ramp 5-60 2

Amino acid N-Formyl-L-methionine 439750 C6H11NO3S 177.046 Ramp 5-60 3

Amino acid N-N-Dimethylglycine 673 C4H9NO2 103.063 Ramp 5-60 0

Amino acid N-Tigloylglycine 6441567 C7H11NO3 157.074 Ramp 5-60 4

Amino acid O-Phospho-L-serine 68841 C3H8NO6P 185.009 Ramp 5-60 2

Amino acid S-Adenosyl-L-homocysteine 439155 C14H20N6O5S 384.122 Ramp 5-60 1

Amino acid S-Lactoylglutathione 440018 C13H21N3O8S 379.105 Ramp 5-60 18

Amino acid S-Sulfocysteine 115015 C3H7NO5S2 200.977 Ramp 5-60 6

Benzimidazole Thiabendazole 5430 C10H7N3S 201.036 Ramp 5-60 3

Bile acid Cholate 221493 C24H40O5 408.288 30, Ramp 5-60 10

Bile acid Deoxycholate 440355 C24H40O4 392.293 30, Ramp 5-60 6

Capsaicinoid Capsaicin 1548943 C18H27NO3 305.199 Ramp 5-60 1

Capsaicinoid Dihydrocapsaicin 107982 C18H29NO3 307.215 Ramp 5-60 1

Carboxylic acid (-)-Citramalic_acid 439766 C5H8O5 148.037 Ramp 5-60 4

Carboxylic acid (-)Shikimic_acid 8742 C7H10O5 174.053 Ramp 5-60 7

Carboxylic acid (+-)-Alpha-Lipoic_acid 864 C8H14O2S2 206.044 Ramp 5-60 5

Carboxylic acid (R)-(-)-mandelic_acid 11914 C8H8O3 152.047 Ramp 5-60 1

Carboxylic acid (S)-(+)-Citramailc_acid 441696 C5H8O5 148.037 Ramp 5-60 3

Carboxylic acid 16-Hydroxyhexadecanoic_acid 10466 C16H32O3 272.235 Ramp 5-60 0

Carboxylic acid 1-O-b-D-glucopyranosyl_sinapate 5280406 C17H22O10 386.121 Ramp 5-60 10

Carboxylic acid 2-5-Dihydroxy_benzoic_acid 3469 C7H6O4 154.027 Ramp 5-60 2

Carboxylic acid 2-Aminoethylphosphonic_acid 339 C2H8NO3P 125.024 Ramp 5-60 2

Carboxylic acid 2-Hydroxyisobutyric_acid 11671 C4H8O3 104.047 30, Ramp 5-60 2

Carboxylic acid 2-Hydroxyisocaproic_acid 439960 C6H12O3 132.079 Ramp 5-60 2

Carboxylic acid 2-Isopropylmalic_acid 5280523 C7H12O5 176.068 Ramp 5-60 5

Carboxylic acid 2-Methylglutaric_Acid 12046 C6H10O4 146.058 Ramp 5-60 2

Carboxylic acid 2-Oxobutyrate 58 C4H6O3 102.032 Ramp 5-60 0

Carboxylic acid 2-Oxovaleric_acid 74563 C5H8O3 116.047 Ramp 5-60 0

Carboxylic acid 3-4-Dihydroxybenzoic_acid 72 C7H6O4 154.027 Ramp 5-60 2

Carboxylic acid 3-Guanidinopropionic_acid 67701 C4H9N3O2 131.069 Ramp 5-60 1

Carboxylic acid 3-Hydroxy-3-methylglutarate 1662 C6H10O5 162.053 Ramp 5-60 3

Carboxylic acid 3-Hydroxymandelic_acid 86957 C8H8O4 168.042 Ramp 5-60 2

Table B.2: Compound list for the MassBank dataset: Compound class, compound
name, PubChem ID, molecular formula, monoisotopic mass (Da), collision
energies (eV), and number of annotated losses (NLs) in hypothetical
fragmentation trees. The ion type of all compounds is [M-H]- or M-.
Compounds with less than three (seven) annotated losses are colored red
(yellow).
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Carboxylic acid 3-Indoleacetic_acid 802 C10H9NO2 175.063 Ramp 5-60 2

Carboxylic acid 4-Coumaric_acid 637542 C9H8O3 164.047 30, Ramp 5-60 2

Carboxylic acid 4-Hydroxy-3-methoxycinnamic_acid 445858 C10H10O4 194.058 Ramp 5-60 3

