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Abstract

The identification of small molecules from mass spectrometry (MS) data remains a major challenge in the interpre-
tation of MS data. Computational aspects of identifying small molecules range from searching a reference spectral
library to the structural elucidation of an unknown. In this review, we concentrate on five important aspects of the
computational analysis: First, we briefly review the above-mentioned search in spectral libraries. Second, we inves-
tigate the rule-based in silico prediction of a fragmentation spectrum from the molecular structure of the compound.
Third, we cover combinatorial fragmentation where a molecular structure is used to “explain” an observed spectrum.
Fourth, we review the prediction of structural features using Machine Learning techniques. Finally, we look into the
concept of fragmentation trees, which allows a true de novo analysis of fragmentation data. We find that novel com-
putational methods may overcome the boundaries of spectral libraries, either by searching in the more comprehensive
molecular structure databases, or by not requiring any databases at all.

This is a preprint of the article: Franziska Hufsky, Kerstin Scheubert and Sebastian Böcker. Computational mass
spectrometry for small molecule fragmentation. Trends Anal Chem, 53:41-48, 2014.

1. Introduction

Metabolomics covers the detection, identification, and quantification of compounds of low molecular weight.
Identification of metabolites poses a problem as, unlike proteins, these small molecules are usually not made up of
building blocks, and the genomic sequence does not reveal information about their structure. Thus, a huge number of
metabolites remain uncharacterized with respect to their structure and function [1].

Mass spectrometry (MS), typically coupled with chromatographic separation techniques, is a key analytical tech-
nology for high-throughput analysis of small molecules [1]. It is orders of magnitude more sensitive than nuclear
magnetic resonance (NMR). Beyond information on the mass of the molecule, the compound can be fragmented and
masses of the fragments recorded, revealing certain information about the structure of a compound. Several analytical
techniques have been developed, where tandem mass spectrometry is usually combined with liquid chromatography
MS (LC-MS) [2], whereas gas chromatography MS (GC-MS) is coupled with electron impact (EI) fragmentation [3].
Given the huge amount of data produced in a high-throughput experiment, the manual interpretation of fragmentation
spectra is time-intensive and often impractical [1]. So, an important aspect of small molecule MS is the automated
processing of the resulting fragmentation mass spectra.

Searching in libraries of reference spectra provides the most reliable source of identification. But this is only
the case if the library contains a fragmentation spectrum from a reference compound measured on a similar instru-
ment [4]. Unfortunately, spectral libraries are vastly incomplete. Recent approaches tend to replace searching in
spectral libraries by searching in the more comprehensive molecular structure databases. Kind and Fiehn [5] give a
survey of structure elucidation techniques for small molecules using mass spectrometry, whereas Scheubert et al. [6]
review computational methods for this task. In this review, we focus on the five basic approaches of dealing with
metabolite fragmentation data, which are: (a) searching spectral libraries; (b) rule-based in silico fragmentation spec-
trum prediction; (c) mapping the fragmentation spectrum to the compound structure (combinatorial fragmentation);
(d) predicting structural features and compound classes; and (e) fragmentation trees.
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Figure 1: The five basic approaches of dealing with metabolite fragmentation data: (a) searching spectral libraries; (b) fragmentation spectrum
prediction; (c) combinatorial fragmentation; (d) predicting structural features; and (e) fragmentation trees.

2. Searching in spectral libraries

Given the fragmentation spectrum of an unknown metabolite, the straightforward approach for identifying the
metabolite is looking up its fragmentation spectrum in a spectral library. For GC-MS, huge spectral reference libraries
are routinely used; for LC-MS/MS, libraries contain fewer compounds and are limited in their availability. Database
search requires a similarity or distance function for spectrum matching. Often, this is done using the “dot product”
of the spectra: The spectra are treated as vectors f = ( f1, . . . , fM) and g = (g1, . . . , gM), and the scalar product
〈 f , g〉 =

