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Abstract

The accurate characterization of synthetic polymer sequences represents a major challenge
in polymer science. Matrix-assisted laser desorption/ionization time-of-flight mass spectrom-
etry (MALDI-TOF MS) is frequently used for the characterization of copolymer samples. We
present the COCONUT software for estimating the composition distribution of the copolymer.
Our method is based on Linear Programming and is capable of automatically resolving over-
lapping isotopes and isobaric ions. We demonstrate that COCONUT is well suited for analyz-
ing complex copolymer MS spectra. COCONUT is freely available and provides a graphical
user interface.

Introduction
Mass spectrometry (MS) is increasingly used for analyzing synthetic polymers,1 utilizing soft
ionization techniques such as matrix-assisted laser desorption/ionization (MALDI),2 electrospray
ionization, or atmospheric pressure chemical ionization. MS techniques can highlight different
features of polymers such as molecular weight distribution,3 or end-groups.4 MS is frequently
used to determine compositional drift,5 or the average composition,6–10 which then can be verified
by other techniques, such as nucleic magnetic resonance (NMR).

Quantifying the relative abundances of copolymers in a sample provides insightful informa-
tion: Wilczek-Vera et al. 11 introduced the copolymer composition matrix, representing the relative
abundance of all compositions of monomers. The copolymer composition matrix provides infor-
mation about the copolymer architecture,12,13 the distribution of block lengths in block copoly-
mers,11,14–16 or the reactivity ratio of the consumed monomers.17 It has been used to study degra-
dation10 and MALDI matrix effects.18 The composition matrix is related to the bivariate distribu-
tion of monomer ratio and degree of polymerization, which can be used to highlight compositional
drift.9,19,20

Here, we focus on linear copolymer architectures. Several assignment methods have been
introduced to estimate the copolymer composition matrix from MS data.10–18 For these methods,
the abundance of each copolymer molecule is assigned to the height of some measured peak, being
closest to the most abundant theoretical isotope peak for this copolymer. However, this approach
has certain drawbacks:14,21 First, since peak shapes change with increasing mass, abundance of
the molecule is not correlated to the peak height but to the area of the peak. However, for very
high masses above the reported masses in this publication, peak resolution becomes poorer. For
such mass regions, peak intensities should be used. Second, overlapping isotopes of different
copolymers may result in imprecise polymer abundance assignments. Third, isobaric molecules
may prohibit to resolve copolymer abundances.

Weidner et al. 22,23 presented a method to determine the copolymer composition matrix using
liquid adsorption chromatography at critical conditions (LACCC) MS measurements. By using
intensity information from chromatography, the authors evade the non-linear relationship between
MS signals and molecule abundances. Fractions are separately analyzed and assembled in silico
to form single composition matrices. Unfortunately, LACCC-MS is time-consuming, and critical
conditions have to be known for at least one of the polymers. Vivó-Truyols et al. 21 presented a
regression method to determine the copolymer composition from a single MS measurement. The
method fits peak curves to the raw data, and can resolve overlapping isotopes. Because fitting
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the complete MS spectrum is computationally expensive, the method truncates the spectrum into
strips. This truncation complicates quantification of isotopes on the strip borders.

In this contribution, we propose a method to infer the copolymer composition matrix from a
single MS measurement. Our method uses peak areas instead of peak heights, and can handle
overlapping isotopes. We also propose an approach to resolve isobaric molecules, which is a
frequently occurring issue in copolymer MS. To the best of our knowledge, this has previously
been possible only by using complementary measurements, such as NMR investigations.

We demonstrate the validity of our method using several synthesized copolymers measured
with MALDI time-of-flight (TOF) MS. To evaluate our method’s power to resolve isotope overlaps
and isobaric molecules, we have simulated mass spectra for different monomers. We evaluate our
software to the approach of Vivó-Truyols et al. 21 , which is the most recent for this problem. Our
method is implemented in the COCONUT (Copolymer Composition Numbering Tool) software,
which is provided free and open-source, and offers a graphical user interface.