Carboxylic acid 4-Hydroxy-benzoate 135 C7H6O3 138.032 Ramp 5-60 1

Carboxylic acid 6-Hydroxynicotinic_Acid 72924 C6H5NO3 139.027 Ramp 5-60 1

Carboxylic acid Anthranilic_acid 227 C7H7NO2 137.048 Ramp 5-60 1

Carboxylic acid Caffeic_acid 689043 C9H8O4 180.042 Ramp 5-60 2

Carboxylic acid Cis-Aconitic_Acid 643757 C6H6O6 174.016 Ramp 5-60 3

Carboxylic acid Citraconic_Acid 643798 C5H6O4 130.027 Ramp 5-60 1

Carboxylic acid Citric_acid 311 C6H8O7 192.027 Ramp 5-60 6

Carboxylic acid D-(-)-Quinic_acid 6508 C7H12O6 192.063 Ramp 5-60 1

Carboxylic acid D(+)-Galacturonic_acid 439215 C6H10O7 194.043 Ramp 5-60 11

Carboxylic acid D-(+)-Glyceric_acid 439194 C3H6O4 106.027 Ramp 5-60 2

Carboxylic acid D-(+)-Malic_acid 92824 C4H6O5 134.022 Ramp 5-60 4

Carboxylic acid D-Gluconic_acid 10690 C6H12O7 196.058 Ramp 5-60 8

Carboxylic acid D-Glucuronic_acid 94715 C6H10O7 194.043 Ramp 5-60 10

Carboxylic acid DL-2-Hydroxyvaleric_acid 98009 C5H10O3 118.063 Ramp 5-60 1

Carboxylic acid DL-3-4-Dihydroxymandelic_acid 85782 C8H8O5 184.037 Ramp 5-60 2

Carboxylic acid DL-3-Aminoisobutyric_acid 64956 C4H9NO2 103.063 Ramp 5-60 1

Carboxylic acid DL-4-Hydroxy-3-methoxymandelic_acid 1245 C9H10O5 198.053 Ramp 5-60 1

