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Abstract. The Money Changing Problem (MCP) can be stated as follows: Given k positive integers a1 < ... < aj and
a query integer M, is there a linear combination ), c;a; = M with non-negative integers c¢;, a decomposition of M? If
so, produce one or all such decompositions.

The largest integer without such a decomposition is called the Frobenius number g(ai,...,ar). A data structure called
residue table of a; words can be used to compute the Frobenius number in time O(a1). We present an intriguingly
simple algorithm for computing the residue table which runs in time O(ka1), with no additional memory requirements,
outperforming the best previously known algorithm. Simulations show that it performs well even on ’hard’ instances
from the literature. In addition, we can employ the residue table to answer MCP decision instances in constant time,
and a slight modification of size O(a1) to compute one decomposition for a query M. Note that since both, computing
the Frobenius number and MCP (decision) are NP-hard, one cannot expect to find an algorithm that is polynomial in
the size of the input, i.e., in k,logax, and log M.

We then give an algorithm which, using a modification of the residue table, also constructible in O(ka1) time, computes
all decompositions of a query integer M. Its worst-case running time is O(ka1) for each decomposition, thus the total
runtime depends only on the output size and is independent of the size of query M itself.

We apply our latter algorithm to interpreting mass spectrometry (MS) peaks: Due to its high speed and accuracy, MS is
now the method of choice in protein identification. Interpreting individual peaks is one of the recurring subproblems in
analyzing MS data; the task is to identify sample molecules whose mass the peak possibly represents. This can be stated
as an MCP instance, with the masses of the individual amino acids as the k integers ai,...,ar. Our simulations show
that our algorithm is fast on real data and is well suited for generating candidates for peak interpretation.

1 Introduction

Let a1 < ... < aj be positive integers. Given a query integer M, is M decomposable over {ay,...,a}, i.e., can M
be written as a non-negative linear combination of the form ). c¢;a; = M, with ¢; > 0 integers for i = 1,... k7 If
so, can we find such a decomposition ¢ = (cy,...,cx) of M? Can we find all vectors ¢ which are decompositions of
M?

The decision form of this problem, namely, does a decomposition for a query integer M exist, is called Money
Changing Problem (MCP): One thinks of the aq,...,a; as coin denominations, and M is the change which has
to be made when an infinite supply of coins is available. The problem is also known as Equality Constrained
Integer Knapsack Problem and is NP-complete [17], but can be solved in pseudo-polynomial time (time O(kM))
with a dynamic programming algorithm [18]. In principle, one can solve MCP decision problems using generating
functions, but the computational cost for coefficient expansion and evaluation is too high in applications [11,
Chapter 7.3].

If the masses are relatively prime, then there exists an integer g(ay,...,ax), called the Frobenius number,
which cannot be decomposed but all larger integers can. Computing the Frobenius number is also NP-hard [21].
However, a data structure we refer to as residue table of a1 words can be used to compute the Frobenius number
in time O(a1), as first suggested by Brauer and Shockley [6].

Here, we present an intriguingly simple algorithm, Round Robin, to compute the residue table—and hence, to
find g(a1,...,a;)—in time O(k a1) with constant extra memory. Our algorithm outperforms the best previously
known algorithm, due to Nijenhuis [19], both in time and in the additional space requirements, as well as
outperforming it in practice, as we show in Section 8. Our algorithm has also been implemented and tested by
Beihoffer et al. [3], who made a detailed comparison on many different types of instances and found that Round
Robin often compared favourably to other algorithms. In addition, our algorithm remains the only algorithm to
compute the residue table with worst case complexity o(ka; logay).
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Once the residue table has been constructed, we can solve subsequent MCP decision instances in constant
time, for any M. Moreover, a slight modification of the residue table, with an additional data structure of 2a;
words, enables us to produce one decomposition for MCP queries in time O(k). In constrast, the DP tableau of
the classical dynamic programming algorithm can be used to produce a decomposition of the query in worst-case
time O(M/ay), thus in time linear in M. Note that the NP-hardness results imply that we cannot hope to find
algorithms that are polynomial in k,logay, and log M.

We use a modification of the residue table, termed extended residue table, to produce all decompositions of
a query. Size and construction time of the extended residue table are O(ka;). Our algorithm for producing all
decompositions is based on the idea of backtracking in this data structure in a smart order; the worst-case runtime
is O(kay) per decomposition, thus the total runtime can be stated as O(ka1y(M)), where v(M) is the number of
decompositions of M. In other words, the runtime is independent of the size of the query itself, and only depends
on the size of the data structure and on the output size y(M).

The problem of decomposing a number over a given set of numbers occurs frequently when interpreting
mass spectrometry data. Mass spectrometry (MS) is a technology which, in essence, allows to determine the
molecular mass of input molecules. Because of its speed and accuracy, it has become the prime technology for
protein identification, either with the use of a database, or de novo [2]. Put in a simplified way, the input of the
experiment is a molecular mixture and the output a peak list: a list of masses and their intensities. Ideally, each
peak should correspond to the mass of some sample molecule, and its intensity to the frequency of that molecule
in the mixture. The situation is, in fact, more blurred, due to noise and other factors; however, the general idea
remains. Thus, one problem is to determine for a peak which sample molecules it could possibly represent. For
proteomic samples, peptides (strings over the amino acid alphabet) are sought whose mass equals the mass of the
peak. Clearly, the order of the amino acids does not influence the total mass of the molecule®, so we can abstract
from the strings themselves and concentrate on the multiplicity of each amino acid. In other words, the mass of
the peak has to be decomposed over the masses of the amino acids. Thus, after scaling the masses to integers, and
using a suitable precision depending on the mass spectrometer, we have an instance of the problem introduced
above.

