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SNP AND MUTATION DISCOVERY USING BASE-SPECIFIC

CLEAVAGE AND MALDI-TOF MASS SPECTROMETRY

SEBASTIAN BÖCKER

Abstract. Motivation: Single Nucleotide Polymorphisms (SNPs) are believed to
contribute strongly to the genetic variability in living beings, in particular their dis-
ease or drug side effect predispositions. Mutation-induced sequence variations are
playing an important role in the development of cancer, among others. From this, it
is clear that SNP and mutation discovery is of great interest in today’s Life Sciences.
Currently, such discovery is often performed utilizing electrophoresis-based Sanger Se-
quencing. Discovery of SNPs can also be performed by multiple sequence alignment
of publicly available sequence data, but recent studies indicate that only a small per-
centage of SNPs can be discovered using this approach and, in particular, that SNPs
with low frequency are often missed. Other SNP discovery methods only indicate
the presence of a SNP in a sample region, but fail to resolve its characterization and
localization.
Results: We present a method to discover mutations and SNPs using base-specific

cleavage and mass spectrometry. An amplicon of known reference sequence with length
usually between 100 and 1 000 nt is amplified, transcribed, and cleaved using base-
specific endonucleases such as RNAse A or T1. The resulting cleavage products (or
fragments) are analyzed by MALDI-TOF mass spectrometry and, comparing the mea-
sured spectra with those predicted in-silico, the goal is to discover and pinpoint se-
quence variations of the sample sequence compared to the reference sequence. A
time-efficient algorithm for discovering sequence variations is presented that enables
fast analysis of such variations even if the sample sequence differs significantly from
the reference sequence.
Contact: boecker@CeBiTec.uni-bielefeld.de
Keywords: SNPs, molecular sequence analysis, combinatorics, string algorithms
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1. Introduction

While large parts of an organism’s genome are constant across all individuals of a
population, there are certain positions in the genome where two or more alternative
bases can be observed in a population, and even in the alleles of a single (diploid or
polyploid) individual. These polymorphic bases are called SNPs (Single Nucleotide
Polymorphisms), and they are widely believed to play an important role in areas such
as disease predisposition, drug side effect predisposition, or quantitative and qualitative
trait loci in livestock. On the other hand, there are certain deviations in an organism’s
genome that are observed only in certain cells or cell types of an individual, or in one or
a small number of individuals consisting of only a tiny fraction of the overall population.
Such deviations are called mutations, and the presence of certain mutations in a cell line
is believed to play an important role, for example, in the development of cancer.

A large fraction of today’s SNP and mutation discovery is still based on de-novo
sequencing of the sample sequences of interest, using the Sanger concept (Sanger et al.,
1977) in combination with gel or capillary electrophoresis to acquire the experimental
data. This process is comparatively time consuming and does not make use of the
sequence information known up-front in such studies. Also, detection of heterozygous
SNPs can be difficult. Another, purely computational approach of discovering SNPs is
based on sequence alignment of publicly available sequence information like expressed
sequence tags (ESTs), an example being SNPpipeline (Buetow et al., 1999). But such
approaches seem to find only a small fraction of SNPs present in the genomic region
under consideration (Cox et al., 2001). Other approaches like Denaturing Gradient
High Pressure Liquid Chromatography (DG-HPLC) or Temperature Gradient Capillary
Electrophoresis (TGCE) will only reveal information on the presence or absence of any

sequence changes in the analyzed region of the sample target, making it necessary to
perform a subsequent characterization and localization of the sequence change.

A novel approach for SNP and mutation discovery uses base-specific cleavage of DNA
or RNA, and MALDI-TOF mass spectrometry to acquire the experimental data, see
(Rodi et al., 2002) for an introduction to the utilized biochemistry and mass spectrome-
try. This approach is not based on the Sanger concept and has been applied successfully
to the problem of bacteria typing (von Wintzingerode et al., 2002).

2. Experimental setup and data acquisition

Suppose we are given a target DNA molecule (or sample DNA) of length usually
between 100 and 1 000 nt. Using polymerase chain reaction (PCR) or other amplification
methods we multiply the sample DNA. We assume that we have a way of generating a
single stranded target (either by transcription or other methods), and we will refer to
sample DNA even though the cleavage reaction might force us to transcribe the sample
to RNA. We cleave the single stranded DNA with a base-specific (bio-)chemical cleavage
reaction: Such reactions cleave the amplicon sequence at exactly those positions where a
specific base can be found. For example, amplification by PCR and transcription of the
product, and subsequent fragmentation using the endonuclease RNAse T1 will cleave
the sample sequence wherever rGTP was incorporated, see (Hartmer et al., 2003). Such
base-specific cleavage can also be achieved by the use of the endonuclease RNAse A,
uracil-DNA-glycosylase (UDG), pn-bond cleavage, and others. In particular, RNAse A
can be used to achieve base-specific cleavage of either base C or T, and by transcribing
either forward or reverse strand of the sample DNA, this enables us to perform cleavage
reactions specific to all four bases (Stanssens et al., 2003).

MALDI (matrix assisted laser desorption ionization) TOF (time-of-flight) mass spec-
trometry (MS for short) is then applied to the products of the cleavage reaction, result-
ing in a sample spectrum that correlates mass and signal intensity of sample particles
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Figure 1. Base-specific cleavage using RNAse T1 and subsequent mass
spectrometry measurement.

(Karas and Hillenkamp, 1988).1 The sample spectrum is analyzed to extract a list of
signal peaks (with masses and intensities).

