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Abstract. SIRIUS 4 is the best-in-class computational tool for metabolite identi�cation from high-resolution
tandem mass spectrometry data. It o�ers de novo molecular formula annotation with outstanding accuracy.
When searching fragmentation spectra in a structure database, it reaches over 70% correct identi�cations. A
predicted �ngerprint, which indicates the presence or absence of thousands of molecular properties, helps to
deduce information about the compound of interest even if it is not contained in any structure database. Here,
we present best practices and describe how to leverage the full potential of SIRIUS 4, how to incorporate it into
your own work�ow and how it adds value to the analysis of mass spectrometry data beyond spectral library
search.

1 Introduction

Comprehensive identi�cation of small molecules is one of the most urgent needs in metabolomics, and related
�elds such as in natural products research, biomarker discovery and environmental science. Yet, this task
remains highly challenging. Liquid-chromatography tandem mass spectrometry (LC-MS/MS) is one of the
most prominent analytical techniques to identify biomolecules. The mere mass of a compound is not su�cient
to determine the correct molecular formula, let alone its structure. Tandem mass spectrometry provides
additional information but is non-trivial to interpret. Usually, metabolite identi�cation is performed by searching
fragmentation spectra in a spectral library [1�4]. However, spectral libraries are � and always will be � highly
incomplete. This represents a major obstacle, particularly for secondary metabolism analysis. During the last
years multiple tools were developed for searching in structure databases which are orders of magnitudes larger
compared to spectral libraries; this includes CFM-ID [5], DEREPLICATOR+ [6], MAGMa [7], MetFrag [8, 9],
MIDAS [10], MS-FINDER [11] and CSI:FingerID [12].
Currently, the best performing tool for this task is CSI:FingerID, successor of FingerID [13]. It is part of
SIRIUS 4 [14], a software for metabolite identi�cation from high-resolution fragmentation spectra. SIRIUS
started o� as a method for de novo molecular formula identi�cation, but now integrates CSI:FingerID to
o�er combined molecular formula annotation and structure database search. SIRIUS performs metabolite
identi�cation in a two step approach: Firstly, the molecular formula of the query compound is determined
via isotope pattern analysis and fragmentation trees. Second, SIRIUS uses CSI:FingerID to predict a molecular
�ngerprint from the given spectrum and fragmentation tree. This predicted �ngerprint can be searched against
a structure database to identify the most likely candidate. Searching CASMI 2016 [15] positive ion mode
spectra in a database of 0.5million structures of biological interest resulted in 74.0% correct identi�cations [14].
When searching in PubChem [16], which contains many millions of structures, CSI:FingerID still achieves an
identi�cation rate of 39.4% (74.8% in the top 10). These rates were reached without using meta-information
such as citation frequencies or production volumes; using such meta-information can be very harmful in practice
[17].
Whereas spectral library search will only allow a �peek through the keyhole�, SIRIUS enables untargeted
identi�cation to draw a more complete picture of a metabolic system [18]. It is understood that not every existing
biomolecule is or will be contained in structure databases. But even for these instances SIRIUS o�ers valuable
insight by providing a predicted molecular �ngerprint to assist de novo structure elucidation and by searching
in databases of hypothetical structures such as the in silico generated MINE databases [19]. Comprehensive
compound identi�cation is not a luxury but an indispensable step to answer biological questions. Compared to
spectral library search SIRIUS o�ers highly increased coverage; compared to searching compounds only by mass
it o�ers tremendously improved accuracy. Here, we present how to use SIRIUS to systematically annotate your
compounds, and provide insight on common practices, judging the results and necessary prerequisites of your
data.



2 What data can be processed by SIRIUS?

SIRIUS processes high-resolution, high mass accuracy fragmentation spectra, but also uses �rst stage of mass
spectrometry (MS1) data. The statistical model of SIRIUS and the machine learning model of CSI:FingerID were
trained on tandem mass spectra (MS/MS) created by collision-induced dissociation (CID), as commonly applied
in LC-MS/MS experiments. Most of the training compounds were ionized by electrospray ionization (ESI).
However, it has been reported that SIRIUS is also able to analyze compounds from GC-MS data which has been
acquired using the soft ionization method dopant-assisted atmospheric pressure chemical ionization (dAPCI)
and subsequently fragmenting ions by CID [20]. At present, SIRIUS only handles single-charged compounds.

3 Preprocessing

SIRIUS is specialized in metabolite identi�cation and relies on other tools for proper preprocessing. Input spectra
must be in centroid mode (peak picked). Besides, further preprocessing of the data is highly bene�cial for good
results. Open source software exists for feature �nding, to group isotope peaks of each compound, estimate
adducts and reject all MS/MS which cannot be assigned to a proper feature in the MS1. OpenMS [21] and
MZmine 2 [22] both provide export functions tailored to the needs for SIRIUS.