As v(M) grows rapidly with large M (see Section 6), it becomes soon impractical to produce all decompositions
of a peak as a possible interpretation. Instead, one will either produce these decompositions in an intermediate
step as candidates for correct interpretation, and then filter them according to further criteria; or else prune the
production algorithm during runtime according to some outside criteria. We have successfully applied both of
these techniques to decomposition of metabolites, using isotopic information from the mass spectrometry read [5].

1.1 Related work

There has been considerable work on bounds for Frobenius numbers; see [22] for a survey. Here, we concentrate
on exact computation.

In 1884, Sylvester asked for the Frobenius number of & = 2 coins a1, a2, and Curran Sharp showed that
g(ai,a2) = ajag — a1 — az [23]. For three coins aj, az,as, Greenberg [12] provides a fast algorithm with runtime
O(logay), and Davison [7] independently discovered a simple algorithm with runtime O(logag). Kannan [14]
establishes algorithms that for any fized k, compute the Frobenius number in time polynomial in log ay. For
variable k, the runtime of such algorithms has a double exponential dependency on k, and is not competitive for
k > 5. Also, it does not appear that Kannan’s algorithms have actually been implemented.

There has been a considerable amount of research on computing the exact Frobenius number if k is variable, see
again [22] for a survey. Heap and Lynn [13] suggest an algorithm with runtime O(a} log g), and Wilf’s “circle-of-
light” algorithm [26] runs in O(kg) time, where g = O(ajay) is the Frobenius number of the problem. Until recently,
the fastest algorithm to compute g(ay,...,a;) was due to Nijenhuis [19]: It is based on Dijkstra’s method for
computing shortest paths [8] using a priority queue. This algorithm has runtime O(k a1 log a1 ) using binary heaps,
and O(a1(k + logay)) using Fibonacci heaps as the priority queue. To find the Frobenius number, the algorithm
computes the residue table, which in turn allows simple computation of g(a1, ..., ax). Nijenhuis’ algorithm requires
O(ay) extra memory in addition to the residue table. Recently, Beihoffer et al. [3] developed algorithms that work
faster in practice, but none obtains asymptotically better runtime bounds than Nijenhuis’s algorithm, and all
require extra memory linear in a;.

3 For ease of exposition, we ignore mass modifications of the total mass of sample molecules due to the ionization process, such as
adding the mass of a single proton.
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Different variants of MCP are known as Change Making Problem or Coin Change Problem. The original
dynamic programming algorithm is due to Gilmore and Gomory [10], while Wright [27] shows how to find a
decomposition with a minimal number of coins in time O (kM ). In most papers on the Coin Change Problem, it
is assumed that one has a coin of denomination 1, thus the decision problem is trivial.

From the application side, the problem of finding molecules with a given mass was addressed frequently from
the biochemical and mass spectrometry viewpoint, see for instance [4, 9, 20, 24].

1.2 Overview

The paper is organized as follows. In Section 2, we give problem definitions, an overview of our solutions’
complexities for the four different problems considered (Frobenius, MCP decision, MCP one decomposition, MCP
all decompositions), and sketch previous solutions and related problems. We introduce residue tables in Section 3.
In Section 4, we present the Round Robin algorithm for constructing the residue table, and introduce a modification
of the residue table for finding one decomposition of a query. We then present our algorithm for producing all
decompositions of a query (Section 5). This is followed by a closer look at the connection between strings and
compomers (equivalance classes of strings with identical character multiplicities) and by some graphs showing
the number of decompositions of different types of biomolecules in mass ranges relevant to mass spectrometry
in Section 6; and by details of optimization of the Round Robin algorithm in Section 7. Finally, we present our
simulation results in Section 8.

2 Problem statements

Given k positive integers a1 < ... < ag, and a positive integer M (the query), a decomposition of M is a vector
¢ = (c1,...,c,) with non-negative integer entries such that cia; + ...+ cxar, = M. We call M decomposable (over
{ai,...,ax}) if such a decomposition exists. We refer to {ai,...,axr} as an MCP instance, and to any vector ¢
of length k with non-negative integer entries as a compomer (over {ai,...,a;}). Compomers* can be viewed as
equivalence classes of strings, where for i = 1,...,k, a; is a mass assigned to the ith character of the alphabet,
and the ith entry ¢; denotes the number of occurrences of this character in the string. See Section 6 for more on
the connection between strings and compomers. We want to mention that even though we always assume that the
masses are ordered, this is only for ease of exposition and not actually necessary for our algorithms. Moreover,
our results can be easily generalized to the case where not all masses are distinct.

It is known that if the a;’s are relatively prime, i.e., if ged(aq,...,ax) = 1, then there exists an integer
g = g(a1,...,ax), the Frobenius number, such that g is not decomposable but every n > g is. Conversely, if
ged(aq, ... ,ar) =d > 1 then only multiples of d can be decomposed. In this case, we set g(ai,...,ar) = co. Note
that it is not necessary that the a;’s be pairwise coprime for the Frobenius number to be finite.
In this paper, we look at the following problems. Fix an MCP instance {a1,...,ax}.
— FRrROBENIUS PROBLEM: Compute g(ay,...,ax).
— MCP DEecrsion: Given a query integer M, is M decomposable over {ay,...,a;}?
— MCP ONE DECOMPOSITION: Given a query integer M, return a decomposition of M over {aq,...,a}, if one
exists.
— MCP ALL DECOMPOSITIONS: Given a query integer M, return all decompositions of M over {aq,...,ax}.
Let v(M) denote the number of decompositions of M over {ai,...,ax}. Obviously, any algorithm solving

the MCP All Decompositions will have running time 2(v(M)). The function (M) grows quite rapidly, namely
asymptotically with a polynomial in M of degree k — 1, see Section 6.

In Table 1, we give an overview of our algorithms’ properties; residue tables and extended residue tables will
be introduced in Section 3. Construction space in each case is O(1) in addition to the space required by the data
structure computed.