We can repeat the above steps using cleavage reactions specific to all four bases—
alternatively, we can apply two suitably chosen cleavage reactions twice, to forward and
reverse strands. So, we end up with one to four mass spectra, each corresponding to a
base-specific cleavage reaction. We repeat the following steps of the analysis for every
cleavage reaction.

The exact chemical results of the utilized cleavage reactions and, in particular, the
masses of all resulting fragments are known in advance and can be simulated by an
in-silico experiment. Clearly, this holds up to a certain extent only, and measured
spectra often differ significantly from the in-silico predicted spectrum. But compared
to collision induced fragmentation in MS/MS mass spectrometry used for peptide de-
novo sequencing, there is only a comparatively small number of differences between the
simulated spectrum and the measured one. For the approach presented in this paper,
measured and predicted peak intensities (peak height, signal-to-noise) in general differ
quite strongly. In particular, some fragments present in the sample generate peaks of
such small intensity in the measured mass spectrum, that it is impossible to differentiate
these peaks from (chemical, physical, and other) “noise” in the mass spectrum. So at
present, neither peak intensities nor missing peaks (present in the predicted spectrum
but missing from the sample spectrum) but only additional peaks (present in the sample
spectrum but not expected in the reference spectrum) may be seen as a reliable indicator
of sequence variations in the sample sequence. Note further that heterozygous sequence
variations never result in missing signals.

A trivial approach to discover2 sequence variations in a sample would be to simulate
the mass spectra for all potential sequence variations of the reference sequence, and to
compare the resulting simulated spectra against the measured mass spectrum, finding
the one that gives a “best fit” of the measured spectrum. This is in fact a valid approach
and can be computed reasonably fast if we limit the potential sequence variations to
a single-base substitution, insertion, or deletion. But if we assume that the sample
sequence differs at two or more close positions from the reference sequence, this approach

1More precisely, MALDI mass spectrometers measure “mass per charge” instead of “mass” of sample
particles. For the sake of brevity, we will speak of “mass” instead of “mass per charge” because most
particles in a MALDI mass spectrum will be single charged. Even more precisely, MALDI-TOF MS does
not provide us with masses but only with time-of-flight of sample particles, so calibration (correlation
of time-of-flight and mass) has to be determined beforehand.

2We will use the term “discovery” to distinguish this approach from SNP or mutation “detection”
where one wants to test whether some previously known SNP or mutation is present in a certain sample.
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is not suited for high-throughput analysis. See Section 3.3 for a justification as well as
an explanation of the term “close” in this context.

What fragments can account for an additional peak in the sample spectrum? Obvi-
ously, we cannot reconstruct the order of bases in a fragment from its mass alone. But
for every additional peak in the sample spectrum, we can calculate one or more base
compositions (that is, DNA molecules with unknown order but known multiplicity of
bases) that could have created the detected peak, taking into account the inaccuracy of
the mass spectrometry read: Using MS, masses can be measured up to some uncertainty
only. Current ATOF (Axial Time Of Flight) mass spectrometers show uncertainties of
2 or more Dalton3 under high throughput conditions using nano preparation. This un-
certainty can be significantly higher, depending on sample preparation and the mass
spectrometer, and special care has to be taken at this point so that mass uncertainties
do not become too large.

For a fixed cleavage reaction, several potential base compositions can have nearly
identical masses. For example, the DNA molecule 5’OH-CCGGG-3’OH (and, hence, the
base composition with 2 C’s and 3 G’s) has a mass of 1504.0 Da under the natural
isotopic distribution; the DNA molecule 5’OH-AAAAA-3’OH has a mass of 1504.1 Da,
the mass difference being less than 0.1 Da. But in case of complete base-specific cleavage
of DNA, any fragment contains at most 3 out of the 4 bases while the fourth base gets
cleaved, and there exist only a limited number of base compositions with mass difference
of up to 2 Da (Pomerantz et al., 1993). In the following, we independently use every
potential explanation of an additional signal as a base composition. Therefore, we end
up with a list of base compositions (with masses sufficiently close to an additional signal
in the sample spectrum) depending on the sample DNA and the incorporated cleavage
method.

Note that current MALDI-TOF mass spectrometers also limit the mass range in which
particles can be detected. A typical mass range of 1 000 to 15 000 Da corresponds to a
maximal fragment length of approximately 50 nt that can be detected, but even signals
above 8 000 Da (approximately 25 nt) tend to get lost in the spectrum. Simulations
indicate that not this limitation, but the incapacity to accurately measure the multi-
plicity of base compositions in the mass spectrum is responsible for most of the SNPs
and mutations we cannot discover (Stanssens et al., 2003). In this paper, we will focus
on those sequence variations that can be discovered by the presented method.

Since MALDI-TOF mass spectrometry reads can be obtained in (milli-)seconds com-
pared to hours for electrophoresis reads, and mass spectrometry generally provides reli-
able and reproducible results even under high throughput conditions, this seems to be a
promising approach for SNP and mutation discovery. But the high throughput of mass
spectrometry also renders it necessary to analyze the generated data in a time-efficient
way.

Finally, we want to remark that the described approach is closely related to peptide
“sequencing” via trypsin digestion, see for example (Mann et al., 1993; Yates III, 1998).
But as we will point out below, the problems encountered analyzing data from the above
approach differ strongly from those of peptide “sequencing.”