It is beyond the scope of this paper to go into the details of the di�erent preprocessing steps, but see [the
Chapter on OpenMS in an upcomming book] for details on OpenMS processing. Unfortunately, we cannot
propose optimal parameters, since these depend on the data. A metabolomics OpenMS work�ow to preprocess
data for SIRIUS may use the following OpenMS tools: FeatureFinderMetabo, MetaboliteAdductDecharger and
SiriusAdapter. The SiriusAdapter can be used either to directly run SIRIUS or to export .ms-�les for SIRIUS
to import.

SIRIUS bene�ts from the following preprocessing steps:

� Reasonably averaged MS1 are more accurate than using a single MS1 spectrum. Determining the masses
and intensities of the compound's isotope pattern using the chromatographic peaks can reduce errors.

� When measuring multiple MS/MS spectra of the same compound, in particular at di�erent collision energies,
it is bene�cial to analyze a merged spectrum rather than the individual spectra. Fragmentation spectra can
be grouped by their corresponding MS1 feature. SIRIUS will merge all grouped spectra. This is preferred
over directly providing a merged spectrum as input for SIRIUS.

� MS/MS spectra which cannot be assigned to any MS1 feature should be rejected; these spectra are likely
of bad quality.

� MS/MS spectra with low total intensity or very few signal peaks should be rejected. Usually it is di�cult
to con�dently identify the corresponding compounds.

It is usually not necessary to preprocess fragmentation spectra by removing �noise peaks� or recalibrating masses;
such preprocessing can substantially worsen results, as signal peaks may be removed or masses shifted into the
wrong direction. SIRIUS can decide for itself which of the peaks in the spectrum are noise, but it cannot recover
the masses of accidentally removed signal peaks. To this end, be cautious when using intensity thresholds. If the
data is noisy and necessitates �noise peak� removal, use a low intensity threshold to remove as few signal peaks
as possible. Furthermore, we propose to use a low MS1 intensity threshold and not-to-restrictive parameters for
feature detection. A high number of spurious features might pose a problem for MS1-only analysis. But here,
we concentrate on metabolite identi�cation based on fragmentation spectra, and spurious features can easily
be recognized because these will not produce signi�cant signal peaks within the fragmentation spectrum. Using
liberal parameters will help to detect more low intensity isotope peaks and include them into the compound's
isotope pattern.

Instrumental setup has huge impact on spectrum quality and some setups might be more suitable for structure
elucidation with computational tools. See Tip 3 for more information.



Tip 1

Spectra quality. High quality spectra are indispensable to obtain good compound annotations. Spectra of high quality
possess many signal peaks with intensities considerably above the noise level and mass errors of less than 10 ppm. On
the other hand, few high-intensity signal peaks and mass errors of over 15 ppm indicate a spectrum of bad quality. It is
understood that some molecules produce few fragments. But the information content of a spectrum increases with the
number of (non-noise) peaks; identifying a compound from one peak is mere guessing. A proper instrumental setup can
facilitate peak-rich spectra. Instead of using a single collision energy, spectra should be measured at multiple energies
and merged. Alternatively, a ramped collision energy can be used to cover a large range of energies. In both cases, we
expect to see more fragmentation peaks and, hence, better results.
Broad isolation windows favor chimeric spectra, being composed of fragments from more than one compound. Such
chimeric spectra will interfere with fragmentation tree computation and also complicate the identi�cation of structures
via CSI:FingerID. In addition, broad isolation windows will result in isotope patterns for all fragments. Selecting only the
monoisotopic peak for fragmentation makes it easier to interpret the fragmentation spectrum. SIRIUS provides an option
to account for isotopes in the fragmentation spectrum, but this assumes that the isolation window is broad and isotope
patterns of fragments are undisturbed. Unfortunately, �ltering is imperfect in practice: An isolation window of width, say,
3 Da may select 100% of the monoisotopic peak, 80% or the �rst and 50% of the second isotope peak. This will distort
the isotope patterns of fragments in a non-trivial way. At present, SIRIUS cannot deal with distorted fragment isotopes
patterns.
Compound identi�cation bene�ts from choosing an instrumental setup which minimizes chimeric spectra, and favors
peak-rich and low noise fragmentation spectra.