1 also referred to as Parikh-vectors, compositions, composions, multiplicity vectors
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problem H data structure ‘ space ‘constr. time‘ query time
Frobenius residue table O(a1) | O(kay) O(a1)
MCP decision residue table O(a1) | O(kay) 0(1)
MCP one decomp.|| residue table with

witness vector O(a1) | O(kay) O(k)
MCP all decomp. || extended residue t.|O(kai)| O(kai) |O(kaiy(M))

Table 1. Complexities of algorithms in the paper

2.1 Previous solutions

The three MCP problems can be solved with simple dynamic programming algorithms. These are variants of the
original DP algorithm for the Coin Change Problem, due to Gilmore and Gomory [10, 18], where the number
of coins has to be minimized. For the Decision and One Decomposition problems, construct a one-dimensional
Boolean table A of size M + 1, where A[m] = 1 if and only if m is decomposable over {ay,...,ax}. Table A can
be computed using the recursion A[0] = 1, and for m > 1, A[m] = 1 if exists 1 < i < k such that A[m —q;] =1,
and 0 otherwise. Construction time is O(kM) and one decomposition ¢ can be produced by backtracking in time
proportional to |c|, which is in the worst case iM .

To produce all decompositions, define a two-dimensional Boolean table B of size k- (M +1), where B[i,m] = 1 if
and only if m is decomposable over {a1, ..., a;}. The table can be computed with the following recursion: B[1,m| =
1 if and only if m mod a; = 0; for ¢ > 1, B[i,m] = B[i — 1,m] if m < a;, and B[i,m] = B[i — 1,m] vV Bi,m — a]
otherwise. A straightforward backtracking algorithm computes all decompositions of M. Running time is O(kM)
for the table construction, and O(}_.ccap lcl) = O(v(M) - a—llM) for computation of the decompositions, while
storage space is O(kM).

Finally, a variant C of the full table computes (M), the number of decompositions of M, in the last row,
where the entries are integers instead of Booleans, using the recursion C[i, m| = C[i — 1, m]+ C[i, m —a;]. A similar
recursion can be used to solve the Change Making Problem, where a minimum number of coins/masses is sought.
For an arbitrary linear objective function, finding an optimal solution is known as Integer Knapsack Problem,
and some approaches exist to find this optimal solution of the knapsack [15]. In this paper, we concentrate on
generating all solutions, because objective functions for such problems are often far from linear [5].

3 Residue tables

Fix an MCP instance {ay,...,ar}. Now, for any M > 0, it can be immediately seen that

M is decomposable = M + a; is decomposable. (1)
In fact, it even holds that M + a; is decomposable for any i = 1,..., k, but we only need the statement for i = 1.
For r =0,...,a1 —1, let n, be the smallest integer such that n, mod a; = r and n, is decomposable; set n, = oo if

no such integer exists. The n,’s are well-defined: If n has a decomposition, so has n+aj, and n = n+a; (mod ay).
Clearly, Y. cia; = n, implies ¢; = 0 because otherwise, n, — a; has a decomposition, too. If the n,’s are known,
then we can test in constant time whether some number M can be decomposed: Set r = M mod a1, then

M is decomposable & M >mn,. (2)
The residue table RT is a one-dimensional table of size a; where RT(r) = n,. Given the values n, for r =
0,...,a1 —1, we can compute the Frobenius number g(ay,...,ax) and the number w of omitted values that cannot
be decomposed over {ay,...,ax} [6]:
gla,...,ar) =max{n,} —a; and (3)
T
Ny 1 a; —1
= — | =— — . 4
Sl ®

Many algorithms for computing the Frobenius number rely on the above result. For example, Davison’
algorithm [7] makes implicit use of this table. To explicitly compute the values n, for r = 0,...,a; — 1, Nijenhuis
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[19] gave an algorithm with runtime O(k a1 log ay), where the log a; factor is due to a binary heap structure that
must be updated in every step. One can easily modify Nijenhuis’ algorithm by using a Fibonacci heap instead of
a binary heap, thereby reaching an O(a;(k + logay)) runtime bound, but the constant factor overhead (runtime
and memory) is much higher for a Fibonacci heap.

For producing all decompositions of a query, more information is needed: Namely, for each r = 0,...,a; —1 and
each i =1,...,k, the smallest number n,; congruent » modulo a; such that n,; is decomposable over {ay,...,a;}.
More formally, the extended residue table ERT is a two-dimensional table of size kap, such that

ERT(7,4) = min{n |n =7 (mod a;) and (5)

n is decomposable over {ai,...,a;}},

where ERT(r,7) = oo if no such integer exists. In Figure 1, we give a small example with & = 4. The last column
of the extended residue table ERT is in fact the residue table RT of the instance.

Residue Table RT Extended Residue Table ERT

T Ny riag=95 a=8 a3=9 aq =12
0 0 0 0 0 0 0

1 16 1 o0 16 16 16

2 12 2 00 32 17 12

3 8 3 o0 8 8 8

4 9 4 o0 24 9 9

Fig. 1. Residue table and extended residue table for the MCP instance {5,8,9,12}

We will introduce fast algorithms for constructing both tables, as well as for producing one decomposition of
a query using the residue table and an additional data structure, and for producing all decompositions of a query
from the extended residue table.

4 The Round Robin algorithm

We compute the values n,, for r = 0,...,a1 — 1, iteratively for the sub-problems “Find n, for the instance
ai,...,a;" fori=1,... k. For i =1 we start with ng =0 and n, = 0o, r =1,...,a1 — 1. When constructing the
residue table, in each iteration, the current values for the n,,r =0,...,a; — 1, are updated, while for the extended

residue table, they are stored as separate columns. We describe only the construction algorithm for the residue
table (Round Robin) in detail.