∑
m fmgm is computed. This is particularly applied for unit mass accuracy data, where spectra can be directly

mapped to vectors. For data with high mass accuracy, we can treat the spectra as continuous functions f , g with
scalar product

∫
f (m)g(m) dm. Often, not the raw peak shapes are used but instead, peaks are idealized as Gaussian

functions. We can also introduce a weight function, to differently weight the terms of the product depending on the
mass. Often, not the dot product but the enclosed angle θ or its cosine,

cos θ =
〈 f , g〉√

〈 f , f 〉
√
〈g, g〉

are reported. The spectral dot product is an advanced form of the most fundamental scoring, namely the “peak
counting” family of measures that basically count the number of matching peaks. Using the dot product for library
searching is among the oldest computational techniques presented in this paper, and has been developed independently
of the actual task of searching for small compounds.

In 1994, Stein and Scott [7] evaluated the dot product against several other scoring systems, and found that it
performed best among the them. Several authors suggested modifications of the dot product, such as giving different
confidence (weight) to different peaks, see [8, 9] for two recent examples. Unfortunately, it appears to be a tough
problem to consistently and significantly outperform the basic dot product and its simplest modifications.

The above scoring systems tell us which spectrum in the library best matches our query spectrum, and how to
rank the remaining ones. But it cannot tell us whether this is a true or a bogus hit [10]. The reliable identification
of a compound depends on the uniqueness of its spectrum. But the presence and intensity of peaks across spectra is
highly correlated, as these depend on the non-random distribution of molecular (sub-)structures. For example, ben-
zene and fulvene have similar spectra, and a fulvene query spectrum would match a benzene database spectrum [10].
Hence, structurally related compounds generally have similar mass spectra. This becomes a crucial problem when our
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database contains thousands of spectra. Unfortunately, little progress has been made in establishing the confidence of
a compound identification using library search [11, 12]. Citing Stein [10], the field of proteomics “has the luxury of
being able to estimate ‘false discovery rates’ because of the ability to construct appropriate libraries of false identifica-
tions; such measures of reliability are not available for other classes of compounds.” But we can also use the problem
of similar spectra to our advantage: Since structurally related compounds generally have similar mass spectra, false
positive hits may hint at correct “class identifications” if the true spectrum is not contained in the database [13]. Using
fragmentation trees (see Sec. 6) as a detour in library searching allows us to compute such FDRs for small molecule
MS.

The computational analysis of EI fragmentation spectra of small molecules via database search is generally sim-
pler than for tandem MS data, as the fragmentation mechanisms are highly reproducible even across instruments, and
reference spectra have been collected over many years [10]. On the other hand, LC-MS coupled with tandem MS
fragmentation requires less sample preparation, and has other benefits such as the known precursor mass of a com-
pound. Fragmentation by tandem MS (such as collision-induced dissociation, CID) is less reproducible, in particular
across different instrument types or even instruments [14]. Only first steps have been taken towards searching tandem
MS spectral libraries [15], and these libraries are much smaller than for GC-MS. Attempts have been made to create
more reproducible and informative LC-MS fragmentation spectra [14, 16, 17].

For a comprehensive review on the fundamentals and difficulties of mass spectral libraries for compound identifi-
cation see Stein [10].

3. Rule-based Fragmentation Spectrum Prediction

Spectral libraries are (and will always be) several orders of magnitude smaller than molecular structure databases.
For example, PubChem currently contains about 30 million compounds, while even the biggest (commercial) spectral
libraries, the National Institute of Standards and Technology (NIST) mass spectral library (version 11) and the Wiley
Registry (9th edition) contain mass spectra for only 200 000 and 600 000 compounds, respectively. This gap may be
filled by an accurate prediction of fragments (and their abundances) from the molecular structure of a compound. In
this way, searching in spectral libraries can be replaced by searching in a database of theoretical mass spectra obtained
from molecular structure databases. This trick has been very successfully used in proteomics for many years, as
prediction of peptide fragmentation is comparatively easy.