3. Methods

3.1. Strings and string spectra. Let s ∈ Σ∗ denote a string over the alphabet Σ
where |s| denotes the length of s. The concatenation of strings a, b will be denoted ab,
the empty string of length 0 is also denoted ε.

If s = axb holds for some strings a, x, b then x is called a substring of s, denoted x � s.
If s = ab holds for some strings a, b then a is called a prefix of s, and b is called an suffix

3Dalton (Da), a unit of mass equal to 1

12
the mass of a carbon-12 nucleus, approximately 0.992 times

the mass of a single H atom.
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of s. For 1 ≤ i ≤ j ≤ |s| we will denote the substring sisi+1 . . . sj−1sj of s = s1 . . . s|s|
by s[i,j].

Given strings s and x from Σ∗, we define the string spectrum of s with respect to x,
denoted S0(s, x), by:

(1)
S0(s, x) :=

{

y ∈ Σ∗ : there exist a, b ∈ Σ∗

with s ∈ {yxb, axyxb, axy}, and x 6� y
}

The string spectrum S0(s, x) consists of those substrings of s that are “bounded” by x
(or the ends of s), and that do not contain x. In this context, s will be called sample

string or reference string, x will be called cut string, while the elements of S0(s, x) will
be called fragments of s (under x).

Example 1. Let s := ACATGTGCCATTA and x := T over the alphabet Σ :=
{A,C,G,T, }, then:

S0(s, x) = {ACA,G,GCCA, ε,A}

The order of a string s with respect to x, denoted ordx(s) or ord(s) for short, counts
the maximal number of times the string s can be cleaved under x:

ordx(s) := max
{

k ∈ N : there exist y0, . . . , yk ∈ Σ∗

such that s = y0xy1x . . . xyk−1xyk

}

Clearly, ordx(y) = 0 holds for all y ∈ S0(s, x), what justifies the notation S0(s, x). For
cut strings x whose only period is x itself (Apostolico and Galil, 1997) and, in particular,
for cut strings of length one, ordx(s) simply counts how often x appears as a substring
of s. But the above is not true for arbitrary strings s, x as the simple example s := AAA
and x := AA shows. For fixed x, ordx(s) can be computed in O(|s|) time by greedily
searching for the next appearance of x in s (Boyer and Moore, 1977; Knuth et al., 1977).

We denote the edit distance with unit cost (Levenshtein distance) between two strings
s, s′ by dL(s, s′). This is the number of insertions, deletions, and substitutions minimally
needed to transform s into s′. We will use the term sequence variation to describe the
transformation of some string s into another string s′ via a sequence alignment. We
will use the terms “sequence variation” and “alignment” interchangeably. The cost of a
sequence variation is the cost of the corresponding alignment.

3.2. Compomers and compomer spectra. As a mathematical representation of base
compositions, we define a compomer to be a map c : Σ → Z (where Z denotes the set
of integers), and let C(Σ) denote the set of all compomers over the alphabet Σ. Clearly,
C(Σ) forms a group that is closed with respect to multiplications with a scalar n ∈ Z.

For finite Σ, in particular, C(Σ) is isomorphic to the set Z
|Σ|. We denote the canonical

partial order on C(Σ) by �, that is, c � c′ iff c(σ) ≤ c′(σ) for all σ ∈ Σ. We will
denote the empty compomer c ≡ 0 by 0. Finally, we define the absolute value of c by
|c| :=

∑

σ∈Σ |c(σ)|.
Given a compomer c over Σ we use the notations c≥0, c≤0 for those compomers in

C(Σ) defined by:

(2)
c≥0(σ) := max{c(σ), 0}

c≤0(σ) := min{c(σ), 0}
for σ ∈ Σ .

Clearly, c = c≥0 + c≤0. We say that a compomer c is a natural compomer if c = c≥0

holds. The set of natural compomers over Σ is closed with respect to addition as
well as multiplication with scalars n ∈ N, where N denotes the set of natural numbers
including 0.
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Suppose that Σ = {σ1, . . . , σk}, then we use the notation (σ1)i1 . . . (σk)ik to represent
the compomer c : σj 7→ ij omitting those letters σj with ij = 0. In case of DNA, c rep-
resents the number of adenine, cytosine, guanine, and thymine bases in the compomer,
and c = AiCjGkTl denotes the compomer with c(A) = i, . . . , c(T) = l.

We define the function comp : Σ∗ → C(Σ) such that a string s = s1 . . . sn ∈ Σ∗ is
mapped to the compomer counting the number of letters in s:

comp(s) : Σ → N , σ 7→
∣

∣{1 ≤ i ≤ n : si = σ}
∣

∣

Obviously, comp(s) is a natural compomer. Note that compomers comp(·) are also
referred to as Parikh-vectors, see (Autebert et al., 1997). The compomer spectrum

C0(s, x) of s consists of the compomers of all fragments in the string spectrum:

(3)
C0(s, x) := comp

(

S0(s, x)
)

=
{

comp(y) : y ∈ S0(s, x)
}

For Example 1 we can calculate C0(s,T) = {A2C1, G1, A1C2G1, 0, A1}.
Given two compomers c, c′ over Σ corresponding to (unknown) fragment strings y, y′,

how many insertions, deletions, and substitutions will it minimally take to transform y
into y′? As an example, suppose c = A1C1 and c′ = C1G1, then y may equal AC or
CA, and y′ may equal CG or GC. We calculate dL(AC,CG) = dL(CA,GC) = 2 and
dL(AC,GC) = dL(CA,CG) = 1, so the answer equals one for this example. It follows
from the construction presented in the next paragraph that this number equals d(c, c′)
where d : C(Σ) × C(Σ) → N is defined by

(4) d(c, c′) := max
{

∣

∣(c − c′)≥0

∣

∣,
∣

∣(c − c′)≤0

∣

∣

}

.