Computational methods
Overview In the first step of our method, we centroid the spectra, that is, we identify peaks
and their area-under-peak. We do not provide details for this approach, as it has been discussed
extensively in the literature. For the following steps of our analysis, we will use the representation
of the spectrum as a list of peaks and peak areas, as this allows us faster processing of the data.
To reduce noise, we remove peaks below a certain threshold. We assume that all molecules in the
MALDI spectrum are single-charged. The mass range is the interval from the smallest mass to the
largest mass of any observed peak, but can be further restricted if required. Further, we assume
that the absolute mass error in the measured spectrum is at most ∆m < 0.5 m/z; we will call this
fixed ∆m the mass accuracy. This implies that measured peaks can be uniquely assigned to one
theoretical peak of an isotopic pattern. To simplify our presentation, we assume that the mass of
the initiating and terminating end-groups plus cationization agent is a constant which is ignored
in our presentation: As a consequence, the mass of a monomer composition AiB j is the sum of its
monomer masses m = i ·mA + j ·mB.

Different compositions of monomer repeating units A and B can result in copolymers with
similar monoisotopic masses. To this end, we often observe peaks with multiple potential expla-
nations. We define two monomer compositions as isobaric if the difference of their monoisotopic
masses is less than the mass accuracy. In this case, mass differences of the peaks of the theoret-
ical isotope patterns for these two monomer compositions will usually be smaller than the mass
accuracy, too. As the last step of our method, we present an approach for untangling the isotope
patterns of isobaric monomer compositions. But even if the monoisotopic masses of two monomer
compositions is above the mass accuracy, it is possible that some isotope peaks of their theoretical
isotope patterns have mass difference below the mass accuracy. We say that two isotope patterns
are overlapping, if there exist two peaks in the patterns with mass difference below the mass accu-
racy.

Our method estimates relative abundances of all possible monomer compositions AiB j in the
MS spectrum. It proceeds in four steps: (i) Generate all candidate isotopic patterns; (ii) assign
candidate peaks to the MS spectrum; (iii) compute the abundances and simultaneously resolve
overlapping isotopes; and (iv) resolve isobaric molecules.
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Candidate generation We first compute theoretical isotope distributions for all monomer com-
positions AiB j with monoisotopic mass within the mass range. We compute the first n peaks of
each isotope pattern by convolving the elemental isotopic distributions.24

Next, we identify isobaric monomer compositions. Consider the monomer compositions AiB j
and Ai−∆iB j+∆ j for natural numbers i, j ≥ 0 and ∆i,∆ j > 0. Masses m1 and m2 of these two
monomer compositions are

m1= i ·mA + j ·mB,
m2= (i−∆i) ·mA +( j+∆ j) ·mB.

(1)

Recall that two monomer compositions are isobaric if their mass difference is less than the mass
error, |m1−m2| < ∆m. Substituting m1 and m2 using (1) we infer |∆i ·mA−∆ j ·mB| < ∆m. Thus,
given ∆ j > 0, any natural number ∆i > 0 with

∆ j ·mB−∆m

mA
< ∆i <

∆ j ·mB +∆m

mA
(2)

leads to isobaric monomer compositions AiB j and Ai−∆iB j+∆ j. This is independent of the choice
of i, j ≥ 0. To this end, we call any such tuple (∆i,∆ j) an isobaric series.

We determine all isobaric series; then, we use the isobaric species to arrange the monomer com-
positions (and, hence, the corresponding isotope patterns) into isobaric sets. For each monomer
composition AiB j we iterate over all isobaric series (∆i,∆ j). If there is another monomer compo-
sition Ai−∆iB j+∆ j within the mass range, these two are grouped into the same isobaric set. Note
that an isobaric set can also contain only a single monomer composition. For each isobaric set, we
compute an average isotope pattern for all the theoretical isotope patterns of the monomer compo-
sitions in the isobaric set; this will be our candidate isotope patterns. In the following, we assume
that for any isobaric set, abundances for all monomer compositions but one are set to zero during
fitting the matrix (Sec. ). We will split abundances of these monomer compositions in Sec. .

