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Abstract. The Cluster Editing problem asks to transform a graph by at most k edge
modifications into a disjoint union of cliques. The problem is NP-complete, but several
parameterized algorithms are known. We present a novel search tree algorithm for the problem,
which improves running time from O∗(1.76k) to O∗(1.62k). In detail, we can show that we can
always branch with branching vector (2, 1) or better, resulting in the golden ratio as the base of
the search tree size. Our algorithm uses a well-known transformation to the integer-weighted
counterpart of the problem. To achieve our result, we combine three techniques: First, we
show that zero-edges in the graph enforce structural features that allow us to branch more
efficiently. Second, by repeatedly branching we can isolate vertices, releasing costs. Finally, we
use a known characterization of graphs with few conflicts.

This is a preprint of: Sebastian Böcker. A golden ratio parameterized algorithm for Cluster
Editing. In Proc. of International Workshop on Combinatorial Algorithms (IWOCA
2011), volume 7056 of Lect. Notes Comput. Sci., pages 85-95. Springer, Berlin, 2011.

1 Introduction

Given an undirected graph G, the Cluster Editing problem asks for a minimal set of
edge modifications such that the resulting graph is a vertex-disjoint union of cliques. In the
corresponding Integer-Weighted Cluster Editing problem, we are given modification
costs for each edge or non-edge, and we search for a set of edge modifications with minimum
total weight. Here, one assumes that all edges have non-zero modification cost.

In application, the above task corresponds to clustering objects, that is, partitioning a
set of objects into homogeneous and well-separated subsets. Similar objects are connected
by an edge, and a cluster is a clique of the input graph. The input graph is corrupted
and we have to clean (edit) the graph to reconstruct the clustering under the parsimony
criterion. Clustering data still represents a key step of numerous life science problems.
The weighted variant of the Cluster Editing problem has been frequently proposed for
clustering biological entities such as proteins [18].

The Cluster Editing problem is NP-hard [13]. The parameterized complexity of
Cluster Editing, using the number of edge modifications as parameter k, is well-studied,
see also the FPT races column in [17]. A first algorithm with running time O∗(2.27k) [10]
was improved to O∗(1.92k) by an extensive case analysis [9]. By transforming the problem
to the integer-weighted variant, running time was advanced to O∗(1.82k) [1]. Using a
characterization of graphs that do not contain many conflicts, results in the currently
fastest algorithm with running time O∗(1.76k) [3]. There exist linear problem kernels for
the unweighted [5] and the integer-weighted variant [4]. Recently, Cluster Editing with
“don’t care edges” (that is, edges whose modification cost is zero) has been shown to be
fixed-parameter tractable [14]. To find exact solutions in practice, a combination of data
reduction and Integer Linear Programming proved to be very efficient [2].
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Our contributions. We present a new search tree algorithm for Cluster Editing
with running time O(1.62k + k2 + m + n) for m edges and n vertices, being the fastest
known for the problem. The algorithm itself is rather simple, and is based on the merge
branching introduced in [1]. We stress that our result only holds for the unweighted
Cluster Editing problem, as general integer-weighted instances will not satisfy the
“parity property” introduced below.

2 Preliminaries

A problem with input size n and parameter k is fixed-parameter tractable (FPT) if it can
be solved in O(f(k) · p(n)) time where f is any computable function and p is a polynomial.
We naturally focus on the f(k) factor, and sometimes adopt the O∗(f(k)) notation that
suppresses polynomial factors. For a general introduction we refer to [7,15]; in particular, we
assume familiarity with bounded search trees, branching vectors, and branching numbers.
In the following, let n be the number of vertices, and k the number of edge modifications.

For brevity, we write uv as shorthand for an unordered pair {u, v} ∈
(
V
2

)
. Let s :

(
V
2

)
→ Z

be a weight function that encodes the input graph: For s(uv) > 0 a pair uv is an edge of
the graph and has deletion cost s(uv), while for s(uv) < 0, the pair uv is not an edge (a
non-edge) of the graph and has insertion cost −s(uv). Let N(u) be the set of all vertices
v ∈ V such that s(uv) > 0. If s(uv) = 0, we call uv a zero-edge. We require that there
are no zero-edges in the input graph. Nonetheless, zero-edges can appear in the course of
computation and require additional attention when analyzing the algorithm.