4 Metabolite identi�cation

SIRIUS identi�es metabolites in two steps: namely, molecular formula annotation and searching in a structure
database. Both steps can be performed on a complete dataset using a single command; but users are advised to
manually validate all results, including intermediate results. Here, we will explain the usage of SIRIUS step-by-
step. For the sake of a more vivid description we will refer to the graphical user interface (GUI) of SIRIUS. All
computations can be performed via the command line interface (CLI), using the GUI as a mere visualization
tool for �nal results (see Section 5).
An overview of the SIRIUS GUI is displayed in Figure 1. The analysis starts with importing the data; this is
done via the import dialog or drag-and-drop. SIRIUS imports spectra from .csv, .ms or .mgf �les. Imported
compounds are displayed in the compound list located in the left panel. To �nd speci�c compounds, use the
search �eld above the panel. Start computations by clicking the Compute All button or by selecting a set of
compounds and using the context menu (right-click). If only a single compound is selected, additional parameters
can be speci�ed such as the known molecular formula.

4.1 Molecular formula annotation

SIRIUS �nds the most likely molecular formula by considering all possible molecular formulas, and is able to
annotate biomolecules with a molecular formula missing from any database. Necessary parameters for SIRIUS
are:

Elements Set of considered elements. Some elements can be auto-detected if an isotope pattern is given (see
Tip 4.1).

ppm Allowed mass deviation in ppm. This is the maximum value a molecular formula explanation is allowed
to deviate from the peaks' measured mass. Molecular formulas with a higher mass error are ignored. Note
that for all peaks below 200Da an absolute error is assumed which corresponds to the speci�ed deviation
in ppm at 200Da.

Considered ion types Set of considered ion types. For details see Tip 4.1.
Candidates Number of candidates to be displayed. Fragmentation trees are computed for all molecular formula

candidates using the Critical Path3 heuristic from [23]. The top k fragmentation trees are recomputed using
an exact algorithm; here, k corresponds to the number of displayed candidates plus 10. Hence, a larger
number of displayed candidates increases running times.

Depending on the dataset, anticipated elements and ion types can be selected. Select a reasonable set of elements.
The mass deviation is the maximum allowed deviation. Spectra measured on an instrument with advertised sub-
ppm mass accuracy might still have much larger mass deviation (e.g. if not properly calibrated or because of



bad peak picking). More restrictive parameters, in particular for the allowed elements, can make computations
substantially faster. Never select all uncommon elements at once. This will lead to a combinatorial explosion of
potential molecular formulas; running times will increase dramatically; the number of correct molecular formula
annotations will decrease. SIRIUS provides scoring pro�les for Q-TOF and Orbitrap, which mainly change some
background parameters. In case you are unsure if your data really has the instrument's advertised accuracy, use
the default pro�le and set your allowed mass deviation accordingly.

Fragmentation trees are computed from a merged spectrum combining all input fragmentation spectra. Isotope
pattern analysis is performed on a merged MS1 spectrum or using the isotope pattern provided by a preprocessing
tool. A fragmentation spectrum which possesses peaks broadly distributed across the whole mass range presents
more information to SIRIUS than a spectrum composed of either low or high mass peaks only.

Judging results Molecular formula annotation results are displayed in the Sirius Overview tab (see Figure 1).
Candidates are ranked by the sum of isotope pattern and fragmentation tree score (see Tip 4.1 on isotopes
and Tip 4.1 on fragmentation trees). Colored bars for each score ease comparison between candidates. Each
candidate molecular formula has an adduct. At this stage, this is an ion type; after structure database search
with CSI:FingerID this adduct corresponds to an adduct type (compare Figures 1 and 3 and see Tip 4.1).

The displayed attributes are:

Score Overall score by which candidates are ranked. This is the sum of isotope and tree score.

Isotope score Similarity score comparing the measured isotope pattern with the theoretical pattern for each
candidate molecular formula. Usually, a score close to zero or low in comparison to the remaining candidates
indicates an incorrect molecular formula, or at least an annotation of low con�dence. Besides being the
incorrect candidate, this might indicate improper data quality such as high intensity deviation or a low
number of detected isotope peaks. The scored isotope pattern is highlighted in the merged MS1 and can be
assessed via the Spectrum view tab.

Tree score Score of the computed fragmentation tree.

Explained peaks The number of peaks in the spectrum which can be explained by the fragmentation tree. A
high number of unexplained peaks indicates an incorrect annotation, a noisy spectrum, or two compounds
being fragmented simultaneously.

Total explained intensity Summed relative intensity of all explainable peaks. Values of 95% or higher
indicate good quality; for values below 80%, results should be interpreted with care.

Median absolute mass deviation The median absolute mass deviation of explained peaks in ppm. Low
deviations are clearly desirable.

Selecting a molecular formula candidate displays the corresponding fragmentation tree and spectrum in which
explained peaks are highlighted. The merged MS1 spectrum displays the selected isotope pattern. Mass errors
of each fragment are shown to spot unlikely explanations; the displayed fragmentation tree can be colored
accordingly. The user can inspect fragmentation tree annotations in varying degree of detail; individual fragments
may support or contradict a particular molecular formula candidate. The user may decide by manual validation
how well a candidate is supported.

