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Abstract. In this paper, we deal with restoring missing information in molecule databases:
Many data formats only store the atoms’ configuration but omit bond multiplicities. As
this information is essential for various applications in chemistry, we consider the problem
of recovering bond type information using a scoring function for the possible valences of
each atom—the Bond Order Assignment problem. We show that the Bond Order
Assignment is NP-hard, and its maximization version is MAX SNP-hard. We then give
two exact fixed-parameter algorithms for the problem, where bond orders are computed
via dynamic programming on a tree decomposition of the molecule graph. We evaluate our
algorithm on a set of real molecule graphs and find that it works fast in practice.
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1 Introduction

The structural formula of a chemical compound is a representation of the molecular
structure, showing both how atoms are arranged and the chemical bonds between pairs
of atoms. Throughout this paper, we refer to a structural formula as a molecule graph.
An important aspect of structural formulas is bond order (referred to as bond type in [17])
information: Each bond between two atoms can be a single, double, or triple bond. See
Fig. 1 for the molecule graph of phenylalanine, an amino acid. The sum of bonds of any
atom is its valence, and each element allows for a certain set of admissible valence states.

Bond order information is essential for many applications in chemistry, such as com-
puting the molecular mechanics force field [17]. Unfortunately, bond orders can be omitted
in many data formats that represent molecule graphs, such as Gaussian file formats and
Mopac file formats, and even by the widely used Protein Data Bank format PDB. So,
many entries in public databases omit bond order information, whereas other entries
have erroneous such information. Moreover, in combinatorial chemistry, the backbone
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Fig. 1. Molecule graph of phenylalanine.
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of a molecule (skeletal formula) may be drawn either manually or automatically, again
omitting bond orders. Now, the question is how to (re-)assign bond orders to the molecule
graph. Note that a molecular graph may allow for several admissible bond order assign-
ments.

Previous work. Several approaches for this problem have been introduced during the
last years, based on different optimization criteria [3, 10, 12]. For example, Froeyen and
Herdewijn [8] presented an integer linear programming algorithm that minimizes formal
charge on each atom. Wang et al. [17] formulated the bond order assignment problem as
a minimization problem, where each atom contributes to the additive objective function
based on its valence state. The authors also introduced a penalty score table to evaluate
rare valence states, and presented a heuristic to search for the optimal bond order as-
signment. In our work, we concentrate on this optimization criterion. Recently, Dehof et
al. [6] introduced a branch-and-bound algorithm and an integer linear program for this
formulation of the problem.

Informally, the problem can be described as follows: We are given a graph where
every vertex has one or more natural nummbers attached to it. We then have to assign
weights zero, one, or two to the edges of the graph, such that for every vertex, the sum
of weights of its incident edges equals one of the numbers attached to the vertex. For the
optimization version, we additionally evaluate the possible choices at each vertex by a
score, and sum up these scores.

Our contribution. In this paper, we show that the problem of assigning bond orders to
molecule graphs, as introduced by Wang et al. [17], is NP-hard even on input graphs where
both vertex degree and maximum valence are bounded by a constant. We infer that the
problem cannot be approximated when minimizing the objective function. Furthermore,
we show that assigning bond orders maximizing an objective function is MAX SNP-hard
even on molecule graphs with the same restriction. This implies the non-existence of
a polynomial time approximation scheme (PTAS) for the maximization version of the
problem, unless P = NP [2]. We then introduce two tree decomposition-based algorithms
that compute an exact solution of the problem with running times O(α2ω · 3β · ω · m)
and O(α3ω · ω · m), where m is the number of nodes in the tree decomposition of the
molecule graph, α − 1 is the maximum open valence of an atom, d is the maximum
degree of an atom in the molecule, ω − 1 is the treewidth of the molecule graph, and
β := min{

(
ω
2

)
, ωd}. This shows that the problem of reassigning bond orders to molecule

graphs is fixed-parameter tractable [7, 13] with respect to the treewidth of the molecule
graph and the maximum open valence of an atom in the molecule. We implemented one of
our algorithms and evaluated it on molecules of the MMFF94 dataset, a dataset originally
used by Halgren et al. [9] to validate Merck Molecular Force Fields. As we expected, the
treewidths of molecule graphs are rather small for biomolecules: for all graphs in our
dataset, the treewidth is at most three, and our algorithm solves the problem in well
under a second. To further confirm the practical use of our algorithms, we computed the
treewidths of 135607 molecules in a PubChem dataset. We find that 99.99 % of these
molecules have treewidths of at most three, and no molecule’s treewidth exceeds four.

2 Preliminaries

A molecule graph is a graph G = (V,E) where each vertex in V corresponds to an atom
and each edge in E corresponds to a chemical bond between the respective atoms. We
denote an edge from u to v by uv. Since each edge in G already consumes one valence
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of the corresponding vertices, the set of admissible open valences we can assign to v is
Av := {a− deg(v) : a ∈ Av, a− deg(v) ≥ 0}, where Av denotes the set of valences of the
atom at vertex v. We set A∗v := maxAv and α := 1 + maxv A

∗
v. In this paper, we mostly

work with the abovementioned open valences. Therefore, “open valence” is referred to as
valence for simplicity.

Let b : E → {0, 1, 2} be a weight function assigning a bond order lowered by one to
every bond uv ∈ E. We call such b an assignment. An assignment b consumes xb(v) :=∑

u∈N(v) b(uv) valences of the atom at every vertex v ∈ V , where N(v) denotes the set
of neighbors of v. The assignment b is feasible if xb(v) ∈ Av for every vertex v ∈ V .

A scoring function sv : Av → R≥0 assigns a non-negative score sv(a) to an open
valence a ∈ Av at every vertex v ∈ V . For every v ∈ V , we define sv(a) :=∞ if a 6∈ Av.

The score S(b) of an assignment b is

S(b) :=
∑
v∈V

sv(xb(v)). (1)

Thus, S(b) =∞ holds for assignments b that are not feasible.
The Bond Order Assignment Problem is defined as follows:

Bond Order Assignment Problem. Given a molecule graph G = (V,E) with (open)
valence sets Av ⊆ {0, . . . , α− 1} and scoring functions sv for every v ∈ V . Find a feasible
assignment b for G with minimum score S(b).