When analyzing connected components we only consider edges of the graph. We say
that C ⊆ V is a clique in an integer-weighted graph if all pairs uv ∈

(
C
2

)
are edges. If

all vertex pairs of a connected component are either edges or zero-edges, we call it a weak
clique. Vertices uvw form a conflict triple in an integer-weighted graph if uv and vw are
edges but uw is either a non-edge or a zero-edge. We distinguish two types of conflict
triples uvw: if uw has weight zero then the conflict triple is called weak, whereas if uw is a
non-edge then the conflict triple is called strong. If the integer-weighted graph contains no
conflict triples then it is transitive, i.e. a disjoint union of weak cliques. But the converse
is obviously not true, as the example of a single weak conflict triple shows: This graph is a
weak clique but contains a (weak) conflict triple. To solve Weighted Cluster Editing we
first identify all connected components of the input graph and calculate the best solutions
for each component separately, because an optimal solution never connects disconnected
components. Furthermore, if the graph is decomposed during the course of the algorithm,
then we recurse and treat each connected component individually.

An unweighted Cluster Editing instance can be encoded by assigning weights s(uv) ∈
{+1,−1}. In the resulting graph, all conflict triples are strong. During data reduction and
branching, we may set pairs uv to “forbidden” or “permanent”. Permanent edges can be
merged immediately: Merging uv means replacing the vertices u and v with a single vertex
u′, and, for all vertices w ∈ V \ {u, v}, replacing pairs uw, vw with a single pair u′w. In
this context, we say that we join vertex pairs uw and vw. The weight of the joined pair is
s(u′w) = s(uw) + s(vw). In case one of the pairs is an edge while the other is a non-edge,
then we can decrease parameter k by min{|s(uw)| , |s(vw)|}. Note that we may join any
combination of two edges, non-edges, or zero-edges when merging two vertices. We stress
that joined pairs can be zero-edges.

We encode a forbidden pair uv by setting s(uv) = −∞. By definition, every forbidden
pair uv is a non-edge, since s(uv) < 0. A forbidden pair uw can be part of a conflict
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triple uvw, which then is a strong conflict triple. Assume that we join pairs uv and uw
where uw is forbidden and, hence, a non-edge. From the above definition, the resulting
pair u′w is forbidden, too, as s(u′w) = s(uw) + s(vw) = −∞ + s(vw) = −∞ holds for all
s(vw) ∈ R ∪ {−∞}. Finally, if uw is forbidden and vw is an edge then k is decreased by
min{∞, |s(vw)|} = s(vw).

The following branching was proposed in [1]: We branch on an edge uv by recursively
calling the algorithm two times, either removing uv and setting it to forbidden, or merging
uv. If uv is part of at least one strong conflict triple, then merging uv will generate cost:
As there is both an edge uw and a non-edge vw, we can reduce k by min{s(uw),−s(vw)}.
In case s(uw) = −s(vw), joining uw and vw into u′w results in u′w being a zero-edge. At
a later stage of the algorithm, this would prevent us from decreasing our parameter when
joining the zero-edge u′w. To circumvent this problem, the following bookkeeping trick was
introduced in [1]: We assume that joining uw and vw with s(uw) = −s(vw) only reduces
the parameter by min{s(uw),−s(vw)} − 1

2 = |s(uw)| − 1
2 ≥

1
2 . If at a later stage we join

this zero-edge with another pair, we decrease our parameter by the remaining 1
2 . So, both

generating and destroying a zero-edge generates cost of at least 1
2 . Note that joining with a

forbidden pair cannot create a zero-edge.

Assume that s(vw) = −s(uw) with |s(vw)| = |s(uw)| ≥ 2. Then, merging an edge uv in
a conflict triple uvw will also generate a zero-edge, and generates cost of at least 3

2 . In our
analysis, we sometimes concentrate on the case that s(vw) = −s(uw) = ±1, where merging
uv has cost 1

2 . We do so only if it is absolutely obvious that |s(vw)| = |s(uw)| ≥ 2 will result
in the desired branching vector.

Our fixed-parameter algorithms require a cost limit k: In case a solution with cost ≤ k
exists, the algorithm finds this solution; otherwise, “no solution” is returned. To find an
optimal solution we call the algorithm repeatedly, increasing k.