To generate a set of candidate molecules, we can filter a molecular structure database using the molecular mass
of the unknown, or even its molecular formula if already known. On the other hand, we can use molecular structure
generators to create a “private database”, integrating further knowledge such as substructure information.

Given a set of candidate molecular structures, spectra can be predicted by applying fragmentation rules to these
structures, see Figure 2. In principle, such rules can be learned from experimental data using data mining; but until
recently, experimental data was used solely to predict probabilities and, hence, intensities in the fragmentation spec-
trum [18, 19]. In practice, these rules are manually curated from mass spectrometry literature. First attempts for
generating structural candidates and predicting their fragmentation mass spectra using general models of fragmen-
tation, as well as class-specific fragmentation rules, have been made as part of the DENDRAL project starting in
1965 [20, 21]. However, the DENDRAL project failed in its major objective of automatic structure elucidation by
mass spectral data, and research was discontinued [18]. Nowadays, there are three major commercial tools that predict
MS fragmentation based on rules: Mass Frontier (HighChem, Ltd. Bratislava, Slovakia; versions after 5.0 available
from Thermo Scientific, Waltham, USA), ACD/MS Fragmenter (Advanced Chemistry Labs, Toronto, Canada), and
MOLGEN-MS [22, 23].

Rule-based prediction systems were initially developed for the prediction and interpretation of EI fragmenta-
tion data. EI spectra are highly reproducible and much is known about the fragmentation. However, this ionization
technique can produce complex rearrangements during fragmentation that are relatively hard to predict. For tandem
MS, the fragmentation behavior of small molecules under varying fragmentation energies is not completely under-
stood [24]. Nevertheless, there has been a recent tendency to investigate general fragmentation rules of tandem MS
and interpret the data with rule-based prediction programs, too.

Hill et al. [25] pioneered the identification of an unknown compound by matching the experimental tandem mass
spectrum with predicted spectra of candidate compounds from a molecular structure database. They used Mass
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Frontier 4 for the simulation of CID spectra, and identified the correct structure in 64 % of 102 cases. For each
“unknown compound”, they retrieved an average of 273 candidate molecular structures from the PubChem database.
For the simulation of EI fragmentation spectra, Schymanski et al. [26] compared the three commercial programs,
and indicated that at the time of evaluation, mass spectral fragment prediction for structure elucidation was still far
from daily practical use. The authors noted that ACD Fragmenter “should be used with caution to assess proposed
structures [. . . ] as the ranking results are very close to that of a random number generator.” Recently, Kumari et al.
[27] implemented a pipeline similar to [25] for EI spectra, using Mass Frontier 6 for spectrum prediction and searching
PubChem. Integrating other sources of information such as the retention index, they reported the correct structure for
73 % of 29 metabolites within the top 5 hits.

One major disadvantage of rule-based fragmentation prediction is that to achieve high-quality predictions, this
approach requires expert-curated “learning” of fragmentation rules. Even the best commercial systems cover only
a tiny part of the rules that could be known. Although novel rules are constantly added, all of these rules do not
necessarily apply to a newly discovered compound. In proteomics, rule-based systems did not have much impact:
There, it was apparent from the beginning that, in view of the huge search space, only methods based on combinatorial
optimization can be successful. This situation is somewhat comparable to chess where certain rules are useful (such
as opening databases) but ultimately, combinatorial optimization is needed to find the best move.

Instead of curating or learning real fragmentation rules, Kangas et al. [28] used machine learning to find bond
cleavage rates for spectral simulation. Different from the rules learned for example during the DENDRAL project,
they do not claim these predictions to be true fragmentation rules. Their In Silico Identification Software (ISIS)
currently works only for lipids and does not model rearrangements of atoms and bonds.

4. Combinatorial Fragmentation

In contrast to rule-based fragmentation that simulates the fragmentation spectrum of a given compound, com-
binatorial fragmentation aims at explaining the peaks in a measured spectrum (see Figure 2). This is based on the
assumption that most peaks result from substructures of the compound without major rearrangement. Combinatorial
fragmenters use bond disconnection to find these fragments.