The function d forms a metric on C(Σ), where the triangle inequality follows directly
from

∣

∣c≥0

∣

∣ +
∣

∣c′≥0

∣

∣ ≥
∣

∣(c + c′)≥0

∣

∣ as well as
∣

∣c≤0

∣

∣ +
∣

∣c′≤0

∣

∣ ≥
∣

∣(c + c′)≤0

∣

∣. From the above,

we conclude dL(y, y′) ≥ d(c, c′).
To this end, suppose that we are given a fragment y ∈ Σ∗ and a compomer c′ ∈ C(Σ).

We define c := comp(y), and we want to construct all fragments y′ ∈ Σ∗ satisfying
comp(y′) = c′ such that dL(y, y′) = d(c, c′) holds. The idea of the following algorithm
is to use exactly d(c, c′) substitutions, insertions, and deletions, one in every step of the
recursion, to transform y into some fragment y′. Formally, we can show by induction on
|c − c′| that every such fragment y′ can be constructed by the following recursion:

1. We assume that y = y1 . . . yn. Set ∆ := c′ − c ∈ C(Σ), k := d(c, c′), k+ := |∆≥0|,
and k− := |∆≤0|. By definition, k = max{k+, k−} holds.

2. Let sub := min{k+, k−}, ins := k+ − sub, and del := k− − sub. Clearly, sub +
ins + del = k.

3. Finally, set Σ+ := {σ ∈ Σ : ∆(σ) > 0} and Σ− := {σ ∈ Σ : ∆(σ) < 0}, and
note that Σ+ ∩ Σ− = ∅.

4. For ∆ = 0 return y.
5. Otherwise, do one of the following as the recursion step:

• If sub > 0, then choose an index i with 1 ≤ i ≤ n satisfying yi ∈ Σ−, and a
letter σ′ ∈ Σ+. Do the recursion with y′ := y1 . . . yi−1σ

′yi+1 . . . yn.
• If del > 0, then choose an index i with 1 ≤ i ≤ n satisfying yi ∈ Σ−. Do

the recursion with y′ := y1 . . . yi−1yi+1 . . . yn.
• If ins > 0, then choose an index i with 1 ≤ i ≤ n + 1, and a letter σ′ ∈ Σ+.

Do the recursion with y′ := y1 . . . yi−1σ
′yi . . . yn.

We repeat the above recursion until ∆ = c′ − c equals 0. If we let the index i run from
1 to n + 1 (not taking into account index shifts due to insertions and deletions) we can
ensure that every admissible fragment y′ (resp. the corresponding sequence variation)
gets constructed exactly once.
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We will now give a formal representation of the problem of SNP and mutation discov-
ery. Suppose we are given a reference string s ∈ Σ∗ and a cut string x ∈ Σ∗. From the
measured mass spectrum, we have constructed a set of compomers C ⊆ C(Σ). In case of
a homozygous sample, this set C corresponds to the compomer spectrum C0(s

′, x) of the
unknown sample string s′, while for the case of a heterozygous sample, C corresponds
to the union of compomer spectra C0(s

′, x) ∪ C0(s
′′, x) where s′, s′′ are the alleles of the

sample. We assume s′′ = s, i.e. we know at least one allele of a heterozygous sample in
advance.

As we have explained above, we cannot fully rely on signal intensities or missing signals
in the sample spectrum, in particular the latter, in view of potentially heterozygous
samples. Hence, we define:

SNP Discovery from Mass Spectrometry Problem. Given a reference string
s ∈ Σ∗ and a cut string x ∈ Σ∗. For a compomer c′ ∈ C(Σ) find all s′ ∈ Σ∗ satisfying
c′ ∈ C0(s

′, x) such that dL(s, s′) is minimal.

The minimality criterion is motivated from the goal of parsimony, that is, maximizing
string similarity or minimizing (evolutionary) distance much like in case of sequence
alignments.

3.3. Independent sequence variations. Suppose we are given a random i.i.d. string
s = s1s2s3 . . . on an alphabet of four letters. Let the random variable X denote the
natural number so that the substring s′ = s1 . . . sX contains exactly three letters of the
alphabet, while s′′ = s1 . . . sX+1 contains all four letters. The expected length of such a
substring is E(X) = 71

3 , see Lemma 2 in the Appendix.
This helps us to roughly estimate how often two sequence variations are independent :

Informally, this means that the changes in the compomer spectra resulting from one
sequence variations, and the changes in the compomer spectra resulting from a second
sequence variation simply add up to form the changes in compomer spectra of the com-
posite sequence variation. To illustrate this, let s := AGCCTGTT, and suppose the
sequence variations under examination are substitution C/A at position 3 of s, and sub-
stitution T/C at position 5 of s. Let x := G denote the cut string, then these sequence
variations are dependent with respect to x: We calculate C0(s, x) = {A1,C2T1,T2},
C0(s1, x) = {A1,A1C1T1,T2} for s1 = AGACTGTT, C0(s2, x) = {A1,C3,T2} for
s2 = AGCCCGTT, and C0(s1,2, x) = {A1,A1C2,T2} for s1,2 = AGACCGTT. Now,
C0(s1,2, x) 6⊆ C0(s1, x) ∪ C0(s2, x) implies that these sequence variations cannot be inde-
pendent with respect to x = G. On the other hand, the above sequence variations are
independent with respect to x = C, because the letter ‘C’ at position 4 of s “divides” the
two sequence variations. In total, the sequence variations are dependent because there
exists (at least) one cut string under consideration such that the sequence variations are
dependent with respect to this cut string.