Template matching In this step, we want to assign the candidate isotope pattern peaks to the
measured peaks in the experimental MS spectrum. However, measured peaks with a distance less
than ∆m can lead to ambiguous assignments: These peaks may be caused by overlapping raw
peaks, or errors during the centroiding (usually caused by shoulder peaks) which have been falsely
identified as separate peaks. Thus, we assume centroids with a distance less than ∆m to originate
from one continuous peak area, and merge them. The mass of the merged peak is the area-weighted
average of the masses of its component peaks. The area of the new peak is the sum of areas of
its components. Naturally, we may accidentally merge two actually separate peaks or signal with
noise peaks. However, the estimation of the composition in the next step is robust towards this
kind of error, and noisy data in general.

Each measured peak is now assigned to zero, one, or several peaks of the candidate isotope
patterns. We match an isotope pattern peak to a measured peak if their distance is less than ∆m.
Formally, let m′i, j,k be the mass and I′i, j,k the intensity of the k th peak in the isotopic pattern of
monomer composition AiB j. Let ml and Il be the mass and area under curve of the l th measured
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peak. Then, the set of matching peaks is

Sl =
{
(i, j,k) : |ml−m′i, j,k|< ∆m

}
. (3)

We define S0 as the set of all unmatched candidate peaks

S0 = {(i, j,k) : there is no l with (i, j,k) ∈ Sl} . (4)

These sets form a partition of all candidate isotope pattern peaks.

Composition estimation We now describe how to estimate the composition matrix. For each
monomer composition AiB j we want to find the matrix of relative abundances R, with 0≤ Ri, j ≤ 1,
which minimizes the distance of its theoretical isotopic pattern to the assigned measured peaks.
Formally, we solve the following optimization problem:

argmin
R

∑
l

∣∣∣∣∣ ∑
(i, j,k)∈Sl

Ri, j · I′i, j,k− Il

∣∣∣∣∣+ ∑
(i, j,k)∈S0

Ri, j · I′i, j,k (5)

The first term of (5) tries to minimize the distance of the measured area under peak Il to all its
matching potentially overlapping candidate peaks, that is, the sum of polymer abundance times
theoretical isotopic intensities Ri, j · I′i, j,k. The second term of (5) considers all candidate isotope
peaks that have no matching measured peak. Since these are not represented in the spectrum and,
hence, should also not exist in the model, we minimize the distance of the sum of their intensities
times polymer abundance Ri, j · I′i, j,k to a zero peak area.

The number of free parameters Ri, j is determined by the number of possible template isotope
patterns, which increases quadratic in mass: There exist m+1 compositions of two monomers for
a given integer mass m = i ·A+ j ·B.25 The sum of all compositions with integer mass at most m

can be estimated by
m
∑

k=1
(k+1) = m(m+3)

2 ∈ O(m2).

We efficiently solve this high-dimensional optimization problem by transforming it to a Linear
Program (LP). We introduce distance coefficients, d0 for the unmatched theoretical peaks and a
coefficient dl for each measured peak. Then, solving the Linear Program

min ∑
l

dl

s.t. ∑
(i, j,k)∈Sl

Ri, j · I′i, j,k +dl ≥ Il ∀l (6a)

∑
(i, j,k)∈Sl

Ri, j · I′i, j,k−dl ≤ Il ∀l (6b)

∑
(i, j,k)∈S0

Ri, j · I′i, j,k +d0≥ 0 (6c)

∑
(i, j,k)∈S0

Ri, j · I′i, j,k−d0≤ 0 (6d)

estimates the optimal abundances Ri, j. We omitted the upper and lower limit constraints for all
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coefficients. Constraints (6a) and (6b) correspond to the first term of (5), and constraints (6c) and
(6d) to the second term. In case there are isobaric monomer compositions with Ri, j > 0, we will
resolve them in the next step.