Suppose we know the correct values n,. for the sub-problem aq,...,ar_1 and want to calculate those of the
original problem ay,...,ar. We first concentrate on the simple case that ged(ay, ar) = 1. We initialize n, + n..
for allr =0,...,a1 — 1 and n < ng = 0. In every step of the algorithm, set n <— n + a; and r <— n mod a;. Let
n < min{n,n,} and n, < n. We repeat this loop until n equals 0.

In case all asg, ..., a; are coprime to aj, this short algorithm is already sufficient to find the correct values n,..
In Figure 1, the right side (the extended residue table) can be viewed as each column representing one iteration
of the Round Robin algorithm. For example, focus on the column a3z = 9. We start with n = 0. In the first step,
we have n < 9 and r = 4. Since n < ny = 24 we update nyq < 9. Second, we have n < 9+ 9 = 18 and p = 3.
In view of n > ng = 8 we set n < 8. Third, we have n + 8 + 9 = 17 and r = 2. Since n < ny = 32 we update
ny < 17. Fourth, we have n < 17+ 9 = 26 and r = 1. In view of n > ny = 16 we set n + 16. Finally, we return
tor =0vian < 16 +9 = 25.

From the residue table, or from the last column of the extended residue table, we can see that the Frobenius
number for this example is ¢(5,8,9,12) = 16 — 5 = 11.

It is straightforward how to generalize the algorithm for d := ged(ay, a;) > 1: In this case, we do the updating
independently for every residue p = 0,...,d — 1: Only those n, for r € {0,...,a; — 1} are updated that satisfy
r =p (mod d). To guarantee that the round robin loop completes updating after a;/d steps, we have to start the
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Algorithm RounD ROBIN

1 initialize ng =0 and n, = oo forr=1,...,a; — 1;
2 fori=2,...,kdo

3 d = ged(aq, a;);

4 forp=0,...,d—1do

5 Find n = min{n, | gmod d =p,0 < ¢ <a; — 1}
6 If n < oo then repeat a;/d — 1 times

7 n<n+a;; 7 =n mod ay;

8 n < min{n, n, }; n, < n;

9 done;

10 done;

11 done.

Fig. 2. Construction algorithm of the residue table

loop from a minimal n, with » = p (mod d). For p = 0 we know that ng = 0 is the unique minimum, while for
p # 0 we search for the minimum first. See Figure 2 for the pseudo-code of the algorithm.
The inner loop (lines 6-9) will be executed only if the minimum min{n,} is finite; otherwise, the elements of

the residue class cannot be decomposed over ay,...,a; because of ged(ay,...,a;) > 1.

Lemma 1. Suppose that n) for r = 0,...,a; — 1 are the correct residue table entries for the MCP instance
ai,...,ag—1. Initialize n, < nl. forr =0,...,a1 —1. Then, after one iteration of the outer loop (lines 3-10) of the
Round Robin Algorithm, the residue table entries equal the values n, forr =0,...,a1 — 1 for the MCP instance
aj,...,a.

Since for k = 1, ng = 0 and n, = oo for r # 0 are the correct values for the MCP with one coin, we can use
induction to show the correctness of the algorithm. To prove the lemma, we first note that for all r =0,...,a; — 1,

nr <n,. and n, <n,+ag for ¢=(r —ax) mod ay (6)

after termination. Assume that for some n, there exists a decomposition n = Zle c;a;. We have to show n > n,
for r = n mod a;. Now, Z;:ll ca; = n — cpag is a decomposition of the MCP instance aq,...,a;_1 and for

g = (n — cgag) mod a; we have n — cpay, > n;. We conclude
ny < ng + cpag < n; + crar < n. (7)

By an analogous argument, we infer n,, = n for minimal such n. One can easily show that n, = oo if and only if
no n with n =7 (mod a;) has a decomposition with respect to the MCP instance ay, ..., ag.

Under the standard model of computation, time and space complexity of the algorithm are immediate and we
reach:

Theorem 1. The Round Robin Algorithm computes the residue table of an instance {ai,...,ar} of the Money
Changing Problem in runtime ©(kay) and extra memory O(1).

By equations (3) and (1), we thus have

Corollary 1. Using the Round Robin Algorithm for computing the residue table, we can solve the Frobemius
problem in time O(ka1), and a single MCP decision instance in time O(kay). Alternatively, by computing the
residue table in a preprocessing step in time O(kay), we can then compute the Frobenius number in time O(aq)
and anwer subsequent MCP decision instances in time O(1).

4.1 Finding one decomposition

For solving MCP one decomposition instances, we can compute an additional vector which we refer to as witness
vector. This idea was first suggested but not detailed in [19]. We slightly modify the Round Robin algorithm
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such that, along with the residue table, it also constructs a vector w of length a; of pairs (index, multiplicity).
See Figure 3 for the algorithm. The only change to the original Round Robin algorithm is an additional variable
counter, which counts the number of times the current value a; has been added. The rth entry of w is updated to
(i, counter) if the current value of n using the current value a; is smaller than in the previous iteration. Note that
n still assumes the minimum of the value of n, in the previous iteration and in the current one.

Algorithm RounD ROBIN wiTH WITNESS VECTOR
1 initialize ngo =0 and n, =occ forr=1,...,a1 — 1;
2 fori=2,...,kdo
3 d = ged(a, a;); w(0) < (1,0);

4 forp=0,...,d—1do

5 Find n = min{n, | gmod d =p,0 < g <a; — 1};
6 counter < 0;

7 If n < oo then repeat a;/d — 1 times

8 n < n+ a;; ¥ =n mod aj; counter < counter +1;
9 if n < n, then

10 ny < n; w(r) < (i, counter);

11 else counter + 0;

12 end if;

13 T 4— Ty}

14 end if;

15 done;

16 done.