Clearly, two sequence variations are independent if the substring between them con-
tains all letters of the alphabet, in case all cut strings have length one. This means that
even when limiting ourselves to comparatively small sequence variation costs k we can
often reconstruct sample sequences s′ with dL(s, s′) � k. For example, SNPs are rather
sparsely distributed across the human genome: For the SNP discovery study described
in Section 5, we analyzed 11793 base pairs and discovered 51 SNPs (one SNP every 231
base pairs on average), the minimal distance between any two discovered SNPs being
14 base pairs. This indicates that the desirable threshold to be reached in case of SNP
Discovery equals k = 1 or k = 2, the latter covering the rare cases where two SNPs are
in close vicinity. In case of Mutation Discovery, multiple base changes in close vicinity
are more frequently observed, so a sequence variation cost k = 3 or k = 4 might be
useful for this application type.
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3.4. Boundaries and bounded compomers. When we compare the compomer spec-
tra of two similar strings s, s′ ∈ Σ∗, it is clear that C0(s, x) and C0(s

′, x) may differ
significantly if we allow the insertion of or substitution to (parts of) the cut string x,
in which case compomers in C0(s, x) might be “cleaved” into two or more compomers
in C0(s

′, x). Similarly, the deletion or substitution of (parts of) the cut string x might
“merge” compomers of the source spectrum. Unlike so-called “de-novo” sequencing of
peptides via trypsin digestion (Mann et al., 1993; Yates III, 1998), these events are not
exceptions but the rule in our approach.

To address this problem, we will not only keep track of the compomer induced by
some fragment y of a string s, but also whether it is necessary to “insert” cut strings
before and after the fragment in s. Formally, we define a boundary b to be an element
of the set B := P({L,R}) =

{

∅, {L}, {R}, {L,R}
}

. A bounded compomer (c, b) over Σ
consists of a compomer c ∈ C(Σ) and a boundary b ∈ B. We define the distance measure
D : C(Σ) × B × C(Σ) → N by

(5) D(c, b, c′) := d(c, c′) + |b| .

The function D does not only count the number of transformations needed to transform
fragment y into y′ (corresponding to the compomers c and c′, respectively) but also adds
0,1, or 2 to account for the number of transformations needed to obtain y as an element
of the string spectrum of the underlying reference string s.

Given a sample string s ∈ Σ∗ and a cut string x ∈ Σ∗, we say that s is left-bounded

at index i, 1 ≤ i ≤ |s|, if either i = 1 holds, or if x is a suffix of s[1,i−1]. Analogously,
we say that s is right-bounded at index j, 1 ≤ j ≤ |s|, if either j = |s| holds, or if x is a
prefix of s[i+1,|s|]. We define the function bs,x : [1, |s|]2 → B by

(6)
bs,x(i, j) :={L : s is not left-bounded at i}

∪ {R : s is not right-bounded at j}

So, L ∈ bs,x(i, j) holds if s is not cleaved before index i, and therefore we have to modify
the string s to achieve such cleavage; and R ∈ bs,x(i, j) holds if s is not cleaved after
index j. We define:

SB(s, x) :=
{

(

s[i,j], bs,x(i, j)
)

: 1 ≤ i ≤ j ≤ |s|
}

CB(s, x) :=
{

(comp(y), b) : (y, b) ∈ SB(s, x)
}

as the set of bounded strings (compomers) of s, x. Clearly, c ∈ C0(s, x) iff (c, ∅) ∈
CB(s, x). The set CB(s, x) contains all those fragments that can be obtained from s by
“inserting” cut strings x at appropriate positions.

Example 2. For the sample string s := ATTCA and x := T we calculate SB(s, x) =
{

(A, ∅), (T,L), (T,R), (C,R), (A,L), (AT, ∅), (TT,LR), (TC,R), (CA, ∅), (ATT,R),

(TTC,LR), (TCA, ∅), (ATTC,R), (TTCA,L), (ATTCA, ∅)
}

.

We will not use the set CB(s, x) directly, but instead define a subset for a more
restrictive claim in Theorem 1 below. To this end, we define for k ∈ N:

(7)
CB

k (s, x) :=
{

(comp(y), b) : (y, b) ∈ SB(s, x)

and ordx(y) + |b| ≤ k
}

For Example 2 we calculate CB
1 (s, x) =

{

(A1, ∅), (C1,R), (A1,L), (A1T1, ∅), (A1C1, ∅),

(A1C1T1, ∅)
}

.