3 Hardness of the Problem

Given an input for the Bond Order Assignment problem, the Bond Order Assign-
ment decision problem asks if there is a feasible assignment b for the input graph. In this
section, we first show that this problem is NP-hard, even if every vertex of the molecule
graph has degree at most three and atoms have valences of at most four, and so is the
Bond Order Assignment problem. For the proof, we use a polynomial-time reduction
from a variant of 3-SAT problem to the Bond Order Assignment problem.

Theorem 1. The Bond Order Assignment decision problem is NP-complete, even
on input graphs where every vertex has degree at most three and atom valences are at
most four.

From this theorem, we can quite easily infer that the Bond order Assignment
problem cannot be approximated, since a feasible solution can have score zero:

Lemma 1. The Bond Order Assignment problem cannot be approximated in poly-
nomial time, unless P = NP, even on input graphs where every vertex has degree at most
three and atom valences are at most four, and sv is binary.

The previous lemma might be regarded as an artifact, as asking for a solution of min-
imum score is somewhat arbitrary, and Wang et al. [17] could have formulated the bond
order assignment problem as a maximization problem. This is similar to MAX-3SAT,
where we do not minimize the number of unsatisfied clauses, but maximize the number
of satisfied clauses. Consequently, we can use a positive score instead of a penalty score,
and ask for a bond order assignment with maximum score. By the following theorem,
finding an assignment with maximum score is a MAX SNP-hard problem, which implies
the non-existence of a polynomial time approximation scheme (PTAS) unless P = NP [2].
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Theorem 2. Computing a bond order assignment with maximum score is a MAX SNP-
hard problem, even on input graphs where every vertex has degree at most three and atom
valences are at most four, and sv is binary.

We first focus on the NP-hardness of the decision problem. In the proof of Theorem 1,
we will use a reduction from a variant of the 3-SAT problem:

Definition 1 (3-SAT). Given a set X of n boolean variables {x1, . . . , xn} and a set C
of m clauses {c1, . . . , cm}. Each clause is a disjunction of at most three literals over X,
for example (x1 ∨ x2 ∨ x3). Is there an assignment X → {true, false} that satisfies all
clauses in C, i.e., at least one literal in every clause is true?

Definition 2 (3-SAT*). The variant of 3-SAT where each variable occurs at most three
times, is called the 3-SAT* problem.

In [4], Berman et al. proved the NP-hardness of 3-SAT* by a polynomial reduction
from the 3-SAT problem.

Proof (of Theorem 1). Obviously, the problem is in NP. By a polynomial reduction from
3-SAT* to the Bond Order Assignment decision problem, we will show that the Bond
Order Assignment decision problem is NP-hard, even if every vertex is of degree at
most three and valence at most four.

Given a 3-SAT* formula, we can safely discard all clauses containing variables that
only occur in either positive or negative literals. Afterwards, every variable occurs at
least twice and at most three times in at least one positive and one negative literal. We
then construct the sat-graph G = (V,E) for the Bond Order Assignment problem
as follows:

The vertex set V consists of four subsets Vvar, Vlit, Vcla and Vaux. For each variable xi
of the 3-SAT* instance, the vertex set Vvar contains a variable vertex vi and the vertex
set Vlit contains two literal vertices ui and u′i corresponding to the literals xi and xi. The
set Vcla contains, for every clause cj of the 3-SAT* instance, a clause vertex wj . Finally,
we need a couple of auxiliary vertices subsumed in Vaux as shown in Fig. 2.

The valence set of each variable vertex is {1}, of each literal vertex {0, 3}, and of a
clause vertex {1, . . . , d}, where d ≤ 3 is the number of literals contained in the corre-
sponding clause. The valence sets of auxiliary vertices are set as shown in Fig. 2. We use
the trees shown in Fig. 2 as building blocks to connect the vertices of G.

If both literals of a variable occur once, we connect each of the literal vertices to the
clause vertex that corresponds to the clause containing this literal via an auxiliary vertex
with valence set {0, 3}, see Fig. 2 (left).

If one literal of a variable occurs once and the other twice, we connect the literal vertex
that corresponds to the literal occurring in only one clause to the corresponding clause
vertex via an auxiliary vertex with valence set {0, 3}. The literal vertex corresponding
to the literal occurring in two clauses is connected to each of the corresponding clause
vertices via a chain of three auxiliary vertices with valence sets {0, 3}, {0, 4}, {0, 3}. See
Fig. 2 (right).

Before proving that the constructed Bond Order Assignment instance has a feasi-
ble assignment if and only if 3-SAT* instance is satisfiable, we consider the two building
blocks of G shown in Fig. 2. Let a1, a2, b1, b2, c1, c2, c3, d1, d2 denote the bond orders of
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Fig. 2. The building blocks of G. Vertices outside Vvar, Vlit, and Vcla are auxiliary vertices. Valence sets
of clause vertices are omitted.

Fig. 3. The variable vertices represents variables x1, x2, x3 from left to right. The literal vertices represent
literals x1, x1, x2, x2, x3, x3, from left to right. The clause vertices represent clauses (x1 ∨ x2 ∨ x3), (x1 ∨
x2 ∨ x3), (x2 ∨ x3), from left to right.

the corresponding edges as shown in Fig. 2. In a feasible assignment of G, the following
facts can be easily observed:

As all variable vertices have valence set {1}, the bond orders a1, b1, c1, and d1 can
either be zero or one. Bond order one can only be assigned to either a1 or b1, and to either
c1 or d1. The corresponding literal vertex has valence three, the other one has valence
zero. Furthermore, we infer a1 = a2, b1 = b2, c1 = c2 = c3 and d1 = d2.