Carboxylic acid DL-beta-Aminobutyric_acid 2761506 C4H9NO2 103.063 Ramp 5-60 0

Carboxylic acid DL-beta-Hydroxybutyric_acid 441 C4H8O3 104.047 Ramp 5-60 1

Carboxylic acid DL-Glyceric_acid 439194 C3H6O4 106.027 Ramp 5-60 2

Carboxylic acid DL-Lactic_acid 107689 C3H6O3 90.032 Ramp 5-60 0

Carboxylic acid DL-mandelic_acid 1292 C8H8O3 152.047 Ramp 5-60 1

Carboxylic acid DL-p-Hydroxyphenyllactic_acid 9378 C9H10O4 182.058 Ramp 5-60 5

Carboxylic acid DL-Pipecolinic_acid 439227 C6H11NO2 129.079 Ramp 5-60 0

Carboxylic acid D-tartaric_acid 439655 C4H6O6 150.016 Ramp 5-60 4

Carboxylic acid Gamma-Linolenic_acid 5280933 C18H30O2 278.225 Ramp 5-60 1

Carboxylic acid Gibberellin_A4 443457 C19H24O5 332.162 Ramp 5-60 8

Carboxylic acid Glutaric_acid 743 C5H8O4 132.042 Ramp 5-60 2

Carboxylic acid Homogentisic_acid 780 C8H8O4 168.042 Ramp 5-60 3

Carboxylic acid Indole-3-carboxylic_acid 69867 C9H7NO2 161.048 Ramp 5-60 1

Carboxylic acid Isoguvacine 3765 C6H9NO2 127.063 Ramp 5-60 1

Carboxylic acid Isonicotinic_acid 5922 C6H5NO2 123.032 Ramp 5-60 1

Carboxylic acid Itaconic_acid 811 C5H6O4 130.027 Ramp 5-60 1

Carboxylic acid Kynurenic_acid 3845 C10H7NO3 189.043 Ramp 5-60 1

Carboxylic acid L(+)-Tartaric_acid 444305 C4H6O6 150.016 Ramp 5-60 2

Carboxylic acid L-2-Aminoadipic_Acid 92136 C6H11NO4 161.069 Ramp 5-60 3

Carboxylic acid L-Pyroglutamic_acid 7405 C5H7NO3 129.043 Ramp 5-60 0

Carboxylic acid Maleic_acid 444266 C4H4O4 116.011 Ramp 5-60 1

Carboxylic acid Mesaconic_acid 638129 C5H6O4 130.027 Ramp 5-60 1

Carboxylic acid Methylsuccinic_acid 10349 C5H8O4 132.042 30, Ramp 5-60 1

Carboxylic acid Mucic_acid 3037582 C6H10O8 210.038 Ramp 5-60 5

Carboxylic acid N-acetylneuraminic_acid 439197 C11H19NO9 309.106 Ramp 5-60 3

Carboxylic acid Nicotinic_Acid 938 C6H5NO2 123.032 Ramp 5-60 1

Carboxylic acid Orotic_acid 967 C5H4N2O4 156.017 Ramp 5-60 1

Carboxylic acid Phosphoenolpyruvic_Acid 1005 C3H5O6P 167.982 Ramp 5-60 1

Carboxylic acid Prostaglandin_E1 5280723 C20H34O5 354.241 Ramp 5-60 6

Carboxylic acid Rosmarinic_acid 639655 C18H16O8 360.085 Ramp 5-60 8

Carboxylic acid Sebacic_acid 5192 C10H18O4 202.121 Ramp 5-60 3

Carboxylic acid Sinapic_acid 637775 C11H12O5 224.068 Ramp 5-60 10

Carboxylic acid Sinapoyl_malate 11953815 C15H16O9 340.079 Ramp 5-60 12

Carboxylic acid Succinic_acid 1110 C4H6O4 118.027 Ramp 5-60 2

Carboxylic acid Trans-4-Hydroxy-L-proline 5810 C5H9NO3 131.058 Ramp 5-60 2

Carboxylic acid Trans-Cinnamic_acid 444539 C9H8O2 148.052 Ramp 5-60 1

Carboxylic acid Urocanic_acid 736715 C6H6N2O2 138.043 Ramp 5-60 1

Coumarin 4-Methylumbelliferone 5280567 C10H8O3 176.047 Ramp 5-60 5

Coumarin 6-7-Dihydroxycoumarin 5281416 C9H6O4 178.027 30, Ramp 5-60 19

Coumarin 7-Hydroxy-4-methylcoumarin 5280567 C10H8O3 176.047 30, Ramp 5-60 10

Coumarin Daphnetin 5280569 C9H6O4 178.027 30, Ramp 5-60 12

Coumarin Esculin 5281417 C15H16O9 340.079 Ramp 5-60 4

Coumarin Scopoletin 5280460 C10H8O4 192.042 Ramp 5-60 4

Ethanolamine O-Phosphorylethanolamine 1015 C2H8NO4P 141.019 Ramp 5-60 1

Flavonoid (-)-Epicatechin 72276 C15H14O6 290.079 Ramp 5-60 25

Flavonoid (-)-Riboflavin 493570 C17H20N4O6 376.138 Ramp 5-60 4

Flavonoid (+)-Catechin 9064 C15H14O6 290.079 Ramp 5-60 13

Flavonoid (+)-Epicatechin 182232 C15H14O6 290.079 Ramp 5-60 13

Flavonoid 7-Methylquercetin-3-Galactoside-6-Rhamnoside-3-Rhamnoside 44259338 C34H42O20 770.227 30, Ramp 5-60 4

Flavonoid Apigenin 5280443 C15H10O5 270.053 Ramp 5-60 2

Flavonoid Apigenin-7-O-glucoside 5280704 C21H20O10 432.106 Ramp 5-60 7

Flavonoid Baicalin 64982 C21H18O11 446.085 Ramp 5-60 3

Flavonoid Daidzein 5281708 C15H10O4 254.058 30, Ramp 5-60 18

Flavonoid Daidzin 107971 C21H20O9 416.111 Ramp 5-60 10

Flavonoid Datiscin 5883291 C27H30O15 594.158 30, Ramp 5-60 14

Flavonoid Eriodictyol 440735 C15H12O6 288.063 Ramp 5-60 5

Flavonoid Eriodictyol-7-O-glucoside 5319853 C21H22O11 450.116 Ramp 5-60 7

Flavonoid Flavanomarein 101781 C21H22O11 450.116 Ramp 5-60 4

Flavonoid Formononetin 5280378 C16H12O4 268.074 Ramp 5-60 7

Flavonoid Fortunellin 5317385 C28H32O14 592.179 Ramp 5-60 2

Flavonoid Gossypin 5281621 C21H20O13 480.09 Ramp 5-60 7

Flavonoid Hesperidin 10621 C28H34O15 610.19 Ramp 5-60 5

Flavonoid Homoorientin 114776 C21H20O11 448.101 Ramp 5-60 13

Flavonoid Hyperoside 5281643 C21H20O12 464.095 Ramp 5-60 8

Flavonoid Isorhamnetin 5281654 C16H12O7 316.058 Ramp 5-60 3

Flavonoid Isorhamnetin-3-Galactoside-6-Rhamnoside 44259338 C28H32O16 624.169 30, Ramp 5-60 8

Flavonoid Isorhamnetin-3-O-glucoside 5318645 C22H22O12 478.111 30, Ramp 5-60 13

Flavonoid Isorhamnetin-3-O-rutinoside 5481663 C28H32O16 624.169 30, Ramp 5-60 8

Flavonoid Kaempferide 5281666 C16H12O6 300.063 Ramp 5-60 10

Flavonoid Kaempferol 5280863 C15H10O6 286.048 Ramp 5-60 3

Flavonoid Kaempferol-3-7-O-bis-alpha-L-rhamnoside 5323562 C27H30O14 578.164 30, Ramp 5-60 10

Flavonoid Kaempferol-3-Galactoside-6-Rhamnoside-3-Rhamnoside 5281693 C33H40O19 740.216 30, Ramp 5-60 4

Flavonoid Kaempferol-3-Glucoside-2-p-coumaroyl 25245527 C30H26O13 594.137 Ramp 5-60 6

Flavonoid Kaempferol-3-Glucoside-2-Rhamnoside-7-Rhamnoside 25202803 C33H40O19 740.216 30, Ramp 5-60 7

Flavonoid Kaempferol-3-Glucoside-3-Rhamnoside 25202803 C27H30O15 594.158 Ramp 5-60 4

Flavonoid Kaempferol-3-Glucoside-6-p-coumaroyl 5320686 C30H26O13 594.137 30, Ramp 5-60 11