Early combinatorial fragmentation methods such as EPIC [29] and FiD [30] did not aim to find a molecular
structure but instead, to explain each peak in a fragmentation spectrum with the most likely substructure of a known
molecular structure. These early approaches enumerate all fragments by applying all combinations of bond cleavages.
The resulting list of potential peaks is then compared to the measured peak list. This exhaustive enumeration is very
slow and, hence, cannot be applied for a larger set of candidate molecular structures. Later, Wolf et al. [31] introduced
the heuristic method MetFrag for this problem. MetFrag is much faster than the above-mentioned approaches, an can
be applied to a full structure database to find the compound that best explains the spectrum.

At a first step in combinatorial fragmentation, costs for cleaving bonds are assigned. These costs show that some
bonds break easier than others and enables the different candidate structures to be ditinguished. A major issue is to
choose a suitable cost function. For example, the type of a chemical bond (single, multiple or aromatic bond) [32],
standard bond energies (FiD) or bond dissociation energies (MetFrag) can be used to approximate the cost of cleaving
a bond. The next step is to explain each peak in the spectrum with a substructure of minimal cost. Heinonen et al.
[30] proposed a Mixed Integer Linear Program (MILP) to solve this problem, but due to the computational complexity
of the problem running times explode even for medium-sized molecules. Hill and Mortishire-Smith [29] and Wolf
et al. [31] pruned the search space by limiting the number of allowed cleavages. Recently, Gerlich and Neumann
[33] introduced MetFusion, which combines MetFrag with spectral library search in MassBank to improve compound
identification. MetFusion returns the correct molecular structure with median rank 10 when searching PubChem and
using 1062 compounds, strongly improving upon results by solely using MetFrag.

One major point of concern regarding combinatorial fragmentation is that fragments resulting from structural
rearrangements are not covered by this approach, or only in a limited way such as hydrogen rearrangements. In fact,
this is a problem for both combinatorial and rule-based methods [29, 30, 34]. Another problem is to find a good cost
function. For example, the scoring of Wolf et al. [31] that considers bond dissociation energies results in a decreasing
fragment prediction accuracy when we increase the allowed number of bond cleavages. A possible explanation is that
more bond cleavages do not only explain more peaks, but also generate more unlikely fragments. Ridder et al. [32]
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report that even a simplistic scoring which basically assigns score 1 to single bonds, 2 to double bonds etc. outperforms
the more complicated cost function of Wolf et al. [31]. This underlines that finding a suitable cost function remains
an important open problem.

5. Predicting substructures and compound classes

Automated prediction of substructures or compound classes from mass spectral data can be achieved by learning
spectral classifiers. The term compound class is not exactly defined: Molecules may fall into the same group because
they share a common reactive group, a substructure, have a certain chemical property, or a similar biological function.
Usually, a mixture of these class types is used in applications.

Given the spectrum of an unknown compound, a classifier gives a response telling us whether a particular sub-
structure (or a more general chemical property) is present or not in the investigated compound (see Figure 3). In
its simplest form this is a yes/no answer, but alternatively some score or likelihood may be reported. These classi-
fiers have to be trained on a set of mass spectra of known reference compounds, to yield output yes for compounds
containing the substructure and no for all other compounds. Each spectrum is first transformed to a fixed set of nu-
merical features characterizing the spectrum. Here, finding “good features” is essential for good performance of the
classifier [35]. Feature vectors of the known references, together with the yes/no answers, are fed to the classifier
for training. The field of Machine Learning offers a huge number of classification methods for this purpose, such as
regression methods, neural networks, support vector machines, and random forests. This process is repeated for every
property that we want to predict.