3 Vertex parities

We need a simple observation about the input graphs to reach an improved running time:
An integer-weighted graph G with weight function s :

(
V
2

)
→ Z has the parity property

if there is a parity mapping p : V → {even,odd} such that, for each pair uv, s(uv) is
odd if and only if both p(u) = odd and p(v) = odd holds. We ignore forbidden pairs in
this definition, since s(uv) = −∞ has no parity. Note that p is not necessarily unique, as
demonstrated by a graph with two vertices and even edge weight. We infer a few simple
observations from this definition: If s(uv) is even, then either u or v or both must have
even parity. If u is even then s(uv) is even or uv is forbidden, for all v 6= u.

Clearly, an unweighted instance of Cluster Editing has the parity property, as we
can set p(u) = odd for all vertices u ∈ V . The interesting observation is that a graph does
not loose the parity property if we merge two vertices. Quite possibly, this results has been
stated before in a different graph-theoretical context. We defer the simple, constructive
proof to the full paper.

Lemma 1. Assume that an integer-weighted graph G has the parity property. If we merge
two vertices in G, then the resulting graph also has the parity property.

If the input graph has the parity property then, after any sequence of merging operations,
the resulting graph still has the parity property. This is particularly so for the edge branching
from [1], as both operations (setting an edge to forbidden, or merging two vertices) preserve
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the parity property. For our branching, it is important to notice that a zero-edge has even
parity, so the parity of at least one of its incident vertices must be even.

4 Isolation and vertices of even parity

Let ϕ = 1+
√
5

2 = 1.61803 . . . be the golden ratio, satisfying ϕ = 1 + 1
ϕ . One can easily see

that a search tree algorithm with branching vector (2, 1) results in a search tree of size
O(ϕk): This branching number is the positive root of x−2 + x−1− 1, so 1 + x− x2 = 0, and
dividing by x results in the definition of the golden ratio.

Our branching strategy is based on a series of lemmata, ensuring that either there is an
edge to branch on, or that the remaining graph is “easy”. Clearly, branching on an edge
that is part of four or more conflict triples results in the desired branching vector. To this
end, we concentrate on the critical case of three conflict triples. First, we consider the case
of three strong conflict triples:

Lemma 2. Let G be an integer-weighted graph that has the parity property. Assume that
an edge uv is part of exactly three conflict triples, all of which are strong. Then, we can
branch with branching number ϕ = 1.61803 . . . .

We use this lemma to show that we can find an edge to branch on, if we can find an
edge that is part of at least three conflict triples.

Lemma 3. Let G be an integer-weighted graph that has the parity property. Assume that
an edge uv is part of three or more conflict triples. Then, we can either find an edge with
branching number ϕ, or we can reduce k without branching.

The remainder of this section is devoted to proving these two central lemmata.

Proof (Lemma 2). We will show that we can find an edge to branch on, with branching
vector (1, 2) or better. In our reasoning, we will show that either, we have already reached the
desired branching vector; or, we can infer certain structural properties about the instance.

Let a, b, c be the three vertices that are part of the three conflict triples with u, v. If
s(uv) ≥ 2 then branching on uv results in deletion cost s(uv) ≥ 2 and merging cost 3 · 12 ,
so we reach branching vector (2, 32) and we are done. If uvx with x ∈ {a, b, c} is a conflict
triple such that s(vx) ≥ 2 or s(ux) ≤ −2, then merging uv into u′ will not create a new
zero-edge incident to u′. So, branching on uv has branching vector (1, 2 · 12 +1) = (1, 2), and
we are done. The same argumentation holds for a conflict triple vux. In the following, we
may assume that a, b, c are odd, and that s(uv) = 1 and |s(wx)| = 1 holds for all w ∈ {u, v}
and x ∈ {a, b, c}; for all other cases, we have just shown that the desired branching vector
can be reached.

Assume that u, v do not have a common neighbor, N(u) ∪N(v) = {u, v, a, b, c}. Then,
merging u, v into u′ generates three zero-edges u′a, u′b, u′c, and u′ is isolated, N(u′) = ∅.
But then, we do not have to use bookkeeping for these edges, as {u′} will also be a separated
cluster of size one in the solution. So, branching on uv results in branching vector (1, 3).