Flavonoid Kaempferol-3-Glucuronide 5318759 C21H18O12 462.08 Ramp 5-60 3

Flavonoid Kaempferol-3-O-alpha-L-arabinoside 5481882 C20H18O10 418.09 Ramp 5-60 7

Flavonoid Kaempferol-3-O-alpha-L-rhamnopyranosyl(1-2)-beta-D-glucopyranoside-7-O-alpha-L-rhamnopyranoside 44258837 C33H40O19 740.216 30, Ramp 5-60 8

Flavonoid Kaempferol-3-O-alpha-L-rhamnoside 5316673 C21H20O10 432.106 Ramp 5-60 9

Flavonoid Kaempferol-3-O-beta-D-galactoside-7-O-alpha-L-rhamnoside 5281693 C27H30O15 594.158 30, Ramp 5-60 13

Flavonoid Kaempferol-3-O-beta-glucopyranosyl-7-O-alpha-rhamnopyranoside 25203808 C27H30O15 594.158 30, Ramp 5-60 11

Flavonoid Kaempferol-3-O-glucoside 5282102 C21H20O11 448.101 30, Ramp 5-60 13
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Flavonoid Kaempferol-3-O-rutinoside 5318767 C27H30O15 594.158 30, Ramp 5-60 6

Flavonoid Kaempferol-3-Rhamnoside-4-Rhamnoside-7-Rhamnoside 44259005 C33H40O18 724.221 Ramp 5-60 6

Flavonoid Kaempferol-7-O-alpha-L-rhamnoside 5316673 C21H20O10 432.106 30, Ramp 5-60 28

Flavonoid Kaempferol-7-O-neohesperidoside 5483905 C27H30O15 594.158 30, Ramp 5-60 3

Flavonoid Linarin 5317025 C28H32O14 592.179 Ramp 5-60 2

Flavonoid Luteolin 5280445 C15H10O6 286.048 30, Ramp 5-60 19

Flavonoid Luteolin-3-7-di-O-glucoside 5490298 C27H30O16 610.153 Ramp 5-60 3

Flavonoid Luteolin-4-O-glucoside 5319116 C21H20O11 448.101 Ramp 5-60 6

Flavonoid Luteolin-7-O-glucoside 5280637 C21H20O11 448.101 Ramp 5-60 8

Flavonoid Marein 6441269 C21H22O11 450.116 Ramp 5-60 8

Flavonoid Maritimein 6450184 C21H20O11 448.101 Ramp 5-60 3

Flavonoid Myricetin-3-Galactoside 5491408 C21H20O13 480.09 Ramp 5-60 11

Flavonoid Myricetin-3-Rhamnoside 5281673 C21H20O12 464.095 Ramp 5-60 12

Flavonoid Myricetin-3-Xyloside 5281673 C20H18O12 450.08 Ramp 5-60 9

Flavonoid Myricitrin 5281673 C21H20O12 464.095 Ramp 5-60 11

Flavonoid Naringenin-7-O-glucoside 92794 C21H22O10 434.121 Ramp 5-60 7

Flavonoid Neodiosmin 44258230 C28H32O15 608.174 Ramp 5-60 2

Flavonoid Ononin 442813 C22H22O9 430.126 30, Ramp 5-60 5

Flavonoid Peltatoside 5484066 C26H28O16 596.138 30, Ramp 5-60 18

Flavonoid Poncirin 442456 C28H34O14 594.195 30, Ramp 5-60 5

Flavonoid Procyanidin_B1 11250133 C30H26O12 578.142 Ramp 5-60 15

Flavonoid Procyanidin_B2 122738 C30H26O12 578.142 Ramp 5-60 16

Flavonoid Puerarin 5281807 C21H20O9 416.111 Ramp 5-60 6

Flavonoid Quercetin 5280343 C15H10O7 302.043 Ramp 5-60 8

Flavonoid Quercetin-3-(6-malonyl)-Glucoside 5282159 C24H22O15 550.096 Ramp 5-60 8

Flavonoid Quercetin-3-4-O-di-beta-glucopyranoside 5320835 C27H30O17 626.148 30, Ramp 5-60 9

Flavonoid Quercetin-3-7-O-alpha-L-dirhamnopyranoside 44259217 C27H30O15 594.158 30, Ramp 5-60 10

Flavonoid Quercetin-3-Arabinoside 5481224 C20H18O11 434.085 Ramp 5-60 8

Flavonoid Quercetin-3-D-xyloside 5320863 C20H18O11 434.085 Ramp 5-60 9

Flavonoid Quercetin-3-Glucuronide 5274585 C21H18O13 478.075 Ramp 5-60 8

Flavonoid Quercetin-3-O-alpha-L-rhamnopyranoside 5280459 C21H20O11 448.101 Ramp 5-60 12

Flavonoid Quercetin-3-O-alpha-L-rhamnopyranosyl(1-2)-beta-D-glucopyranoside-7-O-alpha-L-rhamnopyranoside 5489459 C33H40O20 756.211 30, Ramp 5-60 8