Resolving isobaric molecules Isobaric monomer compositions have almost identical monoiso-
topic mass, so there are competing possible explanations for certain measured peaks. Given any
two isobaric monomer compositions, then the differences in isotope abundances of the correspond-
ing theoretical isotopic patterns are usually too small to split the measured abundances. Therefore,
we suggest an alternate approach to split corresponding entries in the composition matrix R. Ob-
viously, this is not necessary if there are no isobaric monomer compositions present.

Our task is to split abundances Ri, j that correspond to more than one monomer composition,
that is, that belong to isobaric sets with two or more elements. It has been suggested repeatedly that
distributions of polymer abundances follow some common probability distribution such as Poisson
distribution or Schulz-Zimm distribution. Wilczek-Vera et al. 11 suggested that monomer compo-
sition abundances can be modeled by a suitable bivariate distribution, and also suggested to use
Poisson or Schulz-Zimm distributions as the marginal distributions. To simplify our computations,
we further approximate this using a normal distribution: For example, the Poisson distribution
P(λ ) with parameter λ can be approximated by a normal distribution N (λ ,

√
λ ). The joint dis-

tribution of two normal distributions is a bivariate normal distribution. We now use the bivariate
normal distribution to split abundances of isobaric sets with more than one monomer composition.

In principle, we may do this splitting by the following procedure:

1. Estimate the mean µ = (µ1,µ2) and covariance matrix Σ of the bivariate normal distribution
F = N (µ,Σ) from the matrix R. In the first round, we consider only those entries of R
where the corresponding isobaric set has cardinality one.

2. Do the following for each isobaric set B of cardinality two or more: Let r be the sum of
abundances of all monomer compositions in B. Now, we distribute this abundance over all
monomer compositions in B:

Ri, j :=
F(i, j)

∑
(x,y)∈B

F(x,y)
· r (7)

Repeat this until R converges. We found that this approach is often too slow in practice; to this
end, we instead use a general purpose optimizer26 that combines both of these steps (estimating
the bivariate normal and splitting the abundances) into one. We leave out the tedious technical
details.

Experimental methods
Overview We evaluated our method on two different datasets. First, we synthesized three dif-
ferent random copolymers (Fig. 1), consisting of two macromers with both a different ratio of
styrene and isoprene (Tables 1, 2). We measured the first macromers (I1 to I3) and the complete
(PS-r-PI)-r-(PS-r-PI) copolymers (P1 to P3). Second, to assess the accuracy of our method, we
evaluated it with simulated datasets, as this is the only way to compare the result to a know ground
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truth. We simulated PMMA-co-PnBA and PMMA-co-PHEMA spectra as numerous overlapping
isotopes and isobaric molecules appear in these copolymers.

Figure 1: Schematic representation of the synthesized (PS-r-PI)-r-(PS-r-PI) copolymer P1. P2
and P3 have the same architecture, but different PS to PI ratios.