The query spectrum of an unknown compound is transformed to a feature vector using the same transformation
as for the training data. The features are given to the substructure classifiers to predict the fingerprint of the molecule,
that is, a vector of yes/no answers indicating which substructures are present or not. The predicted fingerprints can be
directly used to characterize the class and properties of the measured metabolite. Heinonen et al. [36] went one step
further, and used the predicted fingerprints to retrieve and score candidate molecules from large molecular databases
such as PubChem.

The above idea was pioneered by Venkataraghavan, McLafferty and van Lear in 1969 [37]: The authors pre-
sented an automated approach “to identify the general nature of the compound and its functional groups.” Several
other approaches are built on the same grounds; we will mention just two here: Kwok et al. [38] and Scott and
coworkers [39–41] use machine learning to predict the nominal molecular weight of an unknown compound or, more
precisely, the mass difference to the detectable fragment peak of highest mass. The Varmuza feature-based classi-
fication approach for EI spectra [35] uses a set of mass spectral classifiers to recognize the presence/absence of 70
substructures or general structural properties in the compound. But to reach a precision of at least 90%, each spectrum
had to be rejected by 40–70% of the classifiers [35]. Hence, for about half of the compounds we have no information
regarding a particular substructure or structural property. To set things straight, we note that the individual evaluations
performed by Varmuza and Werther [35] look better than these numbers suggest. In fact, this approach has found wide
acceptance in the community as it is part of the NIST software. Much later, Hummel et al. [42] learned decision trees
using mass spectral features and retention index information from the Golm Metabolome Database (GMD). Using
these trees they predict frequent substructures and subdivide compounds into different compound classes.

Whereas the above methods are targeted towards GC-MS and EI fragmentation, the approach of Heinonen et al.
[36] targets LC-MS and CID fragmentation. The characterizing fingerprint of the unknown metabolite is predicted
from the mass spectrum using a kernel-based approach and matched against a molecular structure database. Using
QqQ MS data and searching the smaller Kyoto Encyclopedia of Genes and Genomes (KEGG) database, they identified
the correct molecular structure in about 65% of the cases, from an average of 27 candidates (293 compounds measured
on an Orbitrap LTQ instrument).

6. Fragmentation Trees

The most simplistic description of the fragmentation process is that all fragments have to be part of the precursor;
to this end, fragment molecular formulas have to be sub-formulas of the precursor formula. This crude view provides
no information about the dependency between fragments. Given the molecular structure of the compound and the
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measured fragmentation spectrum, an MS expert can assign peaks to compound fragments and derive a “fragmentation
diagram”. This is infeasible if we do not know the molecular structure, or when thousands of spectra have to be
analyzed.

Fragmentation trees are similar to experts’ “fragmentation diagrams” but are extracted directly from the data,
without knowledge about a compound’s structure. A fragmentation tree consists of nodes, corresponding to the pre-
cursor and fragments, and directed edges connecting the nodes. Each node is annotated with the fragment’s molecular
formula; edges are implicitly annotated with molecular formulas of losses. Given a fragmentation spectrum (possibly
merged from several spectra at different energies) of an unknown compound, a fragmentation tree can be computed
using combinatorial optimization; besides the fragmentation spectrum, only the molecular formula of the unknown
compound is required. For the resulting tree, each node “explains” a peak in the measured fragmentation spectrum:
That is, the mass difference between the node’s molecular formula and the observed peak mass is below the assumed
mass accuracy. To this end, fragmentation trees introduce an “annotation layer” on top of the raw fragmentation data.

The molecular formula of the unknown compound can be determined analyzing its isotope pattern [43] or, again,
by computing fragmentation trees for all possible molecular formulas of the precursor. In fact, fragmentation trees
were initially introduced for this task [44]. In 2011, Rasche et al. [45] found that fragmentation trees are reasonable
descriptions of the fragmentation process and, hence, can also be used to derive further information about the unknown
compound.