Flavonoid Quercetin-3-O-beta-D-galactoside 5281643 C21H20O12 464.095 Ramp 5-60 9

Flavonoid Quercetin-3-O-beta-glucopyranoside 5280804 C21H20O12 464.095 Ramp 5-60 6

Flavonoid Quercetin-3-O-beta-glucopyranosyl-7-O-alpha-rhamnopyranoside 5280805 C27H30O16 610.153 30, Ramp 5-60 11

Flavonoid Quercetin-3-O-glucose-6-acetate 5280804 C23H22O13 506.106 Ramp 5-60 8

Flavonoid Quercetin-7-O-rhamnoside 5748601 C21H20O11 448.101 Ramp 5-60 9

Flavonoid Rhamnetin 5281691 C16H12O7 316.058 Ramp 5-60 6

Flavonoid Rhoifolin 5282150 C27H30O14 578.164 30, Ramp 5-60 3

Flavonoid Robinin 5281693 C33H40O19 740.216 30, Ramp 5-60 7

Flavonoid Spiraeoside 5320844 C21H20O12 464.095 Ramp 5-60 6

Flavonoid Syringetin-3-O-galactoside 5321576 C23H24O13 508.122 30, Ramp 5-60 17

Flavonoid Syringetin-3-O-glucoside 5321577 C23H24O13 508.122 Ramp 5-60 14

Flavonoid Tiliroside 5320686 C30H26O13 594.137 30, Ramp 5-60 9

Flavonoid Vitexin 5280441 C21H20O10 432.106 Ramp 5-60 4

Flavonoid Vitexin-2-O-rhamnoside 5282151 C27H30O14 578.164 Ramp 5-60 5

Glucosinolate 4-Methylsulfinylbutyl_glucosinolate 9548634 C12H23NO10S3 437.048 Ramp 5-60 6

Glucosinolate 4-Methylthiobutyl_glucosinolate 9548895 C12H23NO9S3 421.053 Ramp 5-60 4

Glucosinolate Sinigrin 6911854 C10H17NO9S2 359.034 Ramp 5-60 4

Indole 3-Indoxylsulfate 10258 C8H7NO4S 213.01 Ramp 5-60 3

Indole Harmaline 5280951 C13H14N2O 214.111 Ramp 5-60 4

Isoprenoid Glycyrrhizic_acid 14982 C42H62O16 822.404 30, Ramp 5-60 3

Isoprenoid Glycyrrhizin 14982 C42H62O16 822.404 30, Ramp 5-60 3

Nucleotide 1-3-Dimethylurate 70346 C7H8N4O3 196.06 30, Ramp 5-60 10

Nucleotide 1-7-Dimethylxanthine 4687 C7H8N4O2 180.065 Ramp 5-60 5

Nucleotide 2-Deoxyadenosine-5-monophosphate 12599 C10H14N5O6P 331.068 Ramp 5-60 5

Nucleotide 2-Deoxycytidine 13711 C9H13N3O4 227.091 Ramp 5-60 3

Nucleotide 2-Deoxycytidine-5-diphosphate 150855 C9H15N3O10P2 387.023 Ramp 5-60 6

Nucleotide 2-Deoxyguanosine_5-monophosphate 65059 C10H14N5O7P 347.063 Ramp 5-60 4

Nucleotide 2-Deoxyguanosine-5-diphosphate 439220 C10H15N5O10P2 427.029 Ramp 5-60 2

Nucleotide 2-Deoxyinosine-5-monophosphate 91531 C10H13N4O7P 332.052 Ramp 5-60 6

Nucleotide 2-Deoxyuridine-5-monophosphate 65063 C9H13N2O8P 308.041 Ramp 5-60 5

Nucleotide 3-Hydroxypyridine 7971 C5H5NO 95.037 30, Ramp 5-60 1

Nucleotide 3-Methylxanthine 70639 C6H6N4O2 166.049 Ramp 5-60 5

Nucleotide 4-Pyridoxate 6723 C8H9NO4 183.053 Ramp 5-60 2

Nucleotide 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranosyl_5-monophosphate 65110 C9H15N4O8P 338.063 Ramp 5-60 3

Nucleotide 5-Deoxy-5-Methylthioadenosine 439176 C11H15N5O3S 297.09 Ramp 5-60 2

Nucleotide 6-(Gamma-gamma-Dimethylallylamino)purine 92180 C10H13N5 203.117 Ramp 5-60 6

Nucleotide 6-(Gamma-gamma-Dimethylallylamino)purine_riboside 24405 C15H21N5O4 335.159 Ramp 5-60 4

Nucleotide Adenine 190 C5H5N5 135.054 30, Ramp 5-60 4

Nucleotide Adenosine 60961 C10H13N5O4 267.097 Ramp 5-60 2

Nucleotide Adenosine_3-monophosphate 41211 C10H14N5O7P 347.063 Ramp 5-60 4

Nucleotide Adenosine_5-diphosphate 6022 C10H15N5O10P2 427.029 Ramp 5-60 3

Nucleotide Adenosine_5-diphospho-glucose 16500 C16H25N5O15P2 589.082 Ramp 5-60 9

Nucleotide Adenosine_5-monophosphate 6083 C10H14N5O7P 347.063 Ramp 5-60 3

Nucleotide Beta-Nicotinamide_adenine_dinucleotide 5893 C21H27N7O14P2 663.109 Ramp 5-60 10