We will now use the same trick that the merged vertex u′ can be isolated, but this is
slightly more involved in case u, v have at least one common neighbor. Let D := N(u)∩N(v),
then N(u) ∪ N(v) = D ∪ {u, v, a, b, c} and |D| ≥ 1. Our first step is to branch on uv: We
delete uv with cost 1, and set it to forbidden.
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Next, we merge u, v into a new vertex u′. This generates three zero edges u′a, u′b, u′c
with costs 3

2 . Here, s(u′d) ≥ 2 holds for all d ∈ D = {d1, . . . , dl}. We will now branch on
all edges u′dj where the case that u′dj is deleted, is further analyzed. In detail, we either
merge u′di with costs 3

2 ; or, we delete u′di with cost 2 and branch on u′di+1, if i < l.
Note that we either delete all d1, . . . , dl, or we finally merge some u′di with cost 3

2 . In
the latter case, the total costs of this branch are 2(i − 1) + 3

2 . But in the very last case
where all d1, . . . , dl are deleted, we separate u′. Hence, by the reasoning introduced above,
we can “cash” cost 3

2 we have put aside when generating the three zero-edges u′a, u′b, u′c.
So, the costs of this final branch are 2l + 3

2 . Recall that in all cases, we have additional
cost 3

2 for generating the three zero-edges. In total, we reach the partial branching vector
(0 + 3, 2 + 3, . . . , 2l + 3) = (3, 5, 7, . . . , 2l + 3).

We combine these two partial branching vectors into one branching vector
(1, 3, 5, 7, 9, . . . , 2l+3). We claim that any such branching vector corresponds to a branching
number x < ϕ, and that the numbers converge towards ϕ. To this end, first note that 1/ϕ is
the unique positive root of the polynomial x2 + x− 1, that is the characteristic polynomial
of branching vector (2, 1). We analyze the infinite series f(x) := x0 + x2 + x4 + . . . that
converges for all |x| < 1. Now, x2 · f(x) = f(x)− 1 and

(x2 + x− 1) · f(x) = f(x)− 1 + xf(x)− f(x) = xf(x)− 1.

So, for the series g(x) := xf(x)− 1 we have

g(x) = xf(x)− 1 = (x2 + x− 1) · f(x)

and, hence, g(1/ϕ) = 0. For the partial sums Sl(x) := x2l+3 + x2l+1 + · · · + x3 + x1 − 1
we infer Sl(x) < Sl+1(x) and Sl(x) < g(x) for x ∈ (0,∞). Also, Sl is strictly increasing in
[0,∞).

Note that any polynomial of the form p(x) := anx
n + · · ·+ a1x

1 − 1 with ai ≥ 0 for all
i, has exactly one positive root for p 6≡ −1. This follows as p is continuous, p′(x) > 0 for all
x > 0, so p is strictly increasing in (0,∞), p(0) = −1, and limx→∞ p(x) =∞. Let xl be the
unique positive root of Sl(x). With Sl(xl+1) < Sl+1(xl+1) = 0 we finally infer

x1 > x2 > x3 > · · · > 1/ϕ.

By definition, 1/xl is the branching number for branching vector (1, 3, 5, 7, 9, . . . , 2l + 3),
and we reach

1/x1 < 1/x2 < 1/x3 < · · · < ϕ.

Since the series Sl converges uniformly to g in the interval [0, α] for every α < 1, we infer
that liml 1/xl = ϕ must hold, which concludes the proof of the lemma. ut

Proof (Lemma 3). Again, we will show that either, we have already reached the desired
branching vector (1, 2) or better; or, we can infer certain structural properties about the
instance.

If uv is part of four conflict triples then we reach branching vector (1, 4 · 12) = (1, 2). If
uv is part of three strong conflict triples then Lemma 2 guarantees branching number ϕ.
So, assume that uv is part of exactly three conflict triples, and that uvw is a weak conflict
triple, so uw is a zero-edge. As uv is part of three conflict triples, we can choose a, b such
that N(u)4N(v) = {w, a, b}. Clearly, for s(uv) = 2 we have branching vector (2, 32), so we
may assume s(uv) = 1. This implies that both u and v must have odd parity. Since uw
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is a zero-edge, we infer that w has even parity and, hence, that s(vw) ≥ 2 holds. For our
worst-case considerations, we may assume s(vw) = 2.

If vw is part of any additional conflict triples besides wvu, then we reach branching
vector (2, 1) for branching on vw: Deleting vw has cost 2, and merging vw then has cost
2 · 12 . The same holds true if v or w are incident to additional zero-edges besides uw. So,
assume there are no zero-edges incident to v or w besides uw, and vx is an edge if and only
if wx is an edge for all x 6= u, v, w. Let X ⊆ V \ {u, v, w} be the set of vertices incident to
v and, consequently, also to w. Let X ′ := X \ {a, b}, and note that this set can be empty.
All x ∈ X ′ are also incident with u; otherwise, there is a fourth conflict triple for the edge
uv. We infer N({u, v, w}) ⊆ {u, v, w, a, b} ∪X ′.