Tip 2

Isotope pattern and element detection. Isotope patterns o�er valuable information about elemental composition. The
presence of uncommon elements that result in characteristic isotope pattern changes can be automatically detected [24].
Detectable elements are sulfur, chlorine, bromine, boron and selenium. When detected, SIRIUS adds these elements to
the default set of elements CHNOP to determine the molecular formula. A predictor for silicon is disabled by default,
as it results in a relatively large number of false positive predictions; the silicon isotope pattern is not �special� enough
to permit a reliable auto-detection. In contrast to [24], the current version of SIRIUS uses a deep neural network for
auto-detection of elements. Automated detection can be enabled or disabled via the compute dialog. Not considering
elements which are extremely unlikely, substantially improves running times and may slightly improve results [24]. SIRIUS
may still choose a molecular formula which does not contain an element with positive auto-detection, just as it might
choose a molecular formula which does not contain any other enabled element. The �nal score of each molecular formula
candidate is a combination of the fragmentation tree score and the isotope pattern score.
CAUTION: If no isotope pattern is provided and compounds are expected to contains elements beside CHNOPS, we
strongly recommend to restrict molecular formulas to those from a molecular structure database. Do not select all
uncommon elements for molecular formula annotation with SIRIUS. This will lead to a combinatorial explosion of potential
molecular formulas; running times will increase dramatically.



Fig. 1. The SIRIUS Overview tab displays the spectrum and fragmentation trees of the top molecular formula candidates.
The best candidate C24H38O3 is selected; the corresponding explained spectrum and fragmentation tree are shown. The left
panel contains a searchable list of all compounds; selected compounds are highlighted. The data and results of the �rst selected
compound are displayed in all the views to the right of the compound list. The upper panel provides functionalities to import
spectra, save and load workspaces, export result tables, start computations and display their status in the jobs panel. The
SIRIUS overview tab displays various scores for each molecular formula candidate and can be sorted accordingly.



Tip 3

Fragmentation trees. A fragmentation tree annotates peaks in the fragmentation spectrum with molecular formulas and
identi�es likely losses between the fragments � similar to �fragmentation diagrams� created by experts. The calculated
tree must not be understood as ground truth but can be used to derive information about the measured compound's
fragmentation [25]. Fragmentation trees are also used to identify the molecular formula of an unknown compound. For
every molecular formula candidate of the precursor ion, a separate fragmentation tree is computed which best explains the
spectrum, as evaluated by a Maximum A Posteriori estimator [26]. This estimation takes into account information such
as mass deviations, intensities, common losses and loss sizes. The overall best-scoring fragmentation tree corresponds
to the most likely molecular formula explanation. In addition, CSI:FingerID uses the fragmentation tree to predict the
compound's molecular �ngerprint.
A simpli�ed example of a fragmentation tree is presented in Figure 2. A fragmentation tree is computed from the
fragmentation spectrum given the (candidate) molecular formula of the precursor ion. Initially, a fragmentation graph is
constructed in the following way: For every fragment peak, all possible molecular formula explanations are computed.
These explanations must be subformulas of the precursor molecular formula � a fragment only looses, but never gains new
atoms. Every such molecular formula is a node in the graph. Nodes are connected by an edge if one node is a subformula
of another node � this represents a potential loss. Using combinatorial optimization, the best scoring fragmentation tree
is computed which explains every peak at most once. Unexplained peaks are considered noise.
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Fig. 2. Example of a fragmentation tree computed from a fragmentation graph in (a), given the spectrum in (b). The molecular
formula of the neutral precursor is assumed to be C9H12NO2. Molecular formulas are computed for all fragment peaks and
serve as the nodes of the graph; nodes with the same color indicate molecular formulas corresponding to the same peaks. Nodes
are connected by edges if one node is a subformula of another, thereby creating the fragmentation graph. A fragmentation tree
is a connected subgraph which explains each color (peak) at most once and has no cycles. The best-scoring fragmentation tree,
corresponding to a Maximum A Posteriori estimator, is computed by combinatorial optimization. The optimal fragmentation
tree is indicated by solid lines; nodes which are not used are grayed out. These computations are repeated for each molecular
formula candidate explaining the precursor mass, and the best such fragmentation tree is reported.



