Python: Functional Programming

Kai Diihrkop

Lehrstuhl fiir Bioinformatik
Friedrich-Schiller-Universitat Jena
kai.duehrkopQuni-jena.de

11.-15. August 2014

Functional Programming

Section 1

Functional Programming

Kai Diihrkop Functional Programming

Functional Programming

m procedural /imperative

m list of instructions
m examples: C, Pascal, bash

m declarative

m description of the problem

m examples: SQL, HTML, make
m object-oriented

m stateful objects with methods
m examples: Smalltalk, Java, C#

Kai Diihrkop Functional Programming

Functional Programming

m functional

decompose problem into a set of functions
functions transform input to output
functions have no internal state

examples: Haskell, Scheme, Clojure

Kai Diihrkop Functional Programming

Functional Programming

What is an object—oriented programming language?

m objects
m classes

m polymorphism

m encapsulation

Kai Diihrkop Functional Programming

Functional Programming

What is an object—oriented programming language?

m objects What is with primitives in java?
m classes

m polymorphism

m encapsulation

Kai Diihrkop Functional Programming

Functional Programming

What is an object—oriented programming language?

m objects What is with primitives in java?
m classes What is with prototypes in javascript?
m polymorphism

m encapsulation

Kai Diihrkop Functional Programming

Functional Programming

What is an object—oriented programming language?

m objects What is with primitives in java?

m classes What is with prototypes in javascript?
m polymorphism Lisp/Scheme have much higher level of
polymorphism

m encapsulation

Kai Diihrkop Functional Programming

Functional Programming

What is an object—oriented programming language?

m objects What is with primitives in java?

m classes What is with prototypes in javascript?

m polymorphism Lisp/Scheme have much higher level of
polymorphism

m encapsulation modules allow encapsulation, too

Kai Diihrkop Functional Programming

Functional Programming

What is a functional programming language?

functions as first class member

higher-order functions

anonymous functions, closures, lambda calculus

|
|
|
m lazyness
m immutable/stateless data structures
]

list transformations

Kai Diihrkop Functional Programming

Functional Programming

functions as first class member

def greet:
print "Hallo Welt”
gruesse = greet
gruesse () # => "Hallo Welt”
viele_gruesse = [gruesse, gruesse, greet|]
for gruss in viele_gruesse:
gruss ()

#=> Hallo Welt
#=> Hallo Welt
#=> Hallo Welt

Functions are just objects. You can assign them to variables, put
them into collections, pass them as parameters.

Kai Diihrkop Functional Programming

Functional Programming

higher-order functions

def greet:
print "Hallo Welt"”

def threetimes(f):

threetimes(greet)
#=> Hallo Welt
#=> Hallo Welt
#=> Hallo Welt

Kai Diihrkop Functional Programming

Functional Programming

higher-order functions

def greeter(name):
def g:
print "Hallo %s” % name
return g
greet_world = greeter (" Welt")
greet_world () #= Hallo Welt

Functions that get functions as parameters and/or have functions
as return type are called high-order functions

Kai Diihrkop Functional Programming

Functional Programming

anonymous functions, lambda calculus

def greet(name):
print "Hello %s” % name
is equivalent to
greet = lambda name: print "Hello %s” % name

from earlier example
threetimes (lambda: print "Hallo Welt")

lambda allow to define functions without explicitly giving them a
name. Use lambda to pass functions directly to other functions.
lambda calculus Ax.f(x) equivalent to mathematical notation

x — f(x)

Kai Diihrkop Functional Programming

Functional Programming

closures

def stack():

list = []
def push(x): list.append(x)
def pop(): return list .pop()
return (push, pop)

push, pop = stack()
push (5)
pop() #= 5

Anonymous functions that are able to access and modify local
variables inside their scope are called closures. Be careful: They
may lead to memory leaks!