Choose an arbitrary x ∈ X ′. If wx is part of an additional conflict triple besides wxu,
or if x is incident to a zero-edge, then we again reach branching vector (2, 1) for branching
on wx: Deleting wx has cost 2 since w is even, and merging wx has cost 2 · 12 . Hence, we
infer three things: Firstly, each y adjacent to some x ∈ X ′ is also adjacent to w and, hence,
y ∈ X. So, N(X ′) ⊆ {u, v, w, a, b} ∪ X ′. Secondly, each pair x, y ∈ X ′ must be connected
by an edge. We distinguish three cases:

1. Assume a, b ∈ X, so va and vb are edges. In this case, u, v, w, a, b,X ′ form a connected
component. If ab is a zero-edge or non-edge, then branching on wa results in branching
vector (2, 2 · 12): although w, a, u do not form a conflict triple, merging wa still destroys
the zero-edge uw. So, we may assume that ab is an edge. By the same reasoning, ax and
bx must be edges, for all x ∈ X ′. Next, s(ux) = 1 must hold for all x ∈ X ′; otherwise, we
can branch on ux with branching vector (2, 3 · 12). The cost of separating u from all other
vertices is |X ′|+1, and the resulting graph consists of two cliques {u} and {v, w, a, b}∪X ′.
The cost of any other cut in this connected component is at least |X ′|+3 (for separating
a or b), since w is adjacent to all vertices but u with edges of weight at least 2. The cost
of transforming the connected component into a clique is |s(ua)| + |s(ub)|. So, we can
test in constant time if one of the two possible transformations has cost at most k.

2. Assume a ∈ X and b /∈ X, so va and ub are edges. Then, N({u, v, w, a} ∪ X ′) ⊆
{u, v, w, a, b}∪X ′. For s(ua) < −1 we reach branching vector (1, 2· 12+1) for branching on
uv, as merging u, v will not generate a zero-edge incident to a and, hence, no bookkeeping
is required. (Obviously, this includes the case that ua is forbidden.) So, s(ua) ∈ {0, 1}
must hold. Since bv is a non-edge, bw and bx for all x ∈ X ′ are also non-edges. If
s(ub) ≥ 2 then branching on ub results in branching vector (2, 1), as vub is a conflict
triple. Now, one can easily see that no optimal solution can bisect v, w, a,X ′: For X ′ = ∅
a bisection of vertices v, w, a costs at least 3, and for X ′ 6= ∅ costs are at least 4. Given
a solution that bisects v, w, a,X ′, we modify the solution by putting u, v, w, a,X ′ in a
separate clique, with cost at most 1 for inserting ua, and cost 1 for removing ub. Clearly,
this new solution has smaller total cost than the initial solution, so the initial solution
cannot be optimal. Hence, we can merge v, w, a,X ′ without branching, generating cost
of at least 1

2 for destroying the zero-edge uw.

3. Assume a, b /∈ X, so ua and ub are edges. Then, va and vb are non-edges, since no
zero-edges can be incident to v. Similar to above, this implies that wa and wb, as well
as ax and bx for all x ∈ X ′, are non-edges, too: Otherwise, we can branch on vw or
wx. If s(ua) ≥ 2 then branching on uv results in branching vector (1, 2). So, we infer
s(ua) = 1 and, by symmetry, s(ub) = 1. Now, merging uv into some vertex u′ results
in a separated clique with vertex set u′, w,X that is not connected to the rest of the
graph, and can be removed immediately. Hence, branching on uv leads to branching
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vector (1, 2) as we do not have put away 2 · 12 for potentially destroying zero-edges u′a
and u′b later.

We have shown that we can find an edge that allows for the desired branching vectors,
simplify the instance and reduce k without branching, or solve the remaining instance in
constant time. ut

5 Solving remainder instances

Assume that there is no edge in the graph that is part of three or more (weak or strong)
conflict triples. We transform our weighted graph into an unweighted counterpart Gu, where
zero-edges are counted as non-existing. This graphGu is called the type graph of the weighted
graph. Then, there is no edge uv in the unweighted graph Gu that is part of three conflict
triples. Damaschke [6] characterizes such graphs: Let Pn, Cn,Kn be the chordless path,
cycle, and clique on n vertices, respectively. Let G + H denote the disjoint union of two
graphs, and let p · G denote p disjoint copies of G. Let G ∗H be the graph G + H where,
in addition, every vertex from G is adjacent to every vertex from H. Finally, the graph Gc

has the same vertex set as G, and {u, v} is an edge of Gc if and only if it is no edge of G.
Now, Theorem 2 from [6] states:

Lemma 4. Let G be a connected, unweighted graph such that no edge is part of three or
more conflict triples. Then, G has at most six vertices, is a clique, a path, a cycle, or a graph
of type Kq∗H for q ≥ 0 and H ∈ {K1+K1, C5, P4,K1+K1+K1,K2+K2,K2+K1, (p·K2)

c},
p ≥ 2.