The fact that exactly one of two edges incident to a variable vertex has bond type
one, models that exactly one of the literals xi, xi of a variable xi is satisfied. The valence
of a clause vertex takes a value of at least one if and only if the corresponding clause
contains literals whose literal vertices have valence three. This implies that a clause is
satisfied if and only if it contains a true literal. Furthermore, the valence set {1, . . . , d(w)}
of a clause vertex w forces any algorithm for the Bond Order Assignment problem
to assign bond order one to at least one of the edges incident to w. This implies that at
least one of the literals contained in each clause has to be true.

Therefore, there is a feasible solution for the constructed Bond Order Assignment
instance if and only if the 3-SAT* instance is satisfiable. Since the reduction can be done
in polynomial time and the 3-SAT* problem is NP-hard, the Bond Order Assignment
decision problem is also NP-hard. ut

Next, we prove that the Bond Order Assignment problem is not approximable in
polynomial time, unless P = NP.
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Proof (of Lemma 1). We modify the reduction described in the proof of Theorem 1 by
allowing clause vertices to take valence zero, so that the valence set of a clause vertex is
{0, 1, . . . , d} where d ≤ 3 is the length of the clause. Valence zero at each clause vertex
is penalized with score one, whereas the scores of all other valences of all vertices are
set to zero. Doing so, we ensure that the score of an assignment is the number of clause
vertices with valence zero and, hence, the number of unsatisfied clauses in the 3-SAT*
problem instance. So, the 3-SAT* problem instance is satisfiable if and only if there is a
bond order assignment for the sat-graph with score zero.

Assume that there is a polynomial-time approximation algorithm for the Bond Or-
der Assignment problem with an arbitrary approximation factor. This algorithm com-
putes a bond order assignment with score zero for a Bond Order Assignment problem
instance if and only if an optimal assignment has score zero. In particular, for Bond Or-
der Assignment problem instances constructed from a 3-SAT* problem instance, this
polynomial-time approximation algorithm computes an assignment with score zero if and
only if the 3-SAT* problem instance is satisfiable. So, we can use this approximation
algorithm to solve the NP-hard 3-SAT* problem in polynomial time. Thus, there is no
polynomial-time approximation algorithm for the Bond Order Assignment problem,
unless P = NP. ut

Finally, we focus on the MAX SNP-hardness of the maximization version of the prob-
lem. The MAX SNP-hardness concept was introduced by Papadimitriou et al. [14], who
also defined the L-reduction to show MAX SNP-hardness of an optimization problem.
The L-reduction is defined as follows:

Definition 3 (L-reduction). Let Π and Π ′ be two optimization (maximization or min-
imization) problems. We say that Π L-reduces to Π ′ if there are two polynomial-time
algorithm f , g and constants δ, γ > 0 such that for each instance I of Π:

1. Algorithm f produces an instance I ′ = f(I) of Π ′, such that the optima of I and I ′,
OPT (I) and OPT (I ′), respectively, satisfy OPT (I ′) ≤ δOPT (I).

2. Given any solution of I ′ with cost c′, algorithm g produces a solution of I with cost c
such that |c−OPT (I)| ≤ γ|c′ −OPT (I ′)|.

To prove MAX SNP-hardness of computing a bond order assignment with maximum
score, we introduce an L-reduction from the MAX-3SAT* problem, which is a MAX
SNP-hard problem [14]. Papadimitriou et al. [14] show the MAX SNP-hardness of the
MAX-3SAT problem where each variable can occur at most B times, for any given integer
B ≥ 3. Note that here, we cannot use the reduction from MAX-3SAT to MAX-3SAT*
introduced for our NP-hardness proof, since this reduction is not an L-reduction. Our
proof is straightforward, as we will set δ = γ = 1.

Definition 4 (MAX-3SAT*). Given a set of length three clauses over a set of boolean
variables, where each variable occurs at most three times in the clause set, the MAX-
3SAT* problem asks for an assignment of the variables that satisfies as many clauses as
possible.

Proof (of Theorem 2). We reduce MAX-3SAT* to the maximization version of Bond
Order Assignment via an L-reduction. Given a MAX-3SAT* problem instance, we
construct a sat-graph as described in the proof of Theorem 1 and use the valence sets
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and scoring functions defined in the proof of Lemma 1, but we swap the scoring functions
at clause vertices, namely we assign score zero to valence zero and score one to non-zero
valences. By doing this we can ensure that there is always a feasible solution for the
constructed Bond Order Assignment problem instance, and the score of a bond order
assignment is the number of clause vertices that have non-zero valences.

Since a clause vertex has non-zero valence if and only if the corresponding clause is
satisfied, from a solution of the MAX-3SAT* problem instance that satisfied k clauses
we can construct a solution of the Bond Order Assignment problem instance with
score k, and vice versa. This can be done in polynomial time as described in the proof
of Theorem 1. In the following, we use k to denote the number of satisfied clauses of the
MAX-3SAT* problem instance, as well as the score of the corresponding Bond Order
Assignment problem instance.

Let OPT (BOA) denote the score of the optimal solution of the constructed Bond
Order Assignment problem instance, and OPT (M3S ) denote the number of satis-
fied clauses in the optimal solution of the MAX-3SAT* problem instance. We infer that
OPT (BOA) = OPT (M3S ).

To prove that our reduction from MAX-3SAT* problem to the maximization version
of the Bond Order Assignment problem is an L-reduction, we have to show that
OPT (BOA) ≤ δ ·OPT (M3S ) and |k −OPT (M3S )| ≤ γ · |k −OPT (BOA)| hold for some
constant δ and γ. Since OPT (BOA) = OPT (M3S ), both conditions hold for δ = γ = 1.