Fig. 3. Construction algorithm of the residue table with witness vector

Now the vector w can be used to construct a decomposition with a very simple algorithm: Initially, we set
¢i «+ 0 for all i« > 1, and ¢; = (M — m)/a1, where m < RT[M mod a;]. While m > 0, we repeat (i,j) <+
w(m mod ay), ¢; < j,m < m — ja;. We thus obtain a lexicographically maximal decomposition. Note that unlike
the Change Making Problem, we do not try to minimize the number of coins used.

Ezample 1. Let’s look at the MCP instance {5, 8,9, 12} again. Vector w will equal ((1,0),(2,2),(2,4),(2,1),(2,3))
after the first iteration (¢ = 2). In the next iteration (i = 3), w(2) and w(4) are updated to (3,1), and in the
last, w(2) again to (4,1). We thus end up with w = ((1,0),(2,2),(4,1),(2,1),(3,1)). For query 451, we compute
(87,2,0,0).

The construction algorithm uses O(a;) additional space and time compared to Round Robin, thus running time
is O(kay) and storage space O(aq).
The witness vector w has the following property: For r =0,...,a; — 1, if w(r) = (4, ), then

j=max{c¢; | c=(c1,...,¢k), u(c) = RT(r)},

from which it directly follows that the number of iterations of the loop is at most k — 1. Thus, the running time
of Algorithm FIND-ONE is O(k). We summarize:

Theorem 2. The MCP one decomposition problem can be solved in time O(kay) and space O(ai), using the
residue table with witness vector. Alternatively, we can compute the residue table with witness vector in a
preprocessing step in time O(kay), using O(ay1) space, and answer subsequent MCP one decomposition questions
in time O(k).

5 Finding all decompositions

For producing all decompositions of query integer M, we use backtracking through the extended residue table,
which we construct with the algorithm Extended Round Robin, where the column in each iteration is saved instead
of overwritten. Its running time is O(ka,), space for storing the extended residue table O(kay).
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For the backtracking, we choose an order of paths to follow such that we can make maximal use of information
from the extended residue table. More formally, our algorithm is a recursive algorithm that maintains a current
compomer ¢, an index 4, and a current query m. It recursively decomposes values m’ = m — na;, grouping together
values of n with the same residue modulo ged(aq, ;). Since x — nlem(ar,a;) = z (mod a;) for all n,x > 0, all
these values can be handled together (for-loop, lines 5-11). Thus, we only have one table lookup for each value r
modulo ged(ag, a;) (line 7); the table entry ERT(i — 1,7) serves as a lower bound.

At step i, the entries cg,crp_1,...,ci+1 of compomer ¢ have already been filled in, and the remaining value
m=M — Zj”:iﬂ c;ja; will be decomposed over {a1,...,a;}. The invariant at the call of FIND-ALL(m, 1, c) is that
mass m is decomposable over {a1,...,a;} and ¢; =0 for j =4,i—1,...,1. We give the pseudo-code in Figure 4.

Algorithm FIND-ALL (mass M, index i, compomer c)

1 if¢=1 then

2 ¢1 < M/aq; output ¢; return;

3 end;

4 lem < lem(aq, a;); € < lem /ay; // least common multiple
5 forj=0,...,£—1do

6 ci  jym<+— M — jay; // start with j pieces of a;
7 r < m mod ay; lbound < ERT(r,i — 1);

8 while m > Ibound do // m is decomposable

9 FIND-ALL(m, i — 1, ¢); /] over {ai,...,a;_1}
10 m <+ m —lem; ¢; < ¢; + ¢

11 done;

12 done.

Fig. 4. Algorithm for finding all decompositions using the Extended Residue Table. For a integer M which is
decomposable over {ai,...,ar}, FIND-ALL(M, k,0) will recursively produce all decompositions of M.

5.1 Correctness of the algorithm

By construction, any compomer computed by FIND-ALL(M, k, 0) will have mass M. Conversely, fix m decomposable
over {aj,...,a;}, i > 1, and let

N(m,i) :={m' =m —na; | m" >0 and (8)
m/ is decomposable over {ai,...,a;_1}}.

We will show that for a call of FIND-ALL(m,i,c), the set of values m’ for which a recursive call is made (line
9 in Figure 4) is exactly N(m,i). Then it follows by induction over i = k,k — 1,...,2 that, given ¢ = (c1,...,cx)

with mass M, the algorithm will arrive at call FIND-ALL(c1aq,1, (0, ¢2,...,c;)) and thus output ¢ (line 2): In the
induction step, set m = M — Z;?:Hl cjaj and m' = m — ¢;q;.
In order to prove the claim, let ¢ := a;/gcd(a1,a;) = lem(a, a;)/a;, and rq,, = m — qa; mod aq, for ¢ =

0,...,¢ — 1. Now consider the sets
N(m,i,q) :={m' > ERT(rgm,i — 1) | m' = m —na;,n = ¢ mod ¢}, 9)
forq=0,...,0—1.
Observe that N(m,i,q) is exactly the set of values for which a recursive call is made within the while-loop (line

9) for j = ¢ (line 5). Clearly, Ug;éN(m,i,q) C N(m,i). On the other hand, let m" = m — na; € N(m,1).
Further, let » = m’ mod a; and ¢ = n mod £. Since » = m’ mod a; and m’ = m — na; = m — ga; mod a1, we

have m — ga; mod a; = r. Since m’ is decomposable over {a1,...,a;_1}, it must hold that m’ > ERT(r,7 — 1) by
property (5) of the Extended Residue Table. Thus, we have
-1
N(m,i) = | N(m,i,q), (10)
q=0

as claimed.
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5.2 Complexity of the algorithm

As we have seen, step ¢ of Algorithm FIND-ALL makes one recursive call for each m’ € N(m,i,q), ¢=0,...,¢—1,
where ¢ = lem(ay, a;)/a; (line 9). By (10), each of these calls will produce at least one decomposition. In order to
check which m/ are in N (m, 1, ¢), the algorithm enters the while-loop at line 8, and will thus make one unsuccessful
comparison before exiting the loop. In the worst case, the current call FIND-ALL(m,i,c) will produce only one
decomposition; in this case, we will have /—1 additional comparisons. Since for alli = 2,... , k, £ = lem(a,a;)/a; <
a1, we have

number of comparisons for FIND-ALL(M, k,0) < kayy(M). (11)

The previous discussion yields the following theorem:

Theorem 3. Given the Extended Residue Table of an MCP instance {ai,...,a;} with smallest mass a1, the
FIND-ALL algorithm computes all decompositions of a query M in time O(kayy(M)), where (M) is the number
of decompositions of M.