Tip 4

Ion and adduct types. SIRIUS di�erentiates between ion types and adduct types. Default ion types for positive ion mode
spectra are protonation, sodium, and potassium; default ion types for negative ion mode spectra are deprotonation and
chlorine. Adduct types can be seen as sub-types of an ion type. For example, the ion type protonation includes adduct
types �intrinsically charged� ([M]+), �protonated� ([M + H]+), �protonated with water loss� ([M − H2O + H]+) and
�ammonium group� ([M+ NH4]

+).
Adduct types cannot be determined from the fragmentation spectrum� the fragments [C4H6O2+NH4]

+ and [C4H9NO2+
H]+ result in the exact same peak; and so will [C5H7]

+ and [C5H8O − H2O + H]+. That is why SIRIUS considers ion
types, not adduct types, during the molecular formula annotation step. Multiple adduct types of the determined ion type
can be considered for structure database search with CSI:FingerID (see Figure 3 and 4). When a speci�c ion type plus
adduct type is provided by the user, it will be used during all computation steps. Users can specify additional ion and
adduct types within the GUI or by modifying the con�g �le.

Tip 5

Molecular �ngerprint. A molecular �ngerprint is a binary vector of �xed length where each position corresponds to a
speci�c molecular property; for example, position #393 may encode the presence or absence of a benzene ring as a
substructure. In general, a '1' indicates this speci�c substructure is present in the molecule, a '0' indicates it is not. There
exist several types of �ngerprints, such as PubChem CACTVS �ngerprintsa, Klekota-Roth �ngerprints [27], and MACCS
�ngerprints. Given a molecular structure, the corresponding �ngerprint can be deterministically computed. Unfortunately,
di�erent structures can have the same molecular �ngerprint.
Molecular �ngerprints can be used to perform similarity search in a structure database. A common way to compare
molecular structures using �ngerprints is the Tanimoto similarity, also known as Jaccard index. Identical �ngerprints
produce a similarity of 1, whereas two structures not sharing a single molecular property have a Tanimoto of 0. Clearly,
the similarity value depends on the choice of �ngerprint type.
CSI:FingerID predicts a variety of molecular properties from several �ngerprint types; only those molecular properties
were selected which could also be predicted in evaluations. Given a spectrum and corresponding fragmentation tree,
CSI:FingerID predicts a probabilistic �ngerprint, see Sec. 4.3. This predicted �ngerprint is compared to the deterministic
�ngerprints from a structure database to �nd the best match. The CSI:FingerID Overview tab also displays, for every
structure candidate, the Tanimoto similarity against the predicted �ngerprint. However, CSI:FingerID uses a di�erent
scoring function to rank candidates, which results in a larger number of correct identi�cations [12, 28].

a ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.pdf

4.2 Searching in structure databases

After the molecular formula has been identi�ed, the compound is searched in a structure database. Firstly, a
molecular �ngerprint of the query (see Tip 4.1) is predicted from the spectrum and fragmentation tree. Next,
this predicted �ngerprint is compared to (and scored against) �ngerprints of structures in a database, to �nd
the best matching structure. It must be understood that the molecular �ngerprints of the candidate structures
are �xed, known and independent of our tools.
To predict the molecular �ngerprint, we have to know the molecular formula, ion type and adduct type of
the query. By default, not only the top scoring molecular formula but multiple high-scoring molecular formula
candidates are considered, applying a soft score threshold: All molecular formula candidates with a score above
0.75 of the optimal score are considered. To this end, we iterate over all possible combinations of molecular
formula candidate and adduct type. The ion type of the query is determined by the molecular formula candidate;
but various adducts types can be speci�ed to search the database, see Tip 4.1 on ion and adduct types. When
searching in the database, candidate structures must match the estimated molecular formula of the neutral
molecule. Fragmentation trees of di�erent adduct types di�er as, say, a neutral loss is added to the top of
the tree. These trees have exactly the same score. For each molecular formula and adduct type with candidate
structures in the database, the resolved fragmentation tree is displayed in the SIRIUS Overview tab, see Figure 3.
Scored structure candidates are displayed in the CSI:FingerID Overview tab. The CSI:FingerID Details tab
allows to examine the scored structures in more detail for each molecular formula and adduct type separately
(see Figure 4).



As a default, users should search compounds in the PubChem database, and �lter results to the biocompound
structure database or a subset thereof (see Tip 4.2). You may accept those query identi�cations for which there
is a high-scoring structure candidate in the restricted database; potentially, this is even the highest-scoring
candidate for all of PubChem. For those cases where no reasonable candidate was found in the biocompound
structure database, and for cases where the best PubChem candidate scores substantially better than the best
biocompound candidate, you can extend your search space to all of PubChem. Obviously, it makes much sense
to integrate biochemical background knowledge at this point: This may be information about the organism the
sample was taken from, or information about the biochemical preparation of the sample. Such meta information
is not integrated into SIRIUS and CSI:FingerID, as this integration is highly non-trivial; but it is straightforward
how to integrate the information manually.