Nucleotide Cytidine 6175 C9H13N3O5 243.086 Ramp 5-60 4

Nucleotide Cytidine_5-diphosphocholine 13804 C14H26N4O11P2 488.107 Ramp 5-60 8

Nucleotide Cytidine-3-5-cyclicmonophosphate 19236 C9H12N3O7P 305.041 Ramp 5-60 6

Nucleotide Cytidine-3-monophosphate 66535 C9H14N3O8P 323.052 Ramp 5-60 4

Nucleotide Cytidine-5-diphosphate 6132 C9H15N3O11P2 403.018 Ramp 5-60 5

Nucleotide Cytidine-5-monophosphate 6131 C9H14N3O8P 323.052 Ramp 5-60 3

Nucleotide Guanine 764 C5H5N5O 151.049 Ramp 5-60 3

Nucleotide Guanosine 6802 C10H13N5O5 283.092 Ramp 5-60 3

Nucleotide Guanosine_5-diphosphate-D-mannose 18396 C16H25N5O16P2 605.077 Ramp 5-60 6

Nucleotide Guanosine_5-diphospho-beta-L-fucose 10918995 C16H25N5O15P2 589.082 Ramp 5-60 9

Nucleotide Guanosine_5-diphosphoglucose 439225 C16H25N5O16P2 605.077 Ramp 5-60 7

Nucleotide Guanosine_5-monophosphate 6804 C10H14N5O8P 363.058 Ramp 5-60 5

Nucleotide Guanosine-3-5-cyclic_monophosphate 24316 C10H12N5O7P 345.047 Ramp 5-60 6

Nucleotide Inosine 6021 C10H12N4O5 268.081 Ramp 5-60 3

Nucleotide Inosine-5-diphosphate 6831 C10H14N4O11P2 428.013 Ramp 5-60 7

Nucleotide Inosine-5-monophosphate 8582 C10H13N4O8P 348.047 Ramp 5-60 6

Nucleotide N-6-(delta-2-Isopentenyl)adenosine 24405 C15H21N5O4 335.159 Ramp 5-60 5

Nucleotide Oxypurinol 4644 C5H4N4O2 152.033 Ramp 5-60 1

Nucleotide Pyridoxal 1050 C8H9NO3 167.058 Ramp 5-60 3

Nucleotide Pyridoxal_5-phosphate 1051 C8H10NO6P 247.025 Ramp 5-60 2

Nucleotide Pyridoxamine 1052 C8H12N2O2 168.09 Ramp 5-60 9

Nucleotide Pyridoxine 1054 C8H11NO3 169.074 Ramp 5-60 7

Nucleotide Thiamine 1130 C12H17N4OS 265.112 Ramp 5-60 5

Nucleotide Thymidine-5-diphosphate 164628 C10H16N2O11P2 402.023 Ramp 5-60 8

Nucleotide Thymidine-5-monophosphate 9700 C10H15N2O8P 322.057 Ramp 5-60 5

Nucleotide Thymine 1135 C5H6N2O2 126.043 Ramp 5-60 0

Nucleotide Trans-Zeatin 449093 C10H13N5O 219.112 Ramp 5-60 8
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Nucleotide Trans-Zeatin-riboside 6440982 C15H21N5O5 351.154 Ramp 5-60 6

Nucleotide UDP-beta-L-rhamnose 23724469 C15H24N2O16P2 550.06 Ramp 5-60 13

Nucleotide UDP-Galactose 23724458 C15H24N2O17P2 566.055 Ramp 5-60 13

Nucleotide UDP-xylose 23724459 C14H22N2O16P2 536.044 Ramp 5-60 15

Nucleotide Uracil 1174 C4H4N2O2 112.027 Ramp 5-60 0

Nucleotide Uridine 6029 C9H12N2O6 244.07 Ramp 5-60 5

Nucleotide Uridine_5-diphosphate 6031 C9H14N2O12P2 404.002 Ramp 5-60 5

Nucleotide Uridine_5-diphospho-D-glucose 8629 C15H24N2O17P2 566.055 Ramp 5-60 13

Nucleotide Uridine_5-diphosphoglucuronic_acid 17473 C15H22N2O18P2 580.034 Ramp 5-60 14

Nucleotide Uridine_5-diphospho-N-acetylgalactosamine 23724461 C17H27N3O17P2 607.082 30, Ramp 5-60 17

Nucleotide Uridine_5-diphospho-N-acetylglucosamine 445675 C17H27N3O17P2 607.082 30, Ramp 5-60 17