Kai Diihrkop Functional Programming

Functional Programming

What is a functional programming language?

functions as first class member

higher-order functions

anonymous functions, closures, lambda calculus

|
|
|
m lazyness later
m immutable/stateless data structures nothing special
[

list transformations

Kai Diihrkop Functional Programming

map
List Transformations filter
redu

List comprehension

Section 2

List Transformations

map, filter, reduce

Kai Diihrkop Functional Programming

map
List Transformations filter

reduce
List comprehension

= map(f,seq) calls f for each item of seq

m more than one sequence allowed

calculate x3 for all items of list

def cube(x): return xxx3

map(cube, range(4)) #[0,1,8,27]

add items of three lists

def add(x, y, z): return x+y+z

map(add, range(4), range(4), range(4))
#[0,3,6,9]

Kai Diihrkop Functional Programming

map
List Transformations filter

reduce
List comprehension

m filter(predicate,seq) returns a sequence of all items for
which predicate is True

get odd numbers from list

def odd(x): return x%2 != 0

filter (odd, range(8)) #[1,3,5,7]

Kai Diihrkop Functional Programming

map
List Transformations filter

reduce
List comprehension

m reduce(f,seq) calls f for first two items of seq, then on result
and next item, etc.

m with start value: called on start value and first, then on result
and second, etc.

sum over all items of list

def add(x, y): return x+ty

reduce(add, range(4)) #6
reduce(add, range(4), 4) #10

Kai Diihrkop Functional Programming

map
List Transformations filter
reduce
List comprehension

all and any

xs = [2,4,6,8]

check if all values in a collection are true
all (map(lambda x: x % 2 = 0, xs))

check if any value in a collection is true
any(map(lambda x: x > 5, xs))

equivalent

ys = map(lambda x: x % 2 = 0, xs)
all(ys) = reduce(lambda a,b: a and b, ys)
any(ys) = reduce(lambda a,b: a or b, ys)

Kai Diihrkop Functional Programming

map
List Transformations filter

reduce

List comprehension

Section 2

List Transformations

Kai Diihrkop Functional Programming

map
List Transformations filter

reduce

List comprehension

m list comprehension is more readable than map

squares

[x*%2 for x in range(10)]

equivalent to map

map(lambda x: xx*x2, range(10))

Kai Diihrkop Functional Programming

map
List Transformations filter

reduce
List comprehension

m conditional list comprehension with if clause

m equivalent to filter and subsequent map

even squares

[x*x2 for x in range(10) if x%2 = 0]

equivalent to filter + map

map(lambda x: xxx2,\
filter (lambda x: x%2 — 0, range(10)))

Kai Diihrkop Functional Programming

map
List Transformations filter
reduce
List comprehension

combined list comprehension

[x+y for x in [1,2] for y in [1,2]]
#[2, 3, 3, 4]

nested list comprehension

[[x+y for x in [1,2]] for y in [1,62]]
#[[2, 3], [3. 4]]

Kai Diihrkop Functional Programming

map
List Transformations filter

reduce
List comprehension

m also set and dictionary comprehension

set comprehension

{ x*x2 for x in range(10) }
#=> returns a set instead of a list

dict comprehension

{ x: xxx for x in range(1,11) }
#= {1: 1, 2:4, 3:9, ...}

iterator comprehension

(x for x in range(1,11))

Kai Diihrkop Functional Programming

Iterators and Generators

Section 3

Iterators and Generators

Kai Diihrkop Functional Programming

Finite Iter
Generators

Iterators and Generators

Iterators

m iterate over (possibly infinite) values
m lazy

m many functions (zip, map, filter) exists as lazy iterator
functions (izip, imap, ifilter)

m package itertools

Kai Diihrkop Functional Programming

Infinite Iterators
Finit rators

Iterators and Generators o merabare
Generators

Infinite iterators

for i in count(1001, 2):
if isPrimzahl(i):
print i
break

count(start, step) returns infinite list of all numbers starting from
start and incrementing by step

Kai Diihrkop Functional Programming

Iterators and Generators

Infinite iterators

cycle ([1,2,3,4]) #= 1,2,3,4,1,2,3,4,1,2,3,4,1,...

repeats the given sequence indefinitely often

chain([1,2,3,4], [5,6,7,8], [9,10])
#= 1,2,3,4,5,6,7,8,9,10
iterate over concatenated sequences

repeat('a’, 10) #= repeat ’'a’ 10 times

repeat('a’) #=> repeat ’'a’ infinite times

Kai Diihrkop Functional Programming

Infinite Iterators
Finite Iterators

Iterators and Generators e
Generators

Finite iterators

dropwhile (lambda x: x < 5, [1,2,3,4,5,6,7,8])
skip elements in list
while predicate is true

takewhile (lambda x: x < 5, [1,2,3,4,5,6,7,8])
extract elements from [ist
while predicate is true

groupby ([1, 2, 1, "a’', 'b", 4.2, 4.3],\
lambda x: type(x))
#=> iterator over (typename, value—iterator)

