
CSV, XML, JSON, REST and SOAP

Kai Dührkop

Lehrstuhl fuer Bioinformatik
Friedrich-Schiller-Universitaet Jena

kai.duehrkop@uni-jena.de

11.-15. August 2014

Data formats
Web Services

CSV
JSON
XML

Section 1

Data formats

2/47 CSV, XML, JSON, REST and SOAP

Data formats
Web Services

CSV
JSON
XML

Data formats

binary

not human readable
memory efficient
fast to parse
but: platform dependend (Little Endian vs. Big Endian?)
difficult to evolve the format (e.g. Word Documents are
incompatible between different versions)

text

human readable (okay, xml...)
waste more memory? (compressed text files are often smaller
than binary files!)
slow to parse
platform independend (but: still encoding problems!)
format can evolve (e.g. additional fields in xml)

3/47 CSV, XML, JSON, REST and SOAP

Data formats
Web Services

CSV
JSON
XML

Data formats

binary

not human readable
memory efficient
fast to parse
but: platform dependend (Little Endian vs. Big Endian?)
difficult to evolve the format (e.g. Word Documents are
incompatible between different versions)

text

human readable (okay, xml...)
waste more memory? (compressed text files are often smaller
than binary files!)
slow to parse
platform independend (but: still encoding problems!)
format can evolve (e.g. additional fields in xml)

3/47 CSV, XML, JSON, REST and SOAP

Data formats
Web Services

CSV
JSON
XML

CSV: simplest format possible: Just strings separated by
commas and newlines

XML: most common text data format. XHTML is the
language of the web.

JSON: uses javascript syntax. Much better readable and more
sparse than XML

YAML: Same as JSON, but uses indentation instead of
brackets

4/47 CSV, XML, JSON, REST and SOAP

Data formats
Web Services

CSV
JSON
XML

name,formula,id

glycose,C6H12O6,79025

alanine,C3H7NO2,5950

guanine,C5H5N5O,764

"4-amino-1,2,4-triazin-5-one",C10H10N4O,58

column separator: default is ”,”, but also ”\t” very common

row separator: usually ”\n”

strings can be enclosed in quotation marks to escape special
characters

quotation marks are escaped by another quotation marks

csv can be read and written in excel!

5/47 CSV, XML, JSON, REST and SOAP

Data formats
Web Services

CSV
JSON
XML

poor man’s csv

with open("table.csv") as csvf:

table = [line.split(",") for line in csvf]

very easy for simple formatted files (without escapes and quotation
marks)

6/47 CSV, XML, JSON, REST and SOAP

Data formats
Web Services

CSV
JSON
XML

read csv

import csv

with open("table.csv") as csvf:

table = [row for row in csv.reader(csvf)]

write csv

import csv

table = [["name", "formula", "id"],

["glucose", "C6H12O6", 79025]]

with open("table.csv", "w") as csvf:

csv.writer(csvf). writerows(table)

7/47 CSV, XML, JSON, REST and SOAP

Data formats
Web Services

CSV
JSON
XML

changing delimiters

import csv

row , col and string sep can be changed

csv.reader(csvfile , delimiter="\t",

quotechar="’")

predefined ’dialects ’

csv.reader(csvfile , dialect="excel")

8/47 CSV, XML, JSON, REST and SOAP

Data formats
Web Services

CSV
JSON
XML

whenever your data has no nested structure: USE CSV!

can be easily read in every programing language

can be opened in text editors and in excel

comma is default, but tabs are often better as you rarely have
to escape strings in tab separated files

9/47 CSV, XML, JSON, REST and SOAP

Data formats
Web Services

CSV
JSON
XML

[

{

"name": "Glucose", "formula": "C6H12O6",

"id": 79025,

"similarTo": ["Hexose", "Fructose"],

"biological": true

}

]

just javascript data. Also almost compatible to pythons syntax

booleans, numbers, strings, arrays, objects (dictionaries)

popular in web: client and webserver often use JSON to
communicate with each other. Javascript can naturally work
with json.