Materials and polymerization procedures The first (I1, I2, I3) and second macromers (I1-2,
I2-2, I3-2) are constituted of a random copolymer of styrene and isoprene. The copolymers (P1,
P2, P3) were synthesized in Schlenk tubes under dry argon atmosphere. Solvents were dried over
sodium/benzophenone and freshly distilled. Isoprene and styrene were dried over calcium hydride
and both freshly distilled before reaction. Sec-butyllithium (1.4 mol in hexane) was used as re-
ceived. All chemicals were obtained from Aldrich. The Schlenk flasks were heated and dried
under vacuum and each filled with 10 mL cyclohexane and 0.09 mL (1.2 mmol) tetrahydrofuran
as randomizer. To the solution 0.29 mL sec-butylithium solution (0.4 mmol) was added and al-
lowed to stir for 15 minutes resulting in a slightly pink solution. Subsequently, each flask was
heated to 40 ◦C and the monomer mixtures (Table 1) for the first macromer were added. After
1.5 hours stirring, the second monomer mixture (Table 2) was added for the formation of the sec-
ond macromer.27 Theoretical molar masses of 5,000 g mol−1 (2,500 g mol−1 for each macromer)
were targeted and 2 g of final product were aimed for. Differences between the theoretical and
observed values for the DP in particular for isoprene can be explained by the difficult handling
of the monomer, the related inaccurate added volume and the Ag cluster suppression in the MS
spectra. All copolymers showed PDI values lower than 1.1, indicating a living character of the
polymerization. All molar masses of I1 to I3 were obtained in the range of 2,500 g mol−1 and
P1 to P3 of 5,000 g mol−1 using a polystyrene calibration. I1: Mn = 2,310 g mol−1, I2: Mn =
1,960 g mol−1, I3: Mn = 2,153 g mol−1, P1: Mn = 4,546 g mol−1, P2: Mn = 4,058 g mol−1, P3:
Mn = 4,380 g mol−1.

Instrumentation 1H NMR spectra were recorded on a Bruker AC 300 MHz. Size exclusion
chromatography was performed on either a Shimadzu SCL-10 A system (with a LC-10AD pump,
a RID-10A refractive index detector, and a PL gel 5 µm mixed-D column at 25 ◦C) where the eluent

7



PREPRINT VERSION

Table 1: Summary of theoretical values of each first macromer.

I1 I2 I3
PS PI PS PI PS PI

Percent[%] 80 20 70 30 60 40
Molar mass [g mol−1] 2000 500 1750 750 1500 1000

DP 19 7 17 11 14 15
Mass (monomer) [g] 0.79 0.19 0.71 0.30 0.58 0.41

Volume (monomer) [mL] 0.87 0.28 0.78 0.44 0.64 0.60

Table 2: Summary of theoretical values of each second macromer.

I1-2 I2-2 I3-2
PS PI PS PI PS PI

Percent[%] 20 80 30 70 40 60
Molar mass [g mol−1] 500 2000 750 1750 1000 1500

DP 5 29 7 26 10 22
Mass (monomer) [g] 0.21 0.79 0.29 0.71 0.42 0.60

Volume (monomer) [mL] 0.23 1.16 0.32 1.04 0.46 0.88

was a mixture of chloroform:triethylamine:isopropanol (94:4:2) with a flow rate of 1 mL/min. The
system was calibrated with PS standards purchased from PSS Standard.

An Ultraflex III TOF/TOF (Bruker Daltonics, Bremen, Germany) was used for the MALDI-
TOF-MS analysis. The instrument was equipped with a Nd:YAG laser and a collision cell. All
spectra were measured in the positive reflector mode. The instrument was calibrated prior to each
measurement with an external standard PMMA from PSS Polymer Standards Services GmbH
(Mainz, Germany). MS data were processed using PolyTools 1.0 (Bruker Daltonics) and Data
Explorer 4.0 (Applied Biosystems). Before applying our computational methods for estimating
the copolymer composition, the spectra were centroided and baseline-corrected. The compositions
were estimated using the COCONUT software.

Sample preparation For the sample preparation, all polymers (10 mg/mL) in chloroform, dithra-
nol (50 mg/mL) in chloroform and silver trifluoroacetate (AgTFA) dissolved in chloroform at a
concentration of 100 mg/mL were mixed and the dried-droplet sample preparation method was
applied.