Fig. 3. Additional candidates are added to the SIRIUS Overview tab after searching with CSI:FingerID in a structure database
considering adduct types [M+H]+, [M+NH4]

+ and [M−H2O+H]+. Molecular formulas C24H40O4 and C24H38O3 di�er by an
in-source loss of H2O and are not distinguishable by MS/MS since in both cases, the ion [C24H38O3+H]+ is fragmented; hence,
both have identical score. (The same holds for the pairs C22H33N2O2 vs. C22H36N3O2 and C18H39N4O2P vs. C18H36N3O2P.)
Displayed is the resolved fragmentation tree for [C24H40O4−H2O+H]+, where an H2O loss has been added to its top.

Judging results Users should check if the best structure candidate agrees with the best molecular formula
candidate. Sometimes, CSI:FingerID decides that, based on its machine learning model and the given candidate
structures, a structure with a di�erent molecular formula better agrees with the data. Users should verify if the
selected structure database does not contain any structures for the best-scoring molecular formula candidate;
this can be an indication that the selected database is too restrictive. Besides, check if the correct adduct type
has not been selected for database search.
CSI:FingerID ranks structure candidates by a logarithmic posterior probability [28], so that scores are negative
numbers and zero is the optimum. Additionally, the predicted Tanimoto similarity is displayed. Since this is
based on the predicted probabilistic �ngerprint, this similarity usually underestimates the Tanimoto similarity



Fig. 4. The CSI:FingerID Details tab displays structure candidates for a selected molecular formula. The highlighted molecular
property, which is predicted to be present in the query, is contained in the top 2 hits. Candidates are sorted by their score which
is displayed on the right-hand side. Numbers in percent indicate the Tanimoto similarity between the predicted �ngerprint
and the �ngerprint of each candidate. Candidates can be �ltered by database, SMARTS string and XlogP value.



between the true �ngerprints. Candidates can be �ltered by database, XlogP values [29, 30] predicted using the
Chemistry Development Kit [31, 32], or a speci�c SMARTS string. Structures are linked to database entries;
clicking on the database icon opens the appropriate website. One CSI:FingerID candidate structure may link to
several �3D structures� in a database, as CSI:FingerID ignores stereochemistry in its computations. The number
of PubMed citations1 is also displayed in the CSI:FingerID Overview tab. This value can contribute valuable
information for the identi�cation, for example as a sanity check. But on startup, these values must not be used
to �lter results: Doing so, we ignore the actual experimental data and potentially make our decisions based
solely on prior knowledge [17].

The example in Figure 4 shows two top-scoring structure candidates. Both are structurally very similar and
consequently, also have similar scores. The user may decide which structure is more likely, based on background
knowledge about the sample. Comparing the, say, top 5 hits may also help to get an idea about a �core�
structure which CSI:FingerID predicts to be present. Blue and red squares next to each candidate molecular
structure represent its molecular properties. Blue properties are predicted to be present by CSI:FingerID and
also present in the candidate; red properties are predicted to be absent but are present in the candidate. The
size of the square represents the quality (F1 score, harmonic mean of precision and recall) of the predictor, as
determined beforehand in cross validation; but a large F1 score does not guarantee that the prediction is correct
for this query. In contrast, the saturation of the color indicates how sure CSI:FingerID is about the property,
for this query. One speci�c property � a carboxyl group attached to a carbon chain � has been highlighted in
Figure 4; it is present in the predicted �ngerprint and in the �rst two candidates. A score close to zero and many
blue squares usually indicates a con�dent identi�cation � in this example, CSI:FingerID is very certain that the
correct structure is at least very similar to the top hit. Even in case the best structure candidate is not correct, it
is often structurally similar to the correct one and can help to elucidate the structure or answer the underlying
biological question. Be warned that CSI:FingerID scores between di�erent query compounds are usually not
comparable; be cautious when using this score to di�erentiate between true and bogus identi�cations.

As explained in Section 4.1, users can also examine the fragmentation tree to decide how well a candidate is
supported: For example, are speci�c side chains supported by fragments, losses or even fragmentation cascade
in the fragmentation tree?