All in all, our reduction from MAX-3SAT* to the maximization version of the Bond
Order Assignment is an L-reduction. Since MAX-3SAT* is MAX SNP-hard, comput-
ing a bond order assignment with maximum score is also MAX SNP-hard, even on input
graphs where every vertex has degree at most three and atom valences are at most four,
and sv is binary. ut

4 Algorithms on graphs of bounded treewidth

While the Bond Order Assignment problem is computationally hard on general
graphs, it can be solved in polynomial time on trees. To this end, we root the tree T
at an arbitrary node r and set the direction of every edge to point away from r. We use
the ordered pair uv to denote the directed edge from u to v. We assume that T is a binary
tree, the general case can be solved similarly. We use dynamic programming, starting at
the leaves of the tree. Let Dv[av, euv] denote the optimum solution of the subtree rooted
at v, by assuming that valence av is assigned to v and the bond order euv is assigned to
edge uv. Let uv be an edge in T and w1, w2 be the two children of v. We can compute
Dv[·, ·] using the recurrence

Dv[av, euv] = sv(av) + min
e1+e2

+euv=av

{
Dw1 [a1, e1] +Dw2 [a2, e2]

}
where the minimum is taken over all a1 ∈ Aw1 , a2 ∈ Aw2 and all e1, e2 ∈ {0, 1, 2}.
We initialize the recurrence for every leaf w with parent v of T : If aw = evw then set
Dw[aw, evw] = sw(aw), and Dw[aw, evw] =∞ otherwise. Now, the value minar∈Ar Dr[ar, 0]
is the minimum score for T and can be computed in polynomial time.

Since the Bond Order Assignment problem can be solved in polynomial time on
trees, it is quite natural to extend the above algorithm to graphs of bounded treewidth.
Here, we use dynamic programming on the tree decomposition of the input graph [15]. In
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the following subsection, we give a short introduction to the tree decomposition concept.
We follow Niedermeier’s monograph [13] in our presentation.

4.1 Tree decompositions

Let G = (V,E) be a graph. A tree decomposition of G is a pair 〈{Xi | i ∈ I}, T 〉 where
each Xi is a subset of V , called a bag, and T is a tree containing the elements of I as
nodes and the three following properties must hold:

1.
⋃
i∈I Xi = V ;

2. for every edge {u, v} ∈ E, there is an i ∈ I such that {u, v} ⊆ Xi; and
3. for all i, j, k ∈ I, if j lies on the path between i and k in T then Xi ∩Xk ⊆ Xj .

The width of the tree decomposition 〈{Xi | i ∈ I}, T 〉 equals max{|Xi| | i ∈ I} − 1. The
treewidth of G is the minimum number ω − 1 such that G has a tree decomposition of
width ω − 1.

Given a molecule graph G, we first compute the tree decomposition T of G before
executing our algorithm on T to solve the Bond Order Assignment problem on G. As
we show later, the running time and the required space of our algorithm grow exponen-
tially with the treewidth of G. Therefore, the smaller the width of the tree decomposition
of G, the better running time our algorithm will achieve. Unfortunately, computing a tree
decomposition with minimum width is an NP-hard problem [1]. But there exist a variety
of methods, both exact and heuristic, to compute tree decompositions in practice, see
Sec. 6.

To improve legibility and to simplify description and analysis of our algorithm, we
use nice tree decompositions instead of arbitrary tree decompositions in the following. We
generally assume the tree T to be rooted. A tree decomposition is a nice tree decomposition
if it satisfies the following conditions:

1. Every node of the tree has at most two children.
2. If a node i has two children j and k, then Xi = Xj = Xk; in this case i is called a

join node.
3. If a node has one child j, the one of the following situations must hold:

(a) |Xi| = |Xj |+ 1 and Xj ⊂ Xi; in this case Xi is called an introduce node.
(b) |Xi| = |Xj | − 1 and Xi ⊂ Xj ; in this case Xi is called a forget node.

Figure 4 illustrates the molecule graph of adenine, its tree- and nice tree-decomposition.
After computing a tree decomposition of width k and m nodes for the input graph

G, we transform this tree decomposition into a nice tree decomposition with the same
treewidth and O(m) bags in linear time using the algorithm introduced in [11] (Lemma
13.1.3). Then we execute our algorithm on the nice tree decomposition to compute the
optimal bond order assignment for G.

We will now present our tree decomposition-based algorithm in two flavors: The one
presented in Sec. 4.2 uses a dynamic programming matrix over bond strengths of edges,
whereas the second algorithm presented in Sec. 4.3 uses a matrix over valences of vertices.

4.2 The O(α2ω · 3β · ω ·m) algorithm

Assume that a nice tree decomposition 〈{Xi | i ∈ I}, T 〉 of width ω − 1 with O(m)
bags of the molecule graph G is given. In this section, we describe a dynamic program-
ming algorithm that solves the Bond Order Assignment problem using the nice tree
decomposition of the molecule graph G.
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Fig. 4. Molecule graph of adenine (upper left, atom types are neglected), its tree decomposition (right),
and nice tree decomposition (bottom, new bags are drawn dashed). The root of the nice tree decomposition
is the left-most bag.

The tree T is rooted at an arbitrary bag. Above this root we add additional forget
nodes, such that the new root contains a single vertex. Let Xr denote the new root of
the tree decomposition and vr denote the single vertex contained in Xr. Analogously, we
add additional introduce nodes below each leaf of T , such that the new leaf also contains
a single vertex.

The vertices inside a bag Xi are referred to as v1, v2, . . . , vk where k ≤ ω. For simplicity
of presentation, we assume that all edges v1v2, v1v3, . . . , vk−1vk are present in each bag.
Otherwise, the recurrences can be simplified accordingly.

Let Yi denote the vertices in G that are contained in the bags of the subtree below
bag Xi. We assign a score matrix Di to each bag Xi of the tree decomposition: Let
Di[a1, . . . , ak; e1,2, . . . , ek−1,k] be the minimum score over all valence assignments to the
vertices in Yi \ Xi if for every l = 1, . . . , k, exactly al valences of vertex vl have been
consumed by the edges between vl and vertices in Yi \Xi, and bond orders e1,2, . . . , ek−1,k
are assigned to edges v1v2, v1v3, . . . , vk−1vk. Using this definition, we delay the scoring of
any vertex to the forget node where it is removed from a bag. This is advantageous since
every vertex except for the root vertex vr is forgotten exactly once, and since the exact
valence of a vertex is not known until it is forgotten in the tree decomposition. Finally,
we can compute the minimum score among all assignments using the root bag Xr = {vr}
as mina1

{
svr(a1) +Dr[a1]

}
.