Simulating mass spectra To compare our results against some ground truth, we have to simu-
late mass spectra. Although we can not simulate all aspects of the physical processes of an MS
instrument, we have tried to capture several fundamental aspects. We start by simulating a com-
position matrix; here, we use five bivariate normal distributions with randomly chosen parameters
(Table S1). Given the composition matrix, we iterate over all monomer compositions: We add
the appropriate end groups, and simulate the first 12 peaks of the isotope pattern, estimating both
intensities and mean peak masses.24 We disturb each isotope peak by adding normally distributed
noise with mean zero and variance σ/2 to the masses, and multiplying intensities by log-normal
distributed random noise with mean zero and variance σ , where the noise parameter σ is given
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below. For an isotope peak with mass m and intensity I, we add a Gaussian function with mean m,
variance 1/5, and height (multiplier) I to the simulated spectrum. We then sample this spectrum
at sampling points with mass difference 0.1 Da. Finally, this sampled (discretized) spectrum is
again perturbed using multiplicative noise following a log-normal distribution with mean zero and
variance σ/2.

We simulated spectra for copolymers PMMA-co-PnBA and PMMA-co-PHEMA. Here, PMMA-
co-PnBA results in a large number of overlapping isotope patterns, whereas PMMA-co-PHEMA
results in many isobaric molecules. To demonstrate that our method can resolve overlapping iso-
topes and isobaric monomer compositions, we simulated noise-free spectra with σ = 0. To evaluate
the robustness of our method, we additionally use four noise levels σ = 0.05,0.1,0.2,0.5. For each
copolymer, all five composition matrices and all five noise levels, we simulated five mass spectra;
resulting in 250 spectra in total.

Results and discussion
Experimental (PS-r-PI)-r-(PS-r-PI) The shown materials were synthesized by living anionic
polymerization, which is widely used with other monomers such as ethylene oxide (EO), allyl
glycidyl ether (AGE), (meth)acrylate, etc. This polymerization technique produces well-defined
polymers with low polydispersity index values, which is required for MS analysis to ionize all
polymer chains. The chosen copolymers have also been used as potential membranes applications
when having high molar masses.28–30

Copolymers were synthesized with two random macromers with different ratios of styrene and
isoprene (Fig. 1), analyzed by MALDI-TOF MS (Fig. S3) and the COCONUT software (Fig. S4).
The estimated composition matrices (Fig. 3) were transformed to distributions of chain sizes and
compositions (Fig. 4) by calculating the isoprene ratios and interpolating them for each anti-
diagonal of the composition matrix. They show a compositional drift, indicating a high conversion
rate, since the distribution is not symmetric with respect to the monomer fractions.19

Table 3: Summary of Mn and Mp values.

Theoretical Mn (1H NMR) Mn (COCONUT) Mp (COCONUT)
PS PI PS PI PS PI PS PI

I1 19 7 17 9 17.4 8.2 17 8
I2 17 11 12.5 11 13.7 8.3 11 8
I3 14 15 16 13 16.7 8.9 18 9
P1 24 36 21 35 23.6 26.6 25 26
P2 24 37 21 29 21.7 22.5 22 22
P3 24 37 22 33 23.1 26.0 24 26

Table 3 shows the theoretical ratios between styrene and isoprene in the first macromer and
the complete copolymer, the values obtained by 1H NMR and the ratios estimated from the com-
position matrices (Fig. 3). The maximal value in the matrix correlates to the highest intensity in
the MS spectrum. It is thus the maximum of the copolymer distribution, the Mp value. We com-
puted the Mn value by taking the average of the marginal distributions of the composition matrices
(Fig. S5). The COCONUT and 1H NMR values are slightly lower than the theoretical values for
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both monomers, which may be due to some deactivation of the initiator by impurities in the solvent
and also the challenging usage of isoprene. The Mn values of COCONUT and 1H NMR are in a
good correlation for the first macromer and are slightly shifted for the entire copolymers due to
Ag+ clusters. The clusters form when Ag+ is used as cationization agent and thus ion suppression
was used to have less interference with the polymer signal.
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Figure 2: Left: MALDI-TOF spectrum of the (PS-r-PI) copolymer I1. Right: Detail of the spec-
trum overlayed with the estimated theoretical isotopes. We used six isotopic peaks per pattern to
estimate the abundances.