Tip 6

Some notes on database size. CSI:FingerID correctly identi�es 39.4% of CASMI 2016 positive ion mode spectra when
searching in PubChem (in a structure-disjoint cross-validation setup). Searching in PubChem is di�cult because it contains
many millions of structures. If the search is performed in a database with 0.5 million structures of biological interest, correct
identi�cations increase to 74.0% [14]. To further increase identi�cation rates, we might even be more restrictive and
search in HMDB [2] or ChEBI [33]. Limiting CSI:FingerID search to the same structures which are contained in spectral
libraries will even result in identi�cation rates comparable to spectral library search! Does this mean it is advisable to
search in a database with as few structures as possible? Clearly not! Results will look great in evaluation as long as all
reference structures are contained in the restricted database. But in application, many compounds will be absent from
the database, meaning you cannot �nd them at all.
Furthermore, there are � often ignored � side e�ects of searching in small databases. Firstly, the measured data becomes
less important. You can easily identify a compound from one peak if you limit the candidate list to a few structures.
Unfortunately, doing so does not increases the identi�cation's con�dence. It merely means that one candidate better
matches the data compared with the other candidates, always assuming the correct structure is present in the candidate
list. Second, incorrect identi�cations can be hard to spot, because they still �make sense�: If all candidates in our database
are frequently cited structures, then any identi�cation (including the incorrect ones) will be a frequently cited structure
and, hence, �reasonable�.
Clearly, there is a trade-o� between small and large databases. In a small database, many relevant biomolecules are
missing. On the other hand, searching in PubChem decreases the number of correct identi�cations even though many
PubChem structures are very unlikely to be actual biomolecules. CSI:FingerID provides a biocompound database with 0.5
million structures of biological interest, containing structures from ChEBI [33], KNApSAcK [34], HMDB [2], KEGG [35],
HSDB [36], MaConDa [37], BioCyc [38], UNDP [39], a biological subset of ZINC [40], GNPS [1], MassBank [3] and
MeSH-annotated PubChem compounds [16, 41]. In application, it is reasonable to search in this biocompound database,
which is much smaller than PubChem, but still much more diverse than spectral libraries. For those queries where we �nd
no reasonable explanation in the biocompound database, we can then consider the PubChem candidates.

1 https://www.ncbi.nlm.nih.gov/pubmed



4.3 Beyond structure database search

It is understood that certain query biomolecules are not contained in any structure database. But even for
such di�cult instances, SIRIUS and CSI:FingerID can assist in structural elucidation. Recall that the SIRIUS
molecular formula annotation step (Sec. 4.1) is done de novo. Hence, molecular formulas can be determined even
for �novel compounds� absent from any structure database. Even if a structure is not contained in the structure
databases, CSI:FingerID may �nd a very similar structure. Furthermore, CSI:FingerID allows the user to search
in custom databases which may contain hypothetical structures, to identify �novel compounds�.
But one key feature sets CSI:FingerID apart from other computational tools for structure elucidation: Predicting
the molecular �ngerprint of the query compound does not require any molecular structure database! The
�ngerprint is predicted from fragmentation spectrum and tree, and contains information about thousands of
molecular properties. From that, we may draw conclusions what kind of substructures the query compound
contains; and this information may be su�cient to decide if it is worth to further investigate the examined
compound.

Judging results The predicted �ngerprint is displayed in the Predicted Fingerprint tab, see Figure 5. Most
molecular properties are described by SMARTS (SMiles ARbitrary Target Speci�cation) strings2. SMARTS
allows a �exible encoding of substructures; for example, a property might be described as �a methyl group
bound to a hetero atom�. Since SMARTS strings are usually hard to visualize, SIRIUS displays a set of example
structures from the training data that have a particular molecular property.
A posterior probability is predicted for every molecular property. Estimates close to 1 indicate the property
is likely being present in the query compound, whereas estimates close to 0 indicate it is not. But be careful:
Since CSI:FingerID predicts thousands of properties, even some �rather certain predictions� must be wrong. A
98% chance of being present also corresponds to 2% chance of being absent; if 1000 molecular properties are
predicted at this level of certainty, then 20 predictions are wrong. Also be reminded that these probabilities
are estimates. To provide additional information on the quality of a prediction, the F1 score � a measure of
the predictor quality � is displayed. The F1 score is the harmonic mean of precision (fraction of correct yes-
predictions among all yes-predictions) and recall (fraction of correct yes-predictions among all yes-instances). A
high F1 score indicates a good predictor, and 1.0 is the optimum. There is no general rule on what is a �good�
F1 score; as a rule of thumb for this decision, one may assume that the F1 score equals precision and recall.
Since many properties are rare and only present in few structures, the number of positive training examples is
another indicator for the generalizability of the predictor. To help the user to concentrate on the most promising
predictions, properties can be sorted by posterior probability, F1 score, or the number of atoms. The last option
is useful to consider only larger, presumably more informative substructures.

5 Using SIRIUS in automated work�ows

SIRIUS o�ers a powerful command-line interface (CLI) which allows for a �exible integration of SIRIUS
into automated work�ows. Technically speaking, the SIRIUS GUI is a visualization of the CLI functionality.
Therefore, every task that can be done via the graphical user interface, can also be executed using the CLI.
Corresponding to the two step approach in the GUI, the CLI provides self-contained sub tools for molecular
formula identi�cation (sirius) and structure elucidation (fingerid) with separate parameter sets.
Furthermore, CLI and GUI share the same input and output formats. Both, CLI and GUI store the computed
results in the SIRIUS project-space (see Fig. 6) which in turn can also be an input for the GUI or the CLI. This
allows the user to review results in the GUI that have been computed with an automated work�ow using the
CLI.