Our algorithm begins at the leaves of the tree decomposition and computes the score
matrix Di for every node Xi when score matrices of its children nodes have been com-
puted. We initialize the matrix Dj of each leaf Xj = {v1} with

Dj [a1; ·] =

{
0 if a1 = 0,

∞ otherwise.

During the bottom-up travel, the algorithm distinguishes if Xi is a forget node, an
introduce node, or a join node, and computes Di as follows:
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Introduce nodes. Let Xi be the parent node of Xj such that Xj = {v1, . . . , vk−1} and
Xi = {v1, . . . , vk}. Then

Di[a1, . . . , ak; e1,2, . . . , ek−1,k] =

{
Dj [a1, . . . , ak−1; e1,2, . . . , ek−2,k−1] if ak = 0,

∞ otherwise.
(2)

Figure 5 illustrates the execution of the algorithm at an introduced node.

Fig. 5. Xi is an introduce node. After computing Dj-values, the algorithm computes Di-values using the
recursion (2).

Forget nodes. Let Xi be the parent node of Xj such that Xj = {v1, . . . , vk} and Xi =
{v1, . . . , vk−1}. Then

Di[a1, . . . , ak−1; e1,2, . . . , ek−2,k−1] = min
e1,k,...,ek−1,k∈{0,1,2}

ak∈{0,...,A∗vk}

{
svk

(
ak +

∑k

l=1
el,k

)

+Dj [a1 − e1,k, . . . , ak−1 − ek−1,k, ak; e1,2, . . . , ek−1,k]
}

(3)

Figure 6 illustrates the execution of the algorithm at a forget node.

Fig. 6. Xi is a forget node. After computing Dj-values, the algorithm computes Di-values using the
recursion (3).
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Join nodes. Let Xi be the parent node of Xj and Xh such that Xi = Xj = Xh. Then

Di[a1, . . . , ak; e1,2, . . . , ek−1,k] =

min
a′l=0,...,al
for l=1,...,k

{
Dj [a

′
1, . . . , a

′
k; e1,2, . . . , ek−1,k] +Dh[a1 − a′1, . . . , ak − a′k; e1,2, . . . , ek−1,k]

}
(4)

See Figure 7 for an illustration.

Fig. 7. Xi is a join node. After computing Dj- and Dh-values, the algorithm computes Di-values using
the recursion (4).

For simplicity of the presentation of our algorithm, we assumed above that every two
vertices in each bag of the tree decomposition are connected by an edge, but in reality,
the degree of a vertex in a molecule graph cannot exceed the maximum valence d ≤ 7 of
an atom in the molecule graph. Therefore, the number of edges in a bag is upper-bounded
by ωd.

Lemma 2. Given a nice tree decomposition of a molecule graph G, the algorithm de-
scribed above computes an optimal assignment for the Bond Order Assignment prob-
lem on G in time O(α2ω · 3β · ω · m), where α = 1 + maxv A

∗
v, m and ω − 1 are size

and width of the tree decomposition, d is the maximum degree in the molecule graph, and
β := min{

(
ω
2

)
, ω d}.

Proof. We first analyze the running time of the algorithm. Obviously, the number of
bonds that can be assigned to a vertex is α. Therefore, there are at most αω possibilities
to assign bonds to ω vertices in a bag of T . According to the definition of β, the number
of edges induced by vertices in one bag of T is bounded by β, and there are at most 3β

possibilities to assign bond orders b ∈ {0, 1, 2} to β edges. This implies that the table
Di of a node Xi contains at most αω · 3β entries. We now consider the running time
of computing each entry in the matrix Di, assuming that the corresponding matrices of
every child of Xi have already been calculated. We distinguish the following cases: If Xi

is a leaf of T , computing matrices Di takes constant time, since entries with score infinity
do not have to be considered, and there is only one entry with score zero. If Xi is an
introduce node, calculating each entry of Di takes constant time. Again, we do not have
to consider entries with score infinity.
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If Xi is a forget node and Xj its child node, for naively calculating each entry of matrix
Di, we have to test all entries of the matrix Dj to find the minimum score as shown in (3).
But the minimum score in (3) can be calculated on-the-fly when computing Dj : For each

fixed index (a1, . . . , ak−1), we compute and store the minimum score svk(ak+
∑k

l=1 el,k)+
Dj [a1 − e1,k, . . . , ak−1 − ek−1,k, ak; e1,2, . . . , ek−1,k] in the corresponding item in Di. This
only increases the running time for computing the matrix Dj by a constant factor. With
this preprocessing, calculating each entry of Di can be done in constant time.

Let Xi be a join node and Xj and Xh its children. To calculate an entry of Di,
the algorithm has to find a “partner entry” in Dh for every entry of Dj , such that the
number of consumed bonds of a vertex in Xi is the sum of the consumed bonds of the
same vertex in Xj and Xh, and calculate the minimum score of all such pairs, as shown
in (4). Therefore, computing an entry of the matrix Di can be done in time O(αω · ω).

Now, the tree decomposition contains O(m) nodes, the matrix of every node contains
at most αω · 3β entries. Computing each matrix entry takes time O(αω · ω). Moreover,
initializing the matrices of all leaves of the tree decomposition takes O(m) time. In total,
the running time of the algorithm is O(α2ω · 3β · ω ·m).

In the following, we prove the correctness of the algorithm. As additional forget nodes
above the root of the tree decomposition are introduced until the new root contains a
single vertex, and every vertex except the vertex in the new root has to be “forgotten”
once. Note that because of the third property of tree decompositions, a vertex cannot
be forgotten more than once. Whenever a vertex is “forgotten”, it gets the valence that
equals the sum of bonds it used up in the subtree below the child of the forget node, plus
the bonds it used up inside this child node. The score assigned to the forget node in (3)
is the minimum over all sums of the score of the sum of the consumed bonds and the
bond orders of all edges between vk and its neighbors, and the score of the corresponding
entry in Dj where bond orders of edges between vk and its neighbors are subducted.

Considering every leaf of T as an introduce node, we can see that a newly introduced
vertex has not used up any of its bonds yet. Therefore, it is correct to set the score of
entries, where a newly introduced vertex already uses bonds, to infinity. The correctness
of the algorithm at introduce nodes is also obvious.