Nucleotide Uridine_5-monophosphate 6030 C9H13N2O9P 324.036 Ramp 5-60 4

Nucleotide Xanthine 1188 C5H4N4O2 152.033 Ramp 5-60 1

Nucleotide Xanthosine 64959 C10H12N4O6 284.076 Ramp 5-60 2

Nucleotide Xanthosine-5-monophosphate 73323 C10H13N4O9P 364.042 Ramp 5-60 6

Organosulfonic acid 2-Mercaptoethanesulfonic_acid 598 C2H6O3S2 141.976 Ramp 5-60 2

Organosulfonic acid Hypotaurine 107812 C2H7NO2S 109.02 Ramp 5-60 2

Organosulfonic acid S-Sulforaphene 6433206 C6H9NOS2 175.013 Ramp 5-60 4

Penicillin Piperacillin 6604563 C23H27N5O7S 517.163 Ramp 5-60 5

Phenol 4-Nitrophenol 980 C6H5NO3 139.027 Ramp 5-60 0

Phenol 4-Nitrophenyl_phosphate 378 C6H6NO6P 218.993 30, Ramp 5-60 1

Phenol Catechol 289 C6H6O2 110.037 30, Ramp 5-60 3

Polyketide Zearalenone 5281576 C18H22O5 318.147 Ramp 5-60 8

Stilbene E-3-4-5-trihydroxy-3-glucopyranosylstilbene 5281712 C20H22O9 406.126 Ramp 5-60 5

Sugar 2-Deoxyribose-5-phosphate 439288 C5H11O7P 214.024 Ramp 5-60 2

Sugar Alpha-D-(+)-mannose-1-phosphate 439279 C6H13O9P 260.03 Ramp 5-60 2

Sugar Alpha-D-Galactose-1-phosphate 123912 C6H13O9P 260.03 Ramp 5-60 4

Sugar Alpha-D-Glucose-1-6-diphosphate 82400 C6H14O12P2 339.996 Ramp 5-60 6

Sugar Alpha-D-glucose-1-phosphate 439165 C6H13O9P 260.03 Ramp 5-60 4

Sugar D(-)-Gulono-gamma-lactone 165105 C6H10O6 178.048 Ramp 5-60 9

Sugar D-(+)-Cellotriose 440950 C18H32O16 504.169 Ramp 5-60 22

Sugar D-(+)-Melezitose 92817 C18H32O16 504.169 Ramp 5-60 12

Sugar D-(+)-Raffinose 439242 C18H32O16 504.169 Ramp 5-60 9

Sugar D-(+)-Trehalose 7427 C12H22O11 342.116 Ramp 5-60 10

Sugar D-Arabinose-5-phosphate 230 C5H11O8P 230.019 Ramp 5-60 3

Sugar D-Erythrose-4-phosphate 697 C4H9O7P 200.009 Ramp 5-60 3

Sugar D-Fructose-6-phosphate 439160 C6H13O9P 260.03 Ramp 5-60 2

Sugar D-Glucosamine-6-phosphate 439217 C6H14NO8P 259.046 Ramp 5-60 3

Sugar D-Glucose-6-phosphate 5958 C6H13O9P 260.03 Ramp 5-60 3

Sugar D-Mannose-6-phosphate 65127 C6H13O9P 260.03 Ramp 5-60 4

Sugar D-Ribose-5-phosphate 439167 C5H11O8P 230.019 Ramp 5-60 3

Sugar D-Ribulose-5-phosphate 439184 C5H11O8P 230.019 Ramp 5-60 2

Sugar L-(+)-Rhamnose 25310 C6H12O5 164.068 Ramp 5-60 0

Sugar Maltotriose 439586 C18H32O16 504.169 Ramp 5-60 25

Sugar Palatinose 439559 C12H22O11 342.116 Ramp 5-60 14

Sugar Sucrose 5988 C12H22O11 342.116 Ramp 5-60 11

Sugar alcohol 1-2-Dilauroyl-sn-Glycero-3-Phosphate 9547171 C27H53O8P 536.348 Ramp 5-60 5

Sugar alcohol 1-Lauroyl-2-Hydroxy-sn-Glycero-3-Phosphocholine 460605 C20H42NO7P 439.27 Ramp 5-60 1

Sugar alcohol 1-Myristoyl-2-Hydroxy-sn-Glycero-3-Phosphate 9547180 C17H35O7P 382.212 Ramp 5-60 3

Sugar alcohol D-(-)-Mannitol 6251 C6H14O6 182.079 Ramp 5-60 9

Sugar alcohol DL-Glyceraldehyde_3-phosphate 729 C3H7O6P 169.998 Ramp 5-60 3

Sugar alcohol D-Sorbitol 5780 C6H14O6 182.079 Ramp 5-60 9

Sugar alcohol D-Sorbitol-6-phosphate 152306 C6H15O9P 262.045 Ramp 5-60 2

Sugar alcohol Dulcitol 11850 C6H14O6 182.079 Ramp 5-60 11

Sugar alcohol Galactinol 439451 C12H22O11 342.116 Ramp 5-60 14

Sugar alcohol Glycerol-2-phosphate 2526 C3H9O6P 172.014 Ramp 5-60 2

Sugar alcohol L-Iditol 5460044 C6H14O6 182.079 Ramp 5-60 5

Sugar alcohol Maltitol 493591 C12H24O11 344.132 Ramp 5-60 10

Sugar alcohol Rac-Glycerol_3-phosphoate 439162 C3H9O6P 172.014 Ramp 5-60 2

2-Hydroxyphenylacetic_acid 11970 C8H8O3 152.047 Ramp 5-60 1

Hinokitiol 3611 C10H12O2 164.084 30, Ramp 5-60 0

Methyl_Salicylate 4133 C8H8O3 152.047 Ramp 5-60 1
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group compound molecular formula monoisotopic mass collision energies annotated NLs