usually human readable (if indented) but not easy to parse

10/47 CSV, XML, JSON, REST and SOAP

Data formats
Web Services

CSV
JSON
XML

read json

import json

with open("someFile.json", "r") as jsonFile:

compounds = json.load(jsonFile)

compounds [0]["name"] #=> Glucose

compounds [0]["biological"] #=> True

11/47 CSV, XML, JSON, REST and SOAP

Data formats
Web Services

CSV
JSON
XML

write json

import json

mycompounds = [{"name": "Fructose",

"formula": "C6H12O6", "id": 79025 ,

"similarTo": ["Hexose", "Glucose"]}]

with open("someFile.json", "w") as jsonFile:

json.dump(jsonFile , mycompounds)

12/47 CSV, XML, JSON, REST and SOAP

Data formats
Web Services

CSV
JSON
XML

text files always have an encoding

but: encoding is neither a file attribute nor written in the text
file

programs have to guess the encoding (very bad!)

unicode (UTF-8) as international standard for almost all
characters

linux uses UTF-8 by default, windows uses a lot of different
encodings (UTF-16, latin1, ...)

UTF-8 is superset of ASCII! So all ASCII files can be savely
encoded as UTF-8

read json with encoding

import json

with open("someFile.json") as jsonFile:

json.load(jsonFile , encoding="utf -16")

13/47 CSV, XML, JSON, REST and SOAP

Data formats
Web Services

CSV
JSON
XML

<?xml version="1.0" encoding="UTF-8"?>

<someRoot>

<someElem>

<otherElem someAttr="value">Some text</otherElem>

</someElem>

</someRoot>

most common data format

solves a lot of problems (namespaces, encoding, embedded
data)

but not very readable, very verbose

14/47 CSV, XML, JSON, REST and SOAP

Data formats
Web Services

CSV
JSON
XML

XML is a tree

node types: root, elements, text, attribute, comments, ...

schema defines structure of a xml document

dtd (document type definition)
xsd (type definition in xml)

XML parser (python builtin xml or external package lxml)
SAX (streaming parser)
DOM (tree like structure)
XPATH (querying in xml)

15/47 CSV, XML, JSON, REST and SOAP

Data formats
Web Services

CSV
JSON
XML

Namespaces

<html xmlns="http://www.w3.org /1999/ xhtml">

<body>

<svg xmlns="http://www.w3.org /2000/ svg">

<rect x="0" y="0" width="100"

height="100" fill="black"></rect>

</svg>

</body>

</html>

embedding different xml documents into one

each document uses an own namespace given as URL

all nodes in the subtree of an element with a xmlns attribute
share this namespace

16/47 CSV, XML, JSON, REST and SOAP

Data formats
Web Services

CSV
JSON
XML

Namespaces

<html xmlns="http://www.w3.org /1999/ xhtml"

xmlns:m="http://www.w3.org /1998/ Math/MathML">

... XHTML -Elemente

<m:math >

... MathML -Elemente mit m: -Praefix

</m:math >

... XHTML -Elemente

</html>

prefix-mechanism allows to bind a namespace to a prefix-name
and tag several nodes with a namespace

17/47 CSV, XML, JSON, REST and SOAP

Data formats
Web Services

CSV
JSON
XML

DTD

<!ELEMENT people_list (person)*>

<!ELEMENT person (name, birthdate?, gender?,

socialsecuritynumber?)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT birthdate (#PCDATA)>

<!ELEMENT gender (#PCDATA)>

<!ELEMENT socialsecuritynumber (#PCDATA)>

ELEMENT defines what can be contained in an element node

* for many, ? for optional (like regexp)

#PCDATA for arbitrary text

18/47 CSV, XML, JSON, REST and SOAP

Data formats
Web Services

CSV
JSON
XML

XSD

<?xml version="1.0" encoding="utf-8"?>

<xs:schema elementFormDefault="qualified" xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="people_list">

<xs:complexType>

<xs:sequence>

<xs:element name="person">

<xs:complexTye>

...