A vertex can be introduced more than once, but because of the third property of tree
decompositions, there must be one join node that joins all occurrences of this vertex.
At each join node, only two occurrences of a vertex are joined. Let v be a vertex of
the molecule graph that is introduced twice. On the two paths from the corresponding
introduce nodes to the join node, where two occurrences of v are joined, each occurrence
of v may consume different amounts of bonds. Note that this can only happen if different
vertices are forgotten on the two paths. Therefore, the total amount of consumed bonds
of v in the subtree below the join node is the sum of consumed bonds in the subtrees
below the children of the join node. Since we are interested only in the optimal solution,
we only take the minimum score as shown in (4).

When the algorithm arrives at the root r of the tree decomposition, it holds that
every vertex of the molecule graph has been considered, and the scores that correspond
to the valences assigned to each vertex have been summed up in the corresponding entry
in Dr. Except for the only vertex vr in the root r, every vertex has been forgotten on
some path in the tree, and the feasible valence with minimum score is assigned to the
vertex. This means that the validity and optimality of the assignment for the subgraph
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G \ vr of G is assured. Therefore, mina svr(a) +Dr[a] is the minimum score and thus the
optimal solution for the Bond Order Assignment problem on G.

All in all, our algorithm computes an optimal bond order assignment of G using a
nice tree decomposition of G in time O(α2ω · 3β · ω ·m). ut

If, for forget nodes and join nodes, we also store where the minimum is obtained in
(3) and (4) during the bottom-up processing, we can traverse the tree decomposition
top-down afterwards to obtain all bond orders of the molecule. This can be done in time
O(m). We can also enumerate all optimal solutions, or slightly suboptimal solutions, by
backtracking through the dynamic programming tables, what requires O(αωωm) time
per solution.

4.3 The O(α3ω · ω ·m) algorithm

The idea for this version of the algorithm is based on the observation that the information
about the bond order assigned to each edge in a bag of the tree decomposition is not
really necessary, but the number of bonds of an atom used up by edges within a bag of
the tree decomposition is more important. To make use of this observation, we modify
our algorithm described in Section 4.2 as follows:

Let v1, . . . , vk denote the vertices in a bag Xi, and let Di[a1, . . . , ak; b1, . . . , bk] be
the minimum score over all valence assignments to the vertices in Yi \ Xi if, for every
l = 1, . . . , k, exactly al valences of vertex vl have been consumed by edges between vl
and vertices in Yi \ Xi , and bl valences of vertex vl are consumed by edges within the
bag Xi. Recall that Yi is the set of atoms occurring in the subtree rooted at Xi. Again, our
algorithm starts at the leaves of the tree decomposition and computes the score matrix
Di for every node Xi when score matrices of all its child nodes have been computed. The
score of the optimal bond order assignment is mina1{svr(a1) + Dr[a1]}, where vr is the
only vertex in the root bag Xr of the tree decomposition.

We initialize the matrix Dj of each leaf Xj = {v1} with

Dj [a1; b1] =

{
0 if a1 = b1 = 0,

∞ otherwise.

We distinguish if a bag Xi is an introduce node, a forget node, or a join node and use
the corresponding recurrence to calculate Di:

Introduce nodes. Let Xi be the parent node of Xj such that Xj = {v1, . . . , vk−1} and
Xi = {v1, . . . , vk}. Then

Di[a1, . . . , ak; b1, . . . , bk]

= min
e1,...,ek−1∈{0,1,2}∑

l el=bk

{
Dj [a1, . . . , ak−1; b1 − e1, . . . , bk−1 − ek−1] if ak = 0,

∞ otherwise.
(5)

Forget nodes. Let Xi be the parent node of Xj such that Xj = {v1, . . . , vk} and Xi =
{v1, . . . , vk−1}. Then

Di[a1, . . . , ak−1; b1, . . . , bk−1] = min
{
svk(ak + bk)

+Dj [a1 − e1, . . . , ak−1 − ek−1, ak; b1 + e1, . . . , bk−1 + ek−1, bk]
}

(6)
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where the minimum runs over all e1, . . . , ek−1 ∈ {0, 1, 2} such that
∑k−1

l=1 el = bk, and all
ak = 0, . . . , A∗vk .

Join nodes. Let Xi be the parent node of Xj and Xh such that Xi = Xj = Xh. Then

Di[a1, . . . , ak; b1, . . . , bk] =

min
a′l=0,...,al
for l=1,...,k

{
Dj [a

′
1, . . . , a

′
k; b1, . . . , bk] +Dh[a1 − a′1, . . . , ak − a′k; b1, . . . , bk]

}
. (7)

Lemma 3. Given a nice tree decomposition of a molecule graph G, the algorithm de-
scribed above computes an optimal assignment for the Bond Order Assignment prob-
lem on G in time O(α3ω · ω ·m), where α = 1 + maxv A

∗
v, and m and ω − 1 are size and

width of the tree decomposition.

Proof. We first analyze the running time of our algorithm. Since each bag that is a leaf
of the tree decomposition contains only one vertex, initializing the table of a leaf takes
constant time, and initializing all leaves of the tree decomposition takes time O(m).
We now consider the running time of the algorithm at each inner node Xi of the tree
decomposition. Obviously, the table Di of each bag Xi contains at most α2ω items. Let
Xj denote the child node of Xi, if Xi is an introduce node or a forget node, and Xj and
Xh denote the children node of Xi if Xi is a join node.

At an introduce node Xi, let vk be the newly introduced vertex and el ∈ {0, 1, 2} de-
note the bond order of an edge vlvk. When calculating an item Di[a1, . . . , ak; b1, . . . , bk],
the algorithm considers every itemDj [a1, . . . , ak−1; b

′
1, . . . , b

′
k−1] with fixed indices a1, . . . , ak−1

and b′l = bl − el for 1 ≤ l ≤ k − 1 and
∑

1≤l≤k−1 el = bk. Since there are at most αω−1

such items in Dj and testing if b′l = bl − el for 1 ≤ l ≤ k− 1 takes time O(ω), calculating
an item of Di takes time O(αω · ω). Therefore, the table of an introduce node can be
calculated in time O(α3ω · ω).