Amine Dopamine C8H11NO2 153.079 10, 20, 30, 40, 50 19

Amine Spermidine C7H19N3 145.158 15, 25, 35, 45 17

Amine Spermine C10H26N4 202.216 15, 25, 35, 45 12

Amine Tyramine C8H12NO+ 138.092 15, 20, 30, 40, 50 23

Amino acid Alanine C3H7NO2 89.048 10 1

Amino acid Arginine C6H14N4O2 174.112 20, 25, 30 15

Amino acid Asparagine C4H8N2O3 132.053 10, 15, 20, 30, 40 15

Amino acid Aspartic acid C4H7NO4 133.038 10, 15, 20, 30 8

Amino acid Citrulline C6H13N3O3 175.096 10, 15, 20, 25, 30 22

Amino acid Cysteine C3H8NO2S+ 122.028 10, 15, 20, 30 7

Amino acid Cystine C6H12N2O4S2 240.024 10, 15, 20, 30, 40 40

Amino acid Glutamic acid C5H9NO4 147.053 10, 15, 20, 30 7

Amino acid Glutamine C5H10N2O3 146.069 10, 15, 20, 30 8

Amino acid Histidine C6H9N3O2 155.069 15, 25, 35, 45 18

Amino acid Isoleucine C6H13NO2 131.095 10, 15, 25, 40 18

Amino acid Leucine C6H13NO2 131.095 15, 25, 40 9

Amino acid Lysine C6H14N2O2 146.106 10, 15, 20, 30, 40 23

Amino acid Methionine C5H11NO2S 149.051 10, 15, 20, 30 10

Amino acid Phenylalanine C9H11NO2 165.079 15, 25, 40 15

Amino acid Proline C5H9NO2 115.063 10, 15, 55 7

Amino acid Serine C3H7NO3 105.043 10, 15, 20, 30 5

Amino acid Threonine C4H9NO3 119.058 10, 15, 20, 30 6

Amino acid Tryptophane C11H12N2O2 204.09 15, 25, 40, 55 38

Amino acid Tyrosine C9H11NO3 181.074 10, 15, 25, 30, 40 22

Amino acid Valine C5H11NO2 117.079 10, 25, 40, 55 15

Carboxylic acid 6-Aminocapronic acid C6H13NO2 131.095 15, 20, 30, 40 29

Choline 3-(4-Hexosyloxyphenyl)propanoyl choline C20H32NO8+ 414.213 25, 40, 55 4

Choline 4-Coumaroyl choline C14H20NO3+ 250.144 15, 25, 40 4

Choline 4-Hexosylferuloyl choline C21H32NO9+ 442.208 15, 25, 40, 55 5

Choline 4-Hexosyloxybenzoyl choline C18H28NO8+ 386.181 15, 25, 40, 55, 90 5

Choline 4-Hexosyloxycinnamoyl choline C20H30NO8+ 412.197 25, 40, 55 4

Choline 4-Hexosylvanilloyl choline C19H30NO9+ 416.192 15, 25, 40, 55, 70 3

Choline 4-Hydroxybenzoyl choline C12H18NO3+ 224.129 15, 25, 40, 55 4

Choline 5-Hydroxyferuloyl choline C15H22NO5+ 296.15 15, 25, 40, 55 11

Choline Acetyl choline C7H16NO2+ 146.118 20 3

Choline Benzoyl choline C12H18NO2+ 208.134 15, 25, 40, 55 3

Choline Cafeoyl choline C14H20NO4+ 266.139 15, 25, 40, 55 8

Choline Choline with Arylglycerol-arylether backbone C23H32NO8+ 450.213 50 3

Choline Cinnamoyl choline C14H20NO2+ 234.149 15, 25, 40, 55 3

Choline Feruloyl choline C15H22NO4+ 280.155 15, 25, 40 7

Choline Nicotinic acid choline ester C11H17N2O2+ 209.129 15, 25, 40, 55 3

Choline Sinapoyl choline C16H24NO5+ 310.165 15, 25, 40 4

Choline Syringoyl choline C14H22NO5+ 284.15 50 19

Choline Vanilloyl choline C13H20NO4+ 254.139 15, 25, 40, 55 10

Table B.3: Compound list for the QSTAR dataset: Compound class, compound name,
molecular formula, monoisotopic mass (Da), collision energies (eV), and
number of annotated losses (NLs) in hypothetical fragmentation trees. The
ion type of all compounds is [M+H]+ or M+. Compounds with less than
three (seven) annotated losses are colored red (yellow).
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