6 Strings and compomers

We now take a closer look at the connection between strings and compomers, and then plot (M), the number of
compomers with mass M, for the most common biomolecule alphabets.

Let X = {o1,...,01} be a weighted alphabet, i.e., each character o; is assigned a positive integer u(o;) = a; (a
weight or mass) by a mass function p : X' — ZT. For a string s = s1...s, € X*, we define p(s) := > | u(s;), the
mass of s. We further define comp(s) = (c1,...,¢x) by ¢; = #{j | 1 < j < n,s; = 0;}, the compomer associated
with s. For a compomer ¢ = (ci,...,cx) € (Z$)F, we set p(c) == Zle ¢i - p(og) = Zle cia;, the mass of ¢, and
|| == Zle ci, the length of c. Obviously, if ¢ = comp(s), then pu(c) = u(s) and |c| = |s|.

The following simple lemmas establish some connections between strings and compomers.

Lemma 2. Given a compomer ¢ = (c1,...,ck), the number of strings s with comp(s) = ¢ is ( " ) = Cl,”il%,,

C1y.-+,Ck
where n = |c|.

Proof. Clearly, any string s with comp(s) = ¢ has length n. There are (Cl Ck) many ways of partitioning an n-set
into k subsets of sizes c1,...,cp, which is exactly the number of ways of choosing how to position the ¢; many
o;’s, for 0 <1i < k.

Lemma 3. Given an integer n > 0, the number of compomers ¢ with |c| = n is (”Zf;l), and the number of

compomers ¢ with |c| < n is (nzk)
Proof. Consider the following graphical representation of a compomer ¢ = (cy,...,c) of length n: On a line of
n + k — 1 dots, place £ — 1 many crosses in the following way: Place a cross on dot number ¢; + 1, one on dot

number c; + ¢2 + 2, etc. There are obviously ("fol) many ways to do this, see Figure 5.

Fig. 5. Graphical representation of compomer (2,5,0,3,2,3,0) over the alphabet X = {a,b,c¢,d,e, f, g}.

H—r) — (m+r+1

) for binomial coefficients.
) r+1

The second claim follows using the identity > " (

Thus, the search space is greatly reduced by computing compomers instead of strings with a given mass.
However, the number of compomers of a given mass M also increases very fast.

As before, we denote by v(M) the number of compomers with mass M. There is no “good” closed form known
for v(M). The generating function method, by expanding the coefficients of an appropriately defined generating
function (see e.g. [25]), yields the best closed form, but it is only of theoretical interest because the cost of the
coefficient expansion, as well as the cost of the evaluation, are in applications usually too high. However, as we
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saw in Section 2, v(M) can be computed with a dynamic programming algorithm in time O(kM), thus in time
linear in M.

The following asymptotic result is due to I. Schur and can be shown using generating functions [25]: Given
0<a; <...<ag€Z" with ged(ay,...,ax) = 1. Then,

Mkfl
(k — 1)!@1@2 e ag

V(M) ~ (M — o0). (12)

Thus, the number of decompositions grows very rapidly with increasing M. In particular, for proteins, v(M)
grows with a polynomial of degree 18. Note that the condition of coprimality can be easily achieved by choosing
an appropriate computation precision.

In Figure 6, we plot v(M) for the three most common types of biomolecules: Peptides over the amino acid
(AA) alphabet of 19 masses (having equated the two amino acids with identical mass, leucine (L) and isoleucine
(I)), DNA compomers over the nucleotide alphabet of 4, and, the most general case, molecules over the alphabet
of the 6 elements that are occur most commonly in biomolecules: carbon (C), hydrogen (H), nitrogen (N), oxygen
(O), phosphor (P), and sulfur (S). In real life applications, one never seeks the exact explanation of a peak because
some measurement inaccuracies always have to be taken into account. Thus, we merge the output within a certain
range.

Computation precision for the AA and DNA alphabets is 10~2 and output is merged within 0.1 Da: This means
that for the AA and DNA alphabets, the number of decompositions of 100 points are summed up. We also plot
the actual number of decompositions for AA compomers up to 800 Da, as well as the maximum over this range.
The minimum is always 0, since in this range, there are always values which are not decomposable. For DNA, the
number of decompositions with precision 1072 always yields either 1 or 0 decompositions (data not shown).

For the bioatom alphabet CHNOPS, we use computation precision 107° Da and merging within 0.001 Da,
because with the parameters used for AA and DNA, combinatorial effects appear which in fact do not occur in
reality. Thus, here 1000 points are merged. The actual number of decompositions in the range up to 100 with
the given precision is below 250 without merging; here, the variability is quite low because of the presence of the
character H with mass approximately 1 Da [5].

7 Optimizing Round Robin

In this section, we give several optimization techiques of the Round Robin algorithm.

We can improve the Round Robin Algorithm in the following ways: First, we do not have to explicitly compute
the greatest common divisor ged(aq, a;). Instead, we do the first round robin loop (lines 6-9) for r = 0 with n =
no = p = 0 until we reach n = p = 0 again. We count the number of steps ¢ to this point. Then, d = ged(a1,a;) = ¢
and for d > 1, we do the remaining round robin loops r=1,...,d — 1.