Theorem 1. Given sample strings s, s′ ∈ Σ∗ with dL(s, s′) ≤ k, a cut string x ∈ Σ∗,

and a compomer c′ ∈ C0(s
′, x). Then, there exists a bounded compomer (c, b) ∈ CB

k (s, x)
such that D(c, b, c′) ≤ dL(s, s′).
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Proof. Let i′, j′ denote integers such that y′ := s′[i′,j′] satisfies comp(y′) = c′ as well

as s′ ∈ {y′xb, axy′xb, axy′} for some a, b ∈ Σ∗. By definition, y′ ∈ S0(s
′, x). Under

a minimal alignment of s and s′, let i, j denote integers such that positions [i, j] of s
correspond to positions [i′, j′] of s′ in the alignment. Set y := s[i,j], then d(c, c′) ≤

dL(y, y′) holds for c := comp(y). Let b := bs,x(i, j), then (c, b) ∈ SB(s, x). From
dL(y, y′) ≤ dL(s, s′) − |b| we infer

D(c, b, c′) = d(c, c′) + |b| ≤ dL(y, y′) + |b| ≤ dL(s, s′).

It remains to be shown that ordx(y) ≤ k− |b|. But from the definition of ordx(·) we can
easily infer dL(y, y′) ≥ |ordx(y) − ordx(y′)| and, hence,

k ≥ dL(s, s′) ≥ dL(y, y′) + |b|

≥
∣

∣ordx(y) − ordx(y
′)
∣

∣ + |b| = ordx(y) + |b| . �

Theorem 1 is the building block our algorithm below is based on: Informally, if the
unknown sample sequence differs (not too much) from the reference sequence, leading
to the detection of an additional compomer c′, then there exists one or more bounded
compomers (c, b) close to c′ (with respect to D). In fact, the bounded compomers (c, b)
can be used to construct all “minimal” sample sequence candidates that explain the
observed additional compomer c′, so all we have to do is to construct the set CB

k (s, x),
then search if we can find bounded compomers (c, b) close to c′. For cut strings x of
length 1, we can guarantee that there exists a sequence variation of minimal cost that
will generate an observed additional compomer.

Lemma 1. Given a reference string s ∈ Σ∗ and a cut string x ∈ Σ1 of length 1. For

a compomer c′ ∈ C(Σ) and a bounded compomer (c, b) ∈ CB(s, x), there exists a string

s′ ∈ Σ∗ satisfying dL(s, s′) = D(c, b, c′) and c′ ∈ C0(s
′, x).

Proof. Let i, j denote integers such that comp(s[i,j]) = c. We have seen in Section 3.2 how
to construct a fragment string y′ ∈ Σ∗ such that dL(s[i,j], y

′) = d(c, c′) and comp(y′) = c′.

We replace the substring at positions i to j of s by y′. In addition, we apply the following
sequence variations: For L ∈ b we substitute position i − 1 of s by x, or we insert x
before position i into s. For R ∈ b we substitute position j + 1 of s by x, or we insert x
after position j. Let s′ denote the string resulting from these sequence variation. Then,
dL(s, s′) = d(c, c′) + |b| = D(c, b, c′) and c′ ∈ C0(s

′, x) as required. �

Again, we can show that every string s′ ∈ Σ∗ satisfying the conditions of the lemma
will be generated by the construction presented in the proof of the lemma. But note
that the sequence variations generated this way are not necessarily minimal, and that
to guarantee minimality we have to take special care when generating the “bounds” of
the fragment y′.

Clearly, Lemma 1 does not hold in case |x| ≥ 2. We can modify our definition of
boundaries accordingly: Then, a boundary is a vector b = (b1, b2) ∈ N

2 where b1 (b2)
counts the number of transformations needed to obtain cleavage on the left (right) side
of the fragment, |b| := b1 + b2, and equation (5) is defined for B := N

2. But even
then, we cannot guarantee the existence of a sequence variation of the observed cost,
see Example 3. Still, if a minimal sequence variation exists, it will be generated by the
construction presented in the proof of Lemma 1, so a simple post-processing step can
be applied to sort out sequence variations not generating the observed compomer.

Example 3. Let s := TGCT, x := AC, and c′ := A1C1T2. Then C0(s, x) = {C1G1T2}
and there exists a bounded compomer (c, b) ∈ CB(s, x) with D(c, b, c′) = 1, namely
(c, b) = (C1G1T2, ∅) or (c, b) = (C1G1T2, (0, 0)).

But there exists no string s′ ∈ Σ∗ satisfying dL(s, s′) = 1 and c′ ∈ C0(s
′, x) at the

same time: Obviously, c′ � comp(s′) must hold. The only strings s′ ∈ Σ∗ satisfying
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dL(s, s′) = 1 and c′ � comp(s′) are s′ = TACT, ATGCT, TAGCT, TGACT, TGCAT,
and TGCTA. But then, C0(s

′, x) equals {T1}, {A1C1G1T2}, or {G1T1,T1}.

4. Algorithm

In the following, we present an algorithm to solve the Problem of SNP Discovery from
Mass Spectrometry. To improve readability, we limit ourselves to the case where all cut
strings have length one. This case is most relevant for applications; the general case can
be solved in a comparable fashion.

Let Σ denote the fixed and finite alphabet. Given the reference string s ∈ Σ∗ of length
n := |s|, the cut string x ∈ Σ1 of length one, and a compomer c′ ∈ C(Σ) we want to
construct all potential sample strings s′ ∈ Σ satisfying c′ ∈ C0(s

′, x) such that dL(s, s′) is
minimal. In addition, we want to limit this search to a maximal cost k, that is, we also
require dL(s, s′) ≤ k. This limitation is necessary only in order to reduce the number of
constructed potential sample strings that have to be scored.