Nevertheless, a living character of the polymerization can be assumed as well-defined poly-
mers with a narrow molar mass distribution were obtained (Fig. S1). Isoprene as a monomer has
three different microstructures (cis/trans: 1,4-:1,2-:3,4), where the 1,4 regiospecificity is mostly
abundant. The different microstructures can induce slight errors in the NMR spectra (Fig. S2).31

In addition, when THF was added to act as a randomizer, we did observe overlapping isotopes in
the MS spectra and multiple isobaric distributions in the composition matrix. As shown in Fig. 2
overlapping isotopes were resolved. Moreover, for each copolymer, one isobaric distribution was
determined by our method, which we confirmed by comparing both average monomer composition
from NMR and COCONUT (Table 3).

Huijser et al. 12 , Staal 32 and Willemse 33 suggested a quick way to provide an indication of
the microstructure from the slope of a line, fitted through the composition matrix. In reference
to the composition matrices from I1 to I3 (Fig. 3), we can observe straight lines, which correlate
to a block like structure. However, we expected a random copolymer, where the line should go
through the origin with a constant slope. Possibly due to intensity deviations in the high m/z range
the origin of the line could have a slight offset which explains the uncertainty in the microstruc-
ture determination. However, this deviation could also occur during the synthesis where THF is
considered as randomizer. Nonetheless the P1 to P3 do correlate to block like structures as was
desired.

Simulated PMMA-co-PnBA/PMMA-co-PHEMA First, we analyzed two noise-free spectra of
PMMA-co-PnBA and PMMA-co-PHEMA using COCONUT with intensity threshold 0.05. The
abundances of the overlapping isotopes in PMMA-co-PnBA spectrum were correctly calculated
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Figure 3: Copolymer composition matrix of the (PS-r-PI) macromers I1 to I3 (left) and the final
(PS-r-PI)-r-(PS-r-PI) copolymers P1 to P3 (right).
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Figure 4: Copolymer composition as a function of degree of polymerization and the ratio of iso-
prene of the (PS-r-PI) macromers I1 to I3 (left) and the final (PS-r-PI)-r-(PS-r-PI) copolymers P1
to P3 (right).
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(Fig. 5). The distribution was almost perfectly reconstructed, only isotopes below the intensity
threshold were not considered by our method and, thus, lost (Fig. S6). In the simulated spectrum
of PMMA-co-PHEMA (Fig. S7), there exist three neighboring isobaric distributions that may ex-
plain the data; from these, COCONUT chose the correct distribution located in the center of the
composition matrix (Fig. 5). Both simulations indicate that our method can reconstruct the true
copolymer distribution, given that the input spectrum is free of noise.
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Figure 5: Left: Detail of the simulated MS spectrum of PMMA-co-PnBA showing overlapping
isotopes. The relative molecule abundances estimated by COCONUT are represented by the cen-
troid intensities. Right: Copolymer composition matrix estimated from a simulated MS spectrum
of a PMMA-co-PHEMA copolymer overlayed with all isobaric distributions (contours).

To assess the robustness of our method we use the second simulated dataset with noise. We
stress that for noise parameter σ = 0.5, resulting signal-to-noise ratios are below 50% on average,
resulting in very challenging instances for any quantification method. We also applied the “strip-
based regression” (SBR) method21 to this simulated dataset. To the best of our knowledge, this
is the only freely available software for this purpose; at the same time, it is the newest approach
reported in the literature and, hence, arguably the most advanced to date.