5.1 The SIRIUS project-space

The SIRIUS project-space is a standardized directory structure that is organized in a three hierarchy levels,
namely, the project level, the compound level and the method level (see Fig. 6 for details).
On the project level, each compound corresponds to one sub-directory (compound level) storing the input data,
parameters and results of the di�erent analysis methods. These data is continuously written to the project-space,
so that it represents the actual progress of a SIRIUS analysis. Further, the .progress �le gives an overview
about the progress of the ongoing analysis. On the compound level, each method provided by SIRIUS stores its
results in its own sub-directory (method level). This allows the user to redo one analysis step without having

2 http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html



Fig. 5. The Predicted Fingerprint tab displays a predicted molecular �ngerprint for each molecular formula candidate. The
molecular �ngerprint is predicted independently from any database. It can help deducing structural information on the
compound even if the compound is not present in any structure database. Highlighted is a property mainly consisting of
a ring. Training examples are displayed at the bottom. As shown, the oxygen is not a mandatory part of the substructure.
The posterior probability of each property is also visualized as a color bar, to allow the user to swiftly distinguish properties
predicted being present and absent. Green bars going to the right encode presence, red bars going the left encode absence.



to recompute the intermediate results it depends on. Further, SIRIUS is able to transfer intermediate results to
a new project-space, so di�erent parameters can easily be evaluated without having to recompute intermediate
results. Since a project-space can be imported into the GUI, the user is able to judge intermediate results using
the GUI before executing further analysis steps. Project-spaces can be read and written as an uncompressed
directory or a compressed zip archive when using the .sirius �le extension.
In addition to the method level results, the project-space contains summaries of these results on the project level
and the compound level. These summaries are in csv format (summary_<NAME>.csv) to provide easy access to the
results for further downstream analysis, data sharing and data visualization. The summaries are not imported
into SIRIUS but are (re-)created based on the actual results every time a project-space is exported.

5.2 Standardized project-space summary with mzTab-M

The project-space is a SIRIUS-speci�c format that allows the user to access all results and analysis details, but
may not be optimal for sharing this data with third party tools or data archives. For this purpose, SIRIUS
provides an analysis report (analysis_report.mztab) in the standardized mzTab-M format [42]. All results
summarized in this report are linked to the results in the corresponding SIRIUS project-space, allowing the user
to share summarized results using mzTab-M without losing the connection to the detailed results provided in
the project-space. Furthermore, SIRIUS passes meta information such as scan numbers and ids of the input data
into this analysis report. This allows for an easy combination of the SIRIUS results with the results of other
analyses such as MS1-based quanti�cation.

6 Custom databases

Users may de�ne their own structure databases to search in. These �custom databases� can be created via GUI
and CLI. In the GUI, the Databases button opens a dialogue listing existing databases. New ones can be created
with one click. Structures are imported by inserting structure descriptors (InChI or SMILES) into the import
�eld; one structure per line. Custom databases are useful in case the users has a limited set of structures of
interest. When screening for pollutants or drugs, a list of suspected structures can be collected in advance.
When searching with CSI:FingerID it does not matter if the structures in the database are known biomolecules
or if these are hypothetical structures, which have not yet been discovered in any organism. Clearly, it is not
reasonable to search in an arbitrarily large database. Databases of hypothetical structures have to be compiled
with care to avoid combinatorial explosion. Available tools are BioTransformer [43] and the in silico generated
MINE databases [19]. Currently, there exist MINE extensions for Ecocyc [44], YMDB[45] and KEGG [35]. But
in principle, any existing structure database can be extended by such methods. Say, you are interested in �nding
new bile acids. A database of hypothetical bile acids can be created by applying biotransformations to known
bile acids. This new database can then be searched with CSI:FingerID to �nd new bile acids synthesized by the
investigated organisms.

7 Conclusion

To leverage the full potential of metabolomics, we need to overcome the limitations of spectral library search. This
chapter presented concepts behind SIRIUS and CSI:FingerID, best-in-class computational tools for metabolite
identi�cation from high-resolution tandem mass spectra. We stress that computational tools currently cannot
replace experts, but are meant to assist them. As a consequence, users must not accept identi�cations blindly
but verify them properly. Here, we gave some advice on how this can be done.
SIRIUS ships with a command line tool which makes it easy to run computations on compute clusters and
properly integrate it into automated work�ows. Popular mass spectrometry data processing tools can create
input �les for SIRIUS, and SIRIUS outputs results in the standardized mzTab-M format to facilitate integration.
The metabolomics community bene�ts from new computational tools, but tool development also bene�ts from
the communities' input and more public training spectra. Finally, method development is an ongoing process,
and SIRIUS is evolving to further improve metabolite identi�cation.
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