In the preprocessing step, we compute all indexed bounded compomers (c, b, i, j) for
1 ≤ i ≤ j ≤ n where c := comp(s[i,j]) and b := bs,x(i, j). We store those elements that

satisfy ordx(s[i,j]) + |b| ≤ k. This can be done in runtime and memory O(n2). We sort

these elements with respect to |c| what can also be done in runtime O(n2) in view of
0 ≤ |c| ≤ n, and for every 0 ≤ m ≤ n we store indices of the first and last indexed
bounded compomer satisfying |c| = m in a lookup table of size O(n). Note that for
fixed m, there exist O(n) many elements (c, b, i, j) satisfying |c| = m. All of the above
bounds are tight for certain reference strings, see Example 4 below.

In the processing step, we are given the “additional compomer” c′ ∈ C(Σ) and want
to construct sequence variations leading to sample strings s′ with c′ ∈ C0(s

′, x) such that
dL(s, s′) ≤ k is minimal.

Let k′ denote the minimum value of D, which can be found in O(n ·k) runtime in case
D(c, b, c′) ≤ k: This implies d(c, c′) ≤ k, so we can limit this search to those bounded
compomers (c, b) satisfying |c′| − k ≤ |c| ≤ |c′| + k. If we do not find any bounded
compomer satisfying D(c, b, c′) ≤ k, then we return the empty set. In the next step, we
search for all indexed bounded compomers (c, b, i, j) satisfying D(c, b, c′) = k′. In view
of |b| ≤ 2 this can be done in O(n) runtime, and there exist O(n) such elements, because
∣

∣|c| − |c′|
∣

∣ ≥ k′ implies D(c, b, c′) ≥ k′.
For every (c, b, i, j) satisfying D(c, b, c′) = k′ we can now use the algorithm of Sec-

tion 3.2 to construct all fragments y′ ∈ Σ∗ that satisfy comp(y′) = c′ and dL(y, y′) =
d(c, c′) for y := s[i,j]. The complete sequence variation consists of the sequence variation
transforming y to y′, shifted to index i of s, plus a substitution by or insertion of the
letter x at index i − 1 in case L ∈ b, plus a substitution by or insertion of the letter
x at index j + 1 in case R ∈ b. Clearly, there exist at most 4 · |Σ|m such sequence
variations for m := |c′|, and this is independent of n and k. In applications, |c′| ≤ 25
holds as noted in Section 2. But this bound is only of theoretical interest for small k,
because 4 · 425 ≈ 4.5 · 1015, and a tighter bound can be found in this case: For the

worst case of constructing insertions only, there exist at most |Σ|k ·
(

m+k
k

)

sequence
variations transforming y to y′, so the number of constructed sequence variations is of

order O(|Σ|k · (m + k)k). Using an appropriate branch-and-bound modification of the

algorithm of Section 3.2, this can be done in time O(k · |Σ|k · (m + k)k) taking into
account the maximal size k of every constructed sequence variation.

Formally, it remains to be shown that the presented algorithm will construct all
sequence variations of minimal cost. This can be done using Theorem 1, but we omit
the proof for the sake of brevity. Note that the runtime O(n · k) when finding the
minimum of D could be further reduced to O(n) by generating a hash table of all
indexed bounded compomers that have distance at most k to a bounded compomer in
CB(s, x). But this would significantly increase memory requirements and is of no use



SNP AND MUTATION DISCOVERY BY MASS SPECTROMETRY 11

in applications, where most of the runtime is spent on scoring the potential sequence
variations.

Example 4. For even n, set s := (AC)n/2 and x := G. For all 1 ≤ i ≤ j ≤ n we define

m := b j+1−i
2 c, bi,j := bs,x(i, j), and

ci,j := AmCm +











A1 if i and j are odd,

C1 if i and j are even,

0 otherwise.

Clearly, ci,j = comp(s[i,j]). Furthermore, L ∈ bi,j holds iff i 6= 1, and R ∈ bi,j holds iff
j 6= n. Then,

CB
2 (s, x) =

{

(ci,j , bi,j , i, j) : 1 ≤ i ≤ j ≤ n
}

and
∣

∣CB
2 (s, x)

∣

∣ =
(n+1

2

)

. Note further that for every m = 0, . . . , n, there exist (n+1−m)
elements satisfying |ci,j| = m.

The complete process of discovering sequence variations can now be performed as
follows: For every cleavage reaction used, we compute the string and compomer spec-
trum, and use these to create a reference mass spectrum. We compare the simulated
reference mass spectrum to the measured sample mass spectrum, and identify additional
peaks in the measured spectrum. For ever additional peak in the measured spectrum,
we calculate all compomers with mass sufficiently close to that of the additional peak.
For every such compomer, we use the algorithm presented in this section to compute all
potential sequence variation leading to the generation of the compomer.

We thereby generate a set of potential sequence variations that must be evaluated
taking into account the mass spectrometry data available from all cleavage reactions.
Given a sample sequence candidate s′ we simulate, for every cleavage reaction, the mass
spectrum of s′ and compare it with the measured one. A very simple scoring scheme is as
follows: Let M , M ′ denote the simulated mass spectra of s and s′. We use the differences
of M and M ′ to calculate two scores, a heterozygous score fhet and a homozygous score
fhom, both initialized to zero.

• Let p′ denote a peak in M ′ \ M . If p′ is found in the measured mass spectrum,
then we add +1 to fhet and fhom. If p′ is not found in the measured mass
spectrum, then we add −1 to fhet and fhom.

• Let p denote a peak in M \M ′. If p is not found in the measured mass spectrum,
then we add +1 to fhom. If p is found in the measured mass spectrum, then we
add −1 to fhom.