Kai Diihrkop Functional Programming

Infinite Iterators
Finite Iterators

Iterators and Generators e
Generators

Combinatoric iterators

cartesian product
product(['a’, 'b", 'c¢'], [1,2,3])

all permutations

list (permutations([1,2,3]))

#= [(1, 2, 3), (1, 3, 2), (2, 1, 3),
(2,3, 1), (3,1, 2), (3, 2, 1)]

all possibilities to draw 3 elements
from the collection

list (combinations([1,2,3,4], 3))

#= [(1, 2, 3), (1, 2, 4),

(1, 3, 4), (2, 3, 4)]

Kai Diihrkop Functional Programming

Infinite Iterators
Finite Iterators

Iterators and Generators e
Generators

Regexp

import re

re.finditer ("some regexp”, "some string")
#=> iterator over occurences

of regexp in string

parse a molecular formula

{m.group(1): int(m.group(2) or 1) \

for m in re.finditer (" ([A~Z][a—z]x*)(\dx)", \
"C6H1206")}

#= {"C": 6, "H": 12, "0": 6 }

Kai Diihrkop Functional Programming

Infinite Iterators
i Iterators

Iterators and Generators R
Generators

Slicing Iterators

unfortunately , there is no

iterator[start:to] syntax

iterator = count(0,2)

take first 10 elements
islice(iterator, 10)

take elements from 10 to 20
islice(iterator, 10, 20)

take each second element from 10 to 20
islice(iterator, 10, 20, 2)

Kai Diihrkop Functional Programming

Iterators and Generators

starmap and izip

xs = [1,2,3,4,5]

ys = [4,2,5,7,2]

classical variant

map(lambda (x,y): pow(x,y), zip(xs, ys))

shorter:
starmap (pow, zip(xs,ys))

Kai Diihrkop Functional Programming

Finite

Iterators and Generators
Generators

Writing own lterators (Generators)

def primes(start=2):
for i in count(start, 1):
for j in range(2, int(sqrt(i))):
if i %) = 0:
break
else:
yield i

for i in primes(100)
print i #=> iterates over all primes from 100

Kai Diihrkop Functional Programming

Finite

Iterators and Generators
Generators

Writing own lterators (Generators)

def primes(start=2):
for i in count(start, 1):
if all(imap(lambda j: i % j !=0, \
xrange (2,int(sqrt(i))))): yield i

return all primes smaller than 100
primes = takewhile(lambda x: x < 100, primes())

Kai Diihrkop Functional Programming

Common Idioms

Imperative style

xs = [20, 27, 22, 38, 32, 21]

ys = [17, 20, 12, 18, 22, 39]

for i in xrange(len(xs)):
print xs[i], ys[i]

functional style

xs = [20, 27, 22, 38, 32, 21]

ys = [17, 20, 12, 18, 22, 39]

for x, y in zip(xs, ys):
print x, vy

Kai Diihrkop Functional Programming

Common Idioms

Imperative style
for i in range(n):

for j in range(m):
pass

functional style

for i, j in product(xrange(n), xrange(m)):
pass

Kai Diihrkop Functional Programming

Common Idioms

Imperative style
for i in range(n):

for j in range(i, n):
pass

functional style

for i, j in combination(xrange(n), 2):
pass

Kai Diihrkop Functional Programming

Common Idioms

Imperative style

occurences = 0

for i in list:
if predicate(i):
occurences += 1

functional style

occurences = len(filter (predicate,list))
or lazy

occurences = sum(1l for x in ifilter (predicate, list)

Kai Diihrkop

Functional Programming

Common Idioms

Take home messages

m map, filter, reduce, all, any

m jterators and generators (especially combinate, product)
m list/set/dict/iterator comprehension: "filter+map”

|

lambda for small functions

Kai Diihrkop Functional Programming

	Functional Programming
	List Transformations
	map
	filter
	reduce
	List comprehension

	Iterators and Generators
	Infinite Iterators
	Finite Iterators
	Generators

	Common Idioms