We evaluated results by calculating the Pearson correlation coefficient of each estimated com-
position matrices against the original composition matrix (Fig. 6). For each method, noise level and
dataset, we calculated the median over all coefficients. We find that for both datasets, our method
is capable of reconstructing the correct composition matrix with very high accuracy (Pearson cor-
relation close to one) for noise parameter up to 0.2. Only for noise parameter σ = 0.5, we observe
a significant deviation between estimated and original composition matrix. We see a similar pat-
tern for the SBR method, with no significant correlation differences for noise parameter between
0 and 0.2, and a pronounced drop for noise parameter σ = 0.5. But SBR reaches smaller Pearson
correlation for both copolymers: for PMMA-co-PnBA correlation is between 0.89 and 0.93, and
for PMMA-co-PHEMA it is between 0.70 and 0.74, leaving out noise parameter σ = 0.5. Examin-
ing the composition matrices calculated by SBR for individual spectra, it appears that SBR cannot
redistribute abundances of isobaric monomer compositions, what explains the decreased Pearson
correlation for PMMA-co-PHEMA copolymers.

On average, COCONUT required 8.7 seconds per PMMA-co-PnBA spectrum, and 46.0 sec-
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Figure 6: Median Pearson correlation coefficient for each method and copolymer dataset, PMMA-
co-PnBA and PMMA-co-PHEMA, at five different noise levels.

onds per PMMA-co-PHEMA spectrum. The difference was caused by the numerous isobaric iso-
topes, which had to be resolved in the second dataset. SBR required an average of 203.2 seconds
per spectrum for both datasets.

Software Our software called COCONUT (Copolymer Composition Numbering Tool) was im-
plemented in the Groovy language and runs on the Java platform. It is freely available for download
at http://bio.informatik.uni-jena.de/software/coconut. The core is formed
by efficient algorithms for calculating the isotope patterns, estimating the copolymer composi-
tion and resolving isobaric species. It is distributed with the free open source LP solver lp_solve
(http://sourceforge.net/projects/lpsolve/). Our software also supports the ef-
ficient commercial Gurobi LP solver (Gurobi Optimization, Inc., Houston, USA). Furthermore we
included algorithms for spectral preprocessing (peak smoothing, centroiding and baseline correc-
tion) based on the routines implemented in the open source MS framework MzMine 2.34

COCONUT combines these algorithms with a user-friendly interface (Fig. S8). At the starting
point of an analysis, the user can choose to import either a previously centroided or a raw MS
spectrum. If necessary, noise in the raw signal peaks can be reduced by smoothing them with
a Savitzky-Golay filter.35 Baseline bias and noise peaks are filtered by a baseline correction and
setting an intensity threshold. The raw spectrum is then centroided by estimating the area under the
curve of the detected peaks. To calculate the copolymer composition, the molecular formulas of the
monomers and initiating as well as terminating end-groups plus cationization agent are required.
If there are isobaric species, the program resolves them automatically.

The supported file formats include, amongst others, the open standards mzML and mzXML for
mass spectra and the Open Document as well as the Excel format for the copolymer compositions.
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Graphics can be exported as bitmaps.

Conclusions
Mass spectrometry has become an indispensable tool for analyzing copolymers. Copolymer spec-
tra are highly complex and contain numerous peaks. Often occurring challenges include isobaric
species, overlapping isotopes, background noise and peak shape perturbations. Computational
methods have proven to be a remarkable efficient tool to counteract these recurring troublesome
points. We have presented a robust algorithm to estimate composition matrices of linear copoly-
mers from any type of MS spectra. A remaining open challenge in quantifying copolymers from
single mass spectra is mass and composition-dependent ionization.

In this contribution we have demonstrated the power of our tool COCONUT using several
synthesized copolymers. In addition, we have evaluated our software on simulated datasets, as this
is the only way to compare the result to a known ground truth. We demonstrated COCONUT is
swift and accurate for the simulated spectra. We argue that COCONUT is well suited for complex
copolymer spectra, as we strove to incorporate their characteristic features in the simulated spectra.

COCONUT is freely available for polymer scientists to investigate composition and linear ar-
chitectures for designing smart polymers. Our software fulfills chemists demand for computational
support in an efficient manner.

Supporting Information Available
Additional information as noted in text. This material is available free of charge via the Internet
at http://pubs.acs.org/.
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