In fact, the characterization in [6] is slightly more complicated: To this end, note that
Kq ∗ P3 = Kq+1 ∗ (K1 + K1). Any non-edge in the type graph can be a non-edge or zero-
edge in the weighted graph, and edges and non-edges can be arbitrarily weighted. We now
show that we can efficiently solve all remaining, “simple” instances. This is similar to our
argumentation in [3] but as we want to reach branching vector (2, 1), our argumentation is
slightly more involved. We defer the proof of Lemma 5 to the full version of this paper.

Lemma 5. Let G be a connected graph that has the parity property. Assume that there
is no edge that is part of three conflict triples. Then, we can find an edge with branching
number ϕ; reduce k without branching; or, we can solve the instance in polynomial time.

6 A golden ratio base for search tree size

Assume that G has the parity property. We want to show that we can either find an edge to
branch on with branching number ϕ; decrease k without branching; or, solve the remaining
instance in polynomial time. If there is an edge uv that is part of at least three (weak or
strong) conflict triples, we branch on this edge. By Lemma 3, doing so results in branching
number ϕ, or we reduce k without branching, as desired. We can find an edge to branch
on, in time O(n3). Similarly, we can perform all other tasks required for one step of the
branching, in this time. If there is no edge uv that is part of at least three conflict triples,
then Lemma 5 guarantees that we can branch with branching number ϕ; reduce k without
branching; or, solve the instance in polynomial time. To compute minimum s-t-cuts as part
of Lemma 5, we use the Goldberg-Tarjan algorithm [8] to compute a maximum s-t-flow in
time O(n3), independent of edge weights. We reach:
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Lemma 6. Given an integer-weighted instance of the Cluster Editing problem with no
zero-edges that satisfies the parity property, this instance can be solved in O(ϕk · n3) time.

We can combine this with the weighted kernel from [4] of size O(k) with running time
O(n2), resulting in running time O(ϕk ·k3 +n2). To get rid of the multiplicative polynomial
factor, we use interleaving [16]: Here, a small trick is required to make this kernel work with
instances that may contain zero-edges; we defer the details to the full paper.

Theorem 1. Given an integer-weighted instance of the Cluster Editing problem with
no zero-edges that satisfies the parity property, this instance can be solved in O(ϕk + n2)
time.

Given an unweighted Cluster Editing instance, we first identify all critical cliques
in time O(m + n) for a graph with n vertices and m edges [12], and merge the vertices of
each critical clique [1,11]. The resulting integer-weighted instance has O(k) vertices and no
zero-edges, and satisfies the parity property. Using Theorem 1 we reach:

Theorem 2. Cluster Editing can be solved in O(1.62k + k2 +m+ n) time.

7 Conclusion

We have presented a parameterized algorithm for the Cluster Editing problem, that
finally reaches the golden ratio as the base for the exponential growth of the running time.
It is noticeable that search tree approaches plus additional structural observations still have
a lot of potential to yield better FPT algorithms for well-known problems, even without
extensive case handling. Note that the underlying edge branching is also very swift in
practice, and can usually process instances with thousands of edge modifications in a matter
of minutes [2].

The base ϕ = 1+
√
5

2 = 1.61803 . . . , resulting from branching vector (2, 1), appears
repeatedly in the analysis of advanced algorithms for the problem [1, 3]. Hence, it is an
interesting question for the future if we can get beyond the O∗(ϕk) barrier. One possible
extension lies in the split-off technique introduced in [3] for Cluster Deletion, even
though it cannot be directly applied, as branching on a C4 results in branching vector (1, 1)
for Cluster Editing. Improving upon the running time should not be problematic for the
rather technical Lemma 5, though. Here, the open question is, which of these special cases
are tractable (such as H = K1+K1) and which are intractable (such as H = K1+K1+K1),
and what FPT algorithms can be derived for the hard ones.
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