Second, for r > 0 we do not have to explicitly search for the minimum in N, = {ng : ¢ = r,r +d,r +
2d,...,r + (a1 — d)}. Instead, we start with n = n, and do exactly t — 1 steps of the round robin loop. Here,
n, = oo may hold, so we initialize p = r (line 5) and update p <— (p+ a;) mod a; separately in line 7. Afterwards,
we continue with this loop until we first encounter some n,, < n in line 8, and stop there. The second loop takes
at most ¢ — 1 steps, because at some stage we reach the minimal n,, = min N, and then, n, < n must hold because
of the minimality of n,. This compares to the ¢ steps for finding the minimum.

Third, A. Nijenhuis suggested the following improvement (personal communication): Suppose that k is large
compared to aj, for example k = O(a;). Then, many round robin loops are superfluous because chances are high
that some a; is representable using aq,...,a;_1. To exclude such superfluous loops, we can check after line 2
whether n, < a; holds for p = a; mod a;. If so, we can skip this a; and continue with the next index ¢ + 1, since
this implies that a; has a decomposition over ai,...,a;—1. In addition, this allows us to find a minimal subset
of {a1,...,a;} sufficient to decompose any number that can be decomposed over the original MCP instance
ajy...,qL.

Fourth, if £ > 3 then we can skip the round robin loop for ¢ = 2: The Extended Euclid’s Algorithm [16]
computes integers d, ui, uz such that aju; + agus = d = ged(aq, az). Hence, for the MCP instance a1, as we have
np = S((pasuz) mod (aras)) for all p = 0 (mod d), and n, = oo otherwise. Thus, we can start with the round
robin loop for ¢ = 3 and compute the values nz’g of the previous instance a1, as on the fly using the above formula.
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Fig. 6. Top: Number of amino acid compomers up to 3000 Da (left) and up to 800 Da (right). Computation precision is 0.001, output
is merged within 0.1 Da. Center: AA compomers without merging, precision 0.001 (left), maximum of same (right). Bottom: Number
of DNA compomers up to 10000 Da, with precision 0.001, output merged within 0.1 Da (left); and biomolecules up to 500 Da (right),
precision 0.00001, output is merged within 0.01 Da.

Our last improvement is based on the following observation: The residue table (np)p—0,. q,—1 iS very memory
consuming, and every value n,, is read (and eventually written) exactly once during any round robin loop. Nowadays
processors usually have a layered memory access model, where data is temporarily stored in a cache that has much
faster access times than the usual memory. The following modification of the Round Robin Algorithm allows for
cache-optimized access of the residue table: We exchange the r = 0,...,ged(a1,a;) — 1 loop (lines 4-10) with the
inner round robin loop (lines 6-9). In addition, we make use of the second improvement introduced above and
stop the second loop as soon as none of the n,, was updated. Now, we may assume that the consecutive memory
access of the loop over r runs in cache memory.

We want to roughly estimate how much runtime this improvement saves us. For two random numbers u, v drawn
uniformly from {1,...,n}, the expected value of the greatest common divisor is approximately E(gcd(u, v)) =
6/7%H,, where H, is the n’th harmonic number [16]. This leads us to the approximation E(gcd(u, v)) ~ 1.39 -
log;ym + 0.35, so the expected greatest common divisor grows logarithmically with the coin values, for random
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input.® Even so, the improvement has relatively small impact on average: Let tyem denote the runtime of our
algorithm in main memory, and tc.che the runtime for the same instance of the problem if run in cache memory.
For an instance aq,...,a; of MCP, the runtime t¢,,,q of our modified algorithm roughly depends on the values

1/ ged(ar, a;):
k

1 1
tmod ~ tcache + (tmem - tcache) E_1 Z gcd(al, ai) .
For random integers u,v uniformly drawn from {1,...,n} we estimate (analogously to [16], Section 4.5.2)

1 pl - HG) : 2
E(—F— = = thp=6
(i) = ; B =Yg =pH b=/

where the H1(13) are the harmonic numbers of third order. The Hq(f) form a monotonically increasing series with

1.2020 < Hr(Lg) < Hg) < 1.2021 for n > 100, so E(l/ ged(u, U)) ~ 0.731. If we assume that accessing main memory
is the main contributor to the overall runtime of the algorithm, then we reduce the overall runtime by roughly
one fourth. This agrees with our runtime measurements for random input as reported in the next section.

Round Robin Algorithm (optimized version for k > 3)

1 Initialize ng,...,nq, —1 for the instance ay,as,as; // fourth improvement
2 Fori=4,...,kdo
3 If n, < a; for p = a; mod a; then continue with next ¢; // third improvement

4 d = ged(ay, a;);

5 p < 0; ¢ < a; mod ay; // p is source residue, q is destination residue
6 Repeat a;/d — 1 times

7 Forr=0,...,d—1do

8 Ngr = MIN{Ngtp, Nppr + a5 };

9

done;
10 p < q; q < (¢+ a;) mod ay;
11 done;
12 // update remaining entries, second improvement
13 Repeat
14 Forr=0,...,d—1do
15 Ngtr <= MIN{Ngtp, Nppr + a4 };
16 done;
17 p < q; q < (¢+ a;) mod ay;
18 until no entry n,y, was updated;
19 done.

Fig. 7. Optimized version of the Round Robin Algorithm.

In Figure 7 we have incorporated all but the first improvements into the Round Robin Algorithm; note that
the first and last improvement cannot be incorporated simultaneously. All improvements presented are runtime
heuristics, so the resulting algorithm still has runtime O(k ay).

8 Computational results

In this section, we report simulation results for our two main algorithms, Round Robin and FindAll.