Let Xi be a forget node where vertex vk is forgotten. Again, let el ∈ {0, 1, 2} denote the
bond order of an edge vlvk. To analyze the running time of the algorithm at a forget node,
we describe the execution of our algorithm at a forget node in detail. To calculate an item
Di[a1, . . . , ak−1; b1, . . . , bk−1], the algorithm tests for all possible valences a′1, . . . , a

′
k−1, a

′
k

if el = al − a′l ∈ {0, 1, 2} holds for all 1 ≤ l ≤ k−1. If this is true, the algorithm sets bk :=∑
1≤l≤k−1 el and computes the score svk(a′k+bk)+Dj [a

′
1, . . . , a

′
k−1, a

′
k; b1 +e1, . . . , bk−1 +

ek−1, bk] . This can be done in time O(ω). The minimum score over all such scores is
assigned toDi[a1, . . . , ak−1; b1, . . . , bk−1]. Since there are at most αω possibilities of indices
a′1, . . . , a

′
k−1, a

′
k, calculating an item of a forget node can be done in time O(αω · ω).

Therefore, the running time of our algorithm at a forget node is bounded by O(α3ω · ω).
When calculating an item Di[a1, . . . , ak; b1, . . . , bk] of a join node, the algorithm has

to test for each item Dj [a
′
1, . . . , a

′
k; b1, . . . , bk] in Dj , if this item and its partner Dh[a1 −

a′1, . . . , ak − a′k; b1, . . . , bk] in Dh minimize score at Di[a1, . . . , ak; b1, . . . , bk]. Since there
are at most αω items in Dj with fixed indices b1, . . . , bk, calculating an item of the table
of a join node takes O(αω · ω), and thus the running time for calculating the table of a
join node is bounded by O(α3ω · ω). In total, since the tree decomposition contains m
nodes, the running time of our modified algorithm is bounded by O(α3ω · ω ·m).

Next, we prove the correctness of our algorithm. The initialization at the leaves of
the tree decomposition is obviously correct, since no valence of any vertex is used up at
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this stage. At an introduce node, no valence of the newly introduced vertex vk is used up
in the subtree rooted at this introduce node. Furthermore, each bond order el between
vk and a vertex vl in the introduce node increases the number of consumed valences of
vl from bl − el to bl, and the bond orders of all edges between vk and other vertices in
this node sum up to bk valences of vk, that are consumed within this node. This intuition
confirms the correctness of our algorithm at introduce nodes.

Let Xi be a forget node and vk be the vertex that is forgotten at Xi. Since vk is
forgotten, we increase the number of used up valences of each vertex vl ∈ Xi from al− el
to al. Since vk does not occur in Xi, we reduce the valences of vertices in Xi, which are
consumed by bonds within Xi, by the bond order of bonds between these vertices and
vk. Furthermore, the algorithm also assigns vk the valence minimizing the corresponding
item in Di. Therefore, our algorithm is correct at forget node.

At a join node Xi, the total number of valences consumed outside Xi of a vertex results
from the number of valences of this vertex that are consumed in the subtree rooted at Xj

and the subtree rooted at Xh. Recall that Yj \Xj and Yh \Xh are disjoint. This confirms
the correctness of our algorithm at join nodes.

The correctness of this algorithm at the root of the tree decomposition is analogous
to the correctness of our previous algorithm introduced in Section 4.2.

All in all, our algorithm compute the optimal solution of the Bond Type Assign-
ment in time O(α3ω · ω ·m). ut

To compute not only the optimal score but also the optimal assignment, we again store
where the minimum is obtained for forget nodes and join nodes during the bottom-up
processing. We then traverse the tree decomposition top-down to obtain all bond orders
of the molecule in time O(m). Again, we can enumerate optimal or suboptimal solutions.

From the theoretical point of view, this algorithm is an important improvement of
the algorithm introduced in Section 4.2. Whereas the running time of the algorithm in
Section 4.2 exponentially depends on the square of treewidths of molecule graphs, the
running time of this algorithm only exponentially depends on treewidths of molecule
graphs.

In practice, this algorithm could be more efficient if subgraphs induced by vertices in a
bag of the tree decomposition are dense and the maximum valence of atom in the molecule
graph is small. However, this does not usually occur, therefore we only implemented the
algorithm with running time O(α2ω · 3β · ω ·m) introduced in Section 4.2.

5 Algorithm engineering

In this section, we describe a few heuristic improvements we included in the implemen-
tation of the algorithm introduced in Section 4.2.

Instead of directly computing the optimal solution, we use our algorithm to test if the
score of the optimal solution exceeds an integer k ≥ 0. In case the score of the optimal
solution is at most k, the algorithm will find the optimal solution. Otherwise, we repeat
calling our algorithm with increasing k, until the optimal solution is found. By doing
this, we forbid all valences of atoms that have score larger than k. Furthermore, we do
not store entries of D matrices with score exceeding k. Since the scores of the optimal
solutions are usually very small in practice, this strategy accelerates the performance of
our algorithm drastically.
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During the course of the dynamic programming algorithm, we do not have to compute
or store entries Dj [a1, . . . , ak; b1,2, . . . , bk−1,k] with al +

∑
j bl,j > A∗l for some l, because

such entries will never be used for the computation of minima in forget nodes or the root.
We may implicitly assume that all such entries are set to infinity. Instead of an array,
we use a hash map and store only those entries of D that are smaller than infinity. This
reduces both running times and memory of our approach in applications.

6 Computational results

To compute optimal tree decompositions of molecule graphs, we use the method QuickBB
in the library LibTW implemented by van Dijk et al. (http://www.treewidth.com). We
transform the computed optimal tree decompositions into nice tree decompositions.