</xs:complexTye>

</xs:element

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

19/47 CSV, XML, JSON, REST and SOAP

Data formats
Web Services

CSV
JSON
XML

<?xml version="1.0" encoding="ISO-8859-1" ?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

</xs:schema>

xml documents should define their schema

schema is often available online

20/47 CSV, XML, JSON, REST and SOAP

Data formats
Web Services

CSV
JSON
XML

SAX

define a handler with callbacks that are called for certain
events

events are e.g. opening a node, closing a node, reading some
text, ...

very efficient, can parse arbitrary huge files

handler is usually a finite state machine

21/47 CSV, XML, JSON, REST and SOAP

Data formats
Web Services

CSV
JSON
XML

SAX Handler

import xml.sax as sax

class MySaxHandler(sax.ContentHandler):

def __init__(self):

self.listening = False

self.numlist = []

def startElem(self , name , attrs):

if name == "interesting":

self.listening = True

def endElem(self , name):

self.listening = false

22/47 CSV, XML, JSON, REST and SOAP

Data formats
Web Services

CSV
JSON
XML

SAX Handler - read text node

class MySaxHandler(sax.ContentHandler):

def characters(self , chrs):

if self.listening:

self.numList.append(

[int(x) for x in chrs.split ()]

)

SAX Handler - parse document

handler = MySaxHandler ()

sax.parse("myfile.xml", handler)

handler.numlist #=> [...]

23/47 CSV, XML, JSON, REST and SOAP

Data formats
Web Services

CSV
JSON
XML

SAX Handler - namespaces

class MySaxHandler(sax.ContentHandler):

def startElementNS(name , qname , attrs):

...

methods ending with NS providing namespace support

name is tuple (namespace-uri, localname), qname is
prefix:tagname string

24/47 CSV, XML, JSON, REST and SOAP

Data formats
Web Services

CSV
JSON
XML

DOM

<lectures>

<lecture title="xml">

<day>thursday</day>

<slides>many</slides>

</lecture>

</lectures>

lectures

lecture

title: xml day slides

thursday many

25/47 CSV, XML, JSON, REST and SOAP

Data formats
Web Services

CSV
JSON
XML

DOM

from xml.dom.minidom import parse

import xml.dom as dom

document = parse("myFile.xml")

get tag name of root node

root = document.documentElement

print root.tagName

get tag names of all children

[node.name for node in root.childNodes]

get titles of all lecture nodes

[node.getAttribute("title") for node

in document.getElementsByTagName("lecture")

]

document.getElementsByTagNameNs(URL , "lecture ")

is using namespace

26/47 CSV, XML, JSON, REST and SOAP

Data formats
Web Services

CSV
JSON
XML

ETree

import xml.etree.ElementTree as ET

root = ET.parse("myFile.xml")

root.tag #=> lectures

root [0] #=> first child

root [0]. attrib["title"] #=> "xml"

all text in children

[node.text for node in root]

search lecture nodes in subtree

[node.attrib["title"] for node

in root.findIter("lecture")]

27/47 CSV, XML, JSON, REST and SOAP

Data formats
Web Services

CSV
JSON
XML

XPath

query language for searching in XML

search node sets

an XPath expression consists of an axis, a node test and a
list of predicates

the expression describes a path or subtree in the XML
document

28/47 CSV, XML, JSON, REST and SOAP

Data formats
Web Services

CSV
JSON
XML

lectures

lecture

title: xml day slides

thursday many

axis is direction
from start node

29/47 CSV, XML, JSON, REST and SOAP

Data formats
Web Services

CSV
JSON
XML

lectures

lecture

title: xml day slides

thursday many

parent

30/47 CSV, XML, JSON, REST and SOAP

Data formats
Web Services

CSV
JSON
XML

lectures

lecture

title: xml day slides

thursday many

child

31/47 CSV, XML, JSON, REST and SOAP

Data formats
Web Services

CSV
JSON
XML

lectures

lecture

title: xml day slides

thursday many

descendant

32/47 CSV, XML, JSON, REST and SOAP

Data formats
Web Services

CSV
JSON
XML

lectures

lecture

title: xml day slides

thursday many

node test
restrict to
certain node
types (e.g.
element nodes
or text nodes)

33/47 CSV, XML, JSON, REST and SOAP

Data formats
Web Services

CSV
JSON
XML

child ::A/descendant ::node ()/ child ::text()

verbose syntax

each single expression is a selection step

expressions combined with / are applied on all nodes in the
resulting node set

34/47 CSV, XML, JSON, REST and SOAP

Data formats
Web Services

CSV
JSON
XML

../A/B//C/*/E

abbreviations for common axis

. is current node, .. is parent, // is descendant, / is child

wildcard * for tag name

similar to linux file paths

35/47 CSV, XML, JSON, REST and SOAP

Data formats
Web Services

CSV
JSON
XML

// slides[@title="xml"][1]/ child::text()

predicates are written in square brackets

most predicates restrict the node set to nodes with special
attributes or attribute values

other xpath operations like union are also possible

but usually it’s easier to just search nodes with XPath and
then further process them by a DOM library