8.1 Simulations for Round Robin

We generated 12000 random instances of MCP, with & = 5,10,20 and 10® < a; < 107. We have plotted the
runtime of the optimized Round Robin Algorithm against a1 in Figures 8 and 9. As expected, the runtime of the

5 For simplicity, we ignore the fact that due to the sorting of the input, a; = min{ai,...,ar} is not drawn uniformly, and we also
ignore the dependence between the drawings.
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algorithm is mostly independent of the structure of the underlying instance. The processor cache, on the contrary,
is responsible for major runtime differences. The left plot contains only those instances with a; < 10%; here, the
residue table of size a; appears to fit into the processor cache. The right plot contains all random instances; for
ai > 10%, the residue table has to be stored in main memory.
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Fig. 8. Runtime of Round Robin vs. a1 for k = 5,10, 20 where a; < 10°

To compare runtimes of the Round Robin Algorithm with those of Nijenhuis’ algorithm [19], we re-implemented
the latter in C++ using a binary heap as the priority queue. As one can see in Figures 8 and 9, the speedup of
our optimized algorithm is about 10-fold for a; < 10%, and more than threefold otherwise. Regarding Kannan’s
algorithm [14], the runtime factor kR > 102184 for k = 5 makes it impossible to use this approach.

Comparing the original Round Robin Algorithm with the optimized version, the achieved speedup was 1.67-fold
on average (data not shown).

We also tested our algorithm on some instances of the Money Changing Problem that are known to be “hard”:
We used all twenty-five examples from [1], along with runtimes given there for standard linear programming
based branch-and-bound search. These instances satisfy 5 < k < 10 and 3719 < a1 < 48709. The runtime of the
optimized Round Robin Algorithm (900 MHz UltraSparc III processor, C++) for every instance is below 10 ms,
see Table 2. Note that in [1], Aardal and Lenstra do not compute the Frobenius number g but only verify that g
cannot be decomposed. In contrast, the Round Robin Algorithm computes the residue table of the instance, which
in turn allows to answer all subsequent questions whether some n is decomposable, in constant time. Still and
all, runtimes usually compare well to those of [1] and clearly outperform LP-based branch-and-bound search (all
runtimes above 9000 ms), taking into account the threefold processor power running the Round Robin Algorithm.

8.2 Simulations for FindAll

We implemented both algorithms for the MCP All Decompositions Problem (the classical dynamic programming
and our algorithm). Runtimes on a SUN Fire 880, 900 MHz, for the amino acid alphabet are shown in Figure 10.
In the total runtime of the preprocessing together with the algorithm producing all decompositions, our algorithm
is greatly superior to the dynamic programming algorithm. This is mainly due to our very fast preprocessing
EXTENDED ROUND ROBIN which has constant runtime; we also plot the times for the preprocessing separately
from the algorithms for producing all decompositions. The algorithms producing all decompositions, without the
preprocessing stage, are very close, with our algorithm slighty slower. Since the runtime depends on the output
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Fig. 9. Runtime of Round Robin vs. a; for k = 5,10, 20 where a; < 107

Instance cl ¢2 ¢3 c4 c5 pl p2 p3 p4d pd p6 p7 p8
Aardal&Lenstra| 1 1 1 1 1 1 1 2 1 2 1 2 1
Round Robin 0.8 09 09 1.1 1.6 3.1 1.2 4.9 9.2 40 3.4 3.1238

Instance P9 pl10 pll pl12 pl13 p14 pl5 pl6 pl7 pl8 pl9 p20
Aardal& Lenstra|] 3 2 5 12 6 12 80 80 150 120 100 5
Round Robin 0.4 6.5 1.8 2.1 24 1.8 2.1 6.4 2.5 3.7 3.2 9.0

Table 2. Runtimes on instances from [1] in milliseconds, measured on a 359 MHz UltraSparc II (Aardal & Lenstra) and on a 900 MHz
UltraSparc IIT (Round Robin).

size, we also plot the time needed per decomposition computed. We ran the algorithms with precision 0.01 and
0.001 Da. We plot the results for 0.01 Da; those for 0.001 are very similar.

For the DNA and CHNOPS alphabets, the runtime comparisons are similar (data not shown).

From our simulations, it appears that the dynamic programming algorithm also has constant runtime per
decomposition, even though we have no formal proof for this. However, our algorithm is still greatly superior in
its preprocessing time and its space requirements.

9 Conclusion

We presented new and efficient algorithms for the Money Changing Problem in its different flavours: for computing
the Frobenius number of an MCP instance {ai,...,ax}, for deciding whether a query is decomposable over
{a1,...,ax}, for computing one decomposition of a query, and for computing all decompositions of a query.

Our first main algorithm, Round Robin, constructs the residue table of an MCP instance of size O(a1), which
in turn allows to efficiently solve the first three variants of the problem (the third with a minor modification).
With a running time of O(kay) and space requirements of O(1) in addition to the residue table, it outperforms the
best previously known algorithm, both theoretically and on known ’hard’ instances from the literature. Moreover,
it is very simple to understand and to implement.

Our second main algorithm, FindAll, computes all decompositions of a query integer using backtracking in the
extended residue table of an MCP instance, which has size O(kaq). Its running time is O(ka;) per decomposition,
thus the total runtime is linear in the size of the output.

We applied our algorithm FindAll to interpreting MS peaks and showed that it far outperforms the classical
DP algorithm. The fact that FindAll has runtime linear in the size of the output is crucial for it to be useful
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Fig. 10. Runtime comparisons at precision 0.01 Da. Top: Runtime for finding all decompositions, including preprocessing (left) and
only for preprocessing (right). Bottom: Runtime for finding all decompositions excluding preprocessing: absolute time (left), and time
per decomposition (right).

in interpreting mass spectrometry peaks, because of the sheer size of the search space. We have shown that
our algorithm performs well in simulations with different biomolecules. We have also been successful in applying
it to interpreting metabolomic mass spectrometry data (published elsewhere [5]). For this latter application, our
approach results in a 100-fold reduction of memory and much better runtimes when compared to classical dynamic
programming.
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