Although the running times of our algorithms depend (super-)exponentially on the
treewidth, we claim that we can efficiently solve practical instances of the Bond Order
Assignment problem. We justify our claim by the following observation: A graph is
outerplanar if it admits a crossing-free embedding in the plane such that all vertices are
on the same face. A graph is 1-outerplanar if it is outerplanar; and it is r-outerplanar for
r > 1 if, after removing all vertices of the boundary face, the remaining graph is (r− 1)-
outerplanar. Now, every r-outerplanar graph has treewidth at most 3r − 1 [5]. Together
with our algorithms, it holds that the Bond Order Assignment problem is solvable
in polynomial time on r-outerplanar molecule graph with fixed r and fixed maximum
valence.

Moreover, we find that molecule graphs of biomolecules are usually r-outerplanar for
some small integer r, such as r = 2 for proteins and DNA.

To empirically confirm our claim, we tested it on molecules from the PubChem
database at http://pubchem.ncbi.nlm.nih.gov/ [16], which contains more than 60
million entries in Jan 2010. We computed the treewidths of all molecule graphs in eight
files randomly chosen from 1 782 files found at ftp://ftp.ncbi.nlm.nih.gov/pubchem/
Compound/CURRENT-Full/XML. For all 135 607 connected molecule graphs in these files,
we computed the exact treewidth using the QuickBB method of the LibTW library. We
found that 12 004 (8.85%) molecule graphs have treewidth one, 121 267 (89.43%) have
treewidth two, 2 192 (1.62%) have treewidth three, and for seven (0.01%) molecules, the
QuickBB method cannot determine the treewidth after ten minutes of computation. Ac-
cording to the upper bound computed by the QuickBB method, the treewidth of these
seven molecule graphs is at most four. The database also contains 137 (0.1%) molecules
consisting of a single ion, for which the Bond Order Assignment problem is trivial.
There are no molecule graphs in the eight files with treewidth exceeding four.

To evaluate the performance of our algorithm, we implemented the algorithm in Java.
All computations were done on an AMD Opteron-275 2.2 GHz with 6 GB of memory run-
ning Solaris 10. For our evaluation, we used the MMFF94 dataset3 by Halgren et al. [9],
which consists of 761 molecule graphs predominantly derived from the Cambridge Struc-
tural Database. This dataset has been suggested to us by experts, as it is considered to
contain “hard” instances of the problem, where atoms have non-standard valences. Bond
orders are given in the dataset but we ignored this information and reassigned the bond
orders to all molecule graphs. We removed four molecule graphs that contain elements
such as iron not covered in our scoring table (see below), or that have atom bindings

3 http://www.ccl.net/cca/data/MMFF94/, source file MMFF94 dative.mol2, of Feb. 5, 2009
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instance size number of average running time average
|V | |E| instances treewidth treewidth TD DP # solutions

3–10 2–11 73 1–2 1.15 0.3 0.3 1.32
11–20 10–22 214 1–3 1.77 0.47 1.71 1.57
21–30 20–33 333 1–3 1.97 0.74 2.97 1.81
31–40 30–43 129 1–3 1.95 0.91 14.58 2.22
41–50 40–53 5 1–2 1.8 1.4 3.8 4.8
51–59 53–61 3 2 2.0 1.33 5 6

Table 1. Overview on the data used in our experiment. “Treewidth” gives the range of treewidths in this
group, and “TD” and “DP” are average running times for tree decomposition and dynamic programming
in milliseconds, respectively. “average # solutions” is the number of solutions our algorithm found on
average.

such as chlorine atoms connected to four other atoms, which is also not covered in our
scoring. The largest molecule graphs contains 59 atoms, the smallest 3 atoms, the average
23 atoms. We find that 20.21 % of the remaining 757 molecule graphs have treewidth one,
96.69 % have treewidth ≤ 2, and all molecule graphs have treewidth at most three. The
average treewidth is 1.83.

For scoring assignments, we use the scoring table from Wang et al. [17]. This scoring
allows atoms to have rather “exotic” valences, but gives an atomic penalty score (aps)
to these rare valence states. As an example, carbon is allowed to take valence two (with
aps 64), three (aps 32), four (aps 0), five (aps 32), or six (aps 64). In addition, different
scores can be applied for the same element, depending on the local neighborhood: For
example, carbon in a carboxylate group COO– can take valence four (aps 32), five (aps 0),
or six (aps 32). See Table 2 in [17] for details.

See Table 1 for computational results. Total running times are always below one
second, and 5 ms on average.

We compared the solutions computed by our algorithm to the solutions computed
by Antechamber4, a software package for computing molecular mechanics force fields,
which also implements the heuristic by Wang et al. [17] for computing bond order assign-
ments minimizing penalty scores. While our algorithm always computed the bond order
assignment with minimum penalty score, Antechamber was not able to find the optimal
solutions for nine molecules in the data set. In some cases, our algorithm found up to
13 optimal solutions because of symmetries and aromatic rings in the molecule graph.
Furthermore, although being an exact algorithm, our algorithm is almost as fast as the
heuristic algorithm of Wang et al. [17] and an order of magnitude faster than the exact
algorithms in [6] when applying to biomolecules. Detailed comparison of running time
with [17] and [6] is in preparation.

7 Conclusion

We considered the problem of assigning bond orders to a molecule graph and showed that
the problem is NP-hard on molecule graphs with bounded vertex degrees and bounded
valences, but can be solved in polynomial time if the molecule graph is a tree. Furthermore,
we also proved MAX SNP-hardness of the maximization version of the problem. Based
on the tree decomposition concept, we introduced two dynamic programming algorithms

4 http://ambermd.org/antechamber/antechamber.html
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with running time practically linear in the size of the molecule. In contrast to previous
approaches, our algorithms compute exact solutions in a guaranteed running time. We
expect that the algorithms can be applied to large molecules if the molecule graph has
small treewidth.

In the future, we want to evaluate the quality of solutions and the running time of our
algorithm against other approaches. In particular, we want to verify that our algorithm
finds more chemically or biologically relevant solutions than heuristic approaches. Note
that the quality of the solution depends, for the most part, on the quality of the underlying
scoring table. From the theoretical point of view, it might be interesting to investigate the
approximability of the maximization version of the Bond Order Assignment problem.
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