For a given fragmentation spectrum, optimization is used to find the tree that, according to some scoring function,
best explains the observed spectrum. Unfortunately, this is impeded by the size of the search space: The fragmen-
tation spectrum of a compound may be explained by numerous fragmentation trees. The number of fragmentation
trees we have to consider can easily reach 10100 even for small compounds [46], a number much larger than the
number of atoms in the observable universe. This problem is especially pronounced for compounds above 500 Da,
or fragmentation spectra with many peaks; it is less pronounced but, nevertheless, present for high mass accuracy
measurements; finally, it is aggravated if we consider elements besides CHNOP. To find the best (and hopefully cor-
rect) fragmentation tree, combinatorial optimization is used, as it has been for numerous problems in bioinformatics
and cheminformatics. Unfortunately, finding an optimal fragmentation tree is proven to be computationally hard [47].
This severely complicates the design of swift algorithms for the problem. Nevertheless, algorithms have been devel-
oped that guarantee to find the optimal solution and are also swift in practice [47]: Usually, the optimal fragmentation
tree can be found in a matter of seconds.

To compare two unknown compounds based on their fragmentation spectra, the corresponding fragmentation trees
can be aligned [48]. By this, similar fragmentation cascades in the two trees are identified and scored. Even for com-
pounds that cannot be identified, we can derive useful information from this, such as a clustering. We have depicted
the workflow from fragmentation spectra to fragmentation tree alignments in Fig. 4. The hierarchical clustering in
Fig. 4 was derived solely from the fragmentation data; even if half or more of the compounds had been unknowns,
the method would have produced the same clustering. A method similar in spirit [49] first maps fragmentation trees
to feature vectors, then compares the feature vectors using standard measures such as Tanimoto similarity. Here, the
problem is to find universally applicable feature vectors, as we do not know beforehand what is present in our sample.

Fragmentation trees must not be confused with “spectral trees” for multiple stage mass spectrometry [50], that
describe the relationship between the MSn spectra of a single compound. Similarly, “fragmentation trees” in [51]
contain no information regarding the descent of fragment peaks inside a single spectrum.

7. Challenges and future perspectives

For the maturation of metabolomics, the lack of freely available mass spectrometric reference data needs to be
filled, as it is required for training and evaluation of novel computational methods. The metabolomics and small-
molecule research community should follow examples from other research areas such as proteomics, where compu-
tational analysis could mature much faster. The availability of free experimental data was crucial for the development
of genomics, and the proteomics community has adopted similar standards with the Amsterdam principles [52]. Re-
garding free data sharing, metabolomics is still in the dark ages.

After the first approaches for automated analysis of fragmentation spectra 40 years ago, research mostly came
to a halt for many years. But over the last five years, several new ideas and approaches were developed that deal
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Figure 4: Fragmentation tree alignment for compound classification. A fragmentation tree is computed from the measured spectrum. The tree is
aligned to a database of fragmentation trees in an all-against-all manner. The compounds are clustered based on the resulting similarity scores.
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with fragmentation mass spectra not contained in a spectral library. As these approaches are still in their infancy, it
is hard to predict their success and further development potential in the near future. However, several of the above-
mentioned approaches share the idea to replace searching in spectral libraries by searching in the more comprehensive
molecular structure databases, by predicting fragmentation spectra from molecular structures [25, 28], by explaining
the experimental spectrum with fragments obtained from molecular structures [31], or by predicting structural features
and comparing them with molecular structures [36]. For the computation of fragmentation trees [45, 46, 53], neither
spectral libraries nor molecular structure databases are needed. This de novo approach targets “true unknowns” and
aims at overcoming the limits of the “known universe of organic chemistry”.
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[4] S. Neumann, S. Böcker, Computational mass spectrometry for metabolomics – a review, Anal Bioanal Chem 398 (2010) 2779–2788.
[5] T. Kind, O. Fiehn, Advances in structure elucidation of small molecules using mass spectrometry, Bioanal Rev 2 (2010) 23–60.
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[44] S. Böcker, F. Rasche, Towards de novo identification of metabolites by analyzing tandem mass spectra, Bioinformatics 24 (2008) I49–I55.

Proc. of European Conference on Computational Biology (ECCB 2008).
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