36/47 CSV, XML, JSON, REST and SOAP

Data formats
Web Services

CSV
JSON
XML

import xml.etree.ElementTree as ET

root = ET.parse("myFile.xml")

find by xpath

for node in root.findall(

"./ lecture[@title=’xml ’]/day"):

print node.text

etree supports only a subset of XPath

full xpath support with library lxml

37/47 CSV, XML, JSON, REST and SOAP

Data formats
Web Services

CSV
JSON
XML

import xml.etree.ElementTree as ET

root = ET.parse("myFile.xml")

find by xpath with namespace

namespace = { "xhtml": "http ://www.w3.org /1999/ xhtml"}

for node in root.findAll(

"./ xhtml:lecture[@title=’xml ’]/xhtml:day"):

print node.text

use dictionary to map a prefix to a namespace

prefix have to be put before each tagname in xpath

38/47 CSV, XML, JSON, REST and SOAP

Data formats
Web Services

HTTP
REST
SOAP

Section 2

Web Services

39/47 CSV, XML, JSON, REST and SOAP

Data formats
Web Services

HTTP
REST
SOAP

HTTP

TCP

IP

HTTP protocol is on top of TCP/IP stack

defines the communication between client and server in web
applications

client sends a request to the server, consisting of a header
and a body

server sends a response to the client, consisting of a header,
body and status code

40/47 CSV, XML, JSON, REST and SOAP

Data formats
Web Services

HTTP
REST
SOAP

Request

method (GET, POST, HEAD, PUT, DELETE, PATCH, ...)

URI (scheme, host, path, query/parameters)

(optional) cookies

(optional) key,value pairs (POST)

(optional) uploaded files

header contains the length, encoding and type of the data and
much more

41/47 CSV, XML, JSON, REST and SOAP

Data formats
Web Services

HTTP
REST
SOAP

Response

status code (e.g. 404 Page not Found)

header with content length, type, encoding

body containing xml, json, image or other stuff

42/47 CSV, XML, JSON, REST and SOAP

Data formats
Web Services

HTTP
REST
SOAP

REST

a web service manages resources

a resource has one or many URIs

HTTP method describes the action:

GET: read the resource
POST: update the resource
PUT: create a new resource
DELETE: remove a resource

usually only GET and POST are used. POST may be also
used for read-only complex queries

43/47 CSV, XML, JSON, REST and SOAP

Data formats
Web Services

HTTP
REST
SOAP

import httplib as http

import json

get molecular formula of compound with ID 1000

url = "pubchem.ncbi.nlm.nih.gov"

path="/rest/pug/compound/cid/"+

"1000/ property/MolecularFormula/json"

conn = http.HTTPConnection(url)

conn.request("GET",path)

res = conn.getresponse ()

doc = json.load(res)

44/47 CSV, XML, JSON, REST and SOAP

Data formats
Web Services

HTTP
REST
SOAP

SOAP

simple object access protocol

client invokes functions on server, send or receive objects

function and object definitions are described in XML

extremely verbose, complicated and not human readable

but: machine readable! protocol is automatically generated on
server and client side

wsdl file describes protocol (is xml itself)

python library suds

45/47 CSV, XML, JSON, REST and SOAP

Data formats
Web Services

HTTP
REST
SOAP

from suds.client import Client

url to wsdl file

url="http :// www.chemspider.com/" +

"MassSpecAPI.asmx?WSDL"

autogenerate client

client = Client(url)

print all functions and datatypes

print client

invoke function

ids = client.service.SearchByFormula("C6H12O6")

46/47 CSV, XML, JSON, REST and SOAP

Data formats
Web Services

Take home messages

csv, json and xml as text-based data formats

use DOM like api for small xml and SAX api for large xml files

REST: simple GET requests over HTTP

SOAP: extremely complicated. Use a SOAP library instead of
writing requests yourself

47/47 CSV, XML, JSON, REST and SOAP

	Data formats
	CSV
	JSON
	XML

	Web Services
	HTTP
	REST
	SOAP