The overall score of the sequence variation candidate is the maximum of fhet and fhom.
It is obvious that the presented scheme can easily be refined, for example by taking
into account peak intensities. For the results presented in the next section, the scoring
scheme was refined by (a) slightly decreasing the score of “false positive peaks” (last
item listed above) to −1.2; (b) weighting a peak’s score based on the overall quality
of the underlying mass spectrum; (c) weighting a peak’s score based on its mass, since
false positive/negative peaks appear more regularly in the lower mass range of a mass
spectrum; and (d) scoring peak intensity variations, where an intensity variation can
modify the overall scores by some value in the range [−0.5, 0.5].

As a mathematical justification of the presented scheme, we want to point out that it
resembles a maximum likelihood approach, summing the log likelihoods when comparing
the model [reference sequence is s′] to the model [reference sequence is s]. A more
advanced scoring scheme could compute these likelihoods to calculate a score for a
potential sequence variation.
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5. Results

The presented algorithms were implemented in C++ as part of the proprietary
MassARRAYTM SNP Discovery package from SEQUENOM, Inc. Included in this im-
plementation is a refined SNP scoring scheme as suggested in the previous section, and
an iterative SNP selection process. It has already been used to analyze several genomic
regions.

Because there exists no “gold standard” data to evaluate the performance of the
presented method, we compared it to results obtained from manual analysis of mass
spectrometry data, and to classical Sanger Sequencing using electrophoresis data. As
an example, we will describe in the following the performance of the presented method
analyzing regions on Human Chromosome 22. On this chromosome, 30 “disjoint” am-
plicons (non-overlapping sub-regions of DNA amplified by PCR) of lengths 328 to 790
base pairs were amplified, the average length of an amplicon being 433 base pairs. In
total, 11793 base pairs were analyzed; DNA samples from 12 Caucasian individuals
were used (Dausset et al., 1990). For the mass spectrometric analysis, four base-specific
cleavage reactions were performed using RNAse A and measured by mass spectrometry
independently. All experiments were performed single-pass without repetition, and bad
spectra (due to failed biochemical reactions) were not removed from the analysis.

Analyzing the mass spectrometry data manually, 50 SNPs were discovered and verified
by an independent method (chain terminating primer extension). For 6 of these 50 SNPs,
the exact position could not be determined from the cleavage mass spectrometry data.
Manual analysis of the mass spectrometry data was very time consuming, and it took
several weeks to complete the analysis. Analysis of the electrophoresis data indicated
that at least 4 of the 50 SNPs would have been missed without manual inspection of
sequencing traces. In addition, one SNP was found using the electrophoresis data that
was missed in the manual analysis of the mass spectrometry data.

In total, 51 SNPs were discovered by manual analysis of mass spectrometry data or
electrophoresis data. 36 of these 51 SNPs (71 %) were previously known and available
in public databases, 15 SNPs (29 %) were novel. Considering that the Human Chromo-
some 22 is a well-studied genomic region, it is noteworthy that almost one third of the
discovered SNPs were missing from public databases. In the following, we will assume
that these 51 SNPs are exactly the true positives of the test set.

The cleavage mass spectrometry data was then analyzed without user interaction
using the automated SNP discovery package as outlined in Section 4, including the
presented algorithm to construct sequence variations with maximal cost k = 1. All of
the 51 SNPs were included in the 22 447 potential sequence variations constructed using
the presented algorithm. The analysis was performed for every sample individually,
so 1871 sequence variations per sample were scored on average. Subsequent scoring
of sequence variation candidates and applying a threshold that was roughly estimated
from several studies, the package reported 5 false negatives (10 % of the 51 SNPs) and
7 supposedly false positives (13 % of the 53 reported SNPs). Again, for 6 of the 46 true
positive SNPs the exact position could not be determined.

Since the focus of this paper lies in generating the correct sequence variation candi-
dates, not in evaluating the applied scoring scheme, we will not go into more detail for
this part of the analysis. Still, it is remarkable that even using a rather simple scor-
ing scheme and a rather arbitrary threshold, such sensitivity and specificity could be
achieved. Note that neither scoring scheme nor applied threshold were trained for the
presented example: Instead, the default scoring scheme and threshold of the analysis
package were used. Currently, manual post-processing of the results is required because
by manually inspecting the mass spectrometry data, the user is capable of evaluat-
ing subtle peak intensity changes that are not evaluated adequately during automated
sequence variation scoring. Work on this problem is in progress.
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k = 1 k = 2 k = 3
Approach presented in this pa-

per

Runtime for preprocessing 189 ms 292 ms 491 ms
. . . for constructing seq. vars. 81 ms 997 ms 29.6 s
. . . for scoring seq. vars. 1240 ms 30.9 s 437 s
# of constructed seq. vars. 22 447 430 114 ≈ 5 · 106

Runtime for scoring one sequence
variation

55 µs 72 µs 87 µs

Total runtime 1.5 s 32.2 s 467 s

“Trivial” approach

Approximate number of sequence
variations, per base

96 8 032 308 661

Approximate number of sequence
variations in total

1 132 128 7.7 · 107 2.4 · 109

Approximate total runtime 62.6 s 91.9 min 57 h

Table 1. Runtimes and numbers of sequence variations to be scored,
for a genomic region of 11 793 base pairs and a test set of 12 samples.

We have depicted the runtime of the different parts of the analysis for sequence
variation cost k = 2, 3 in Table 1. Runtime measurements were performed on a single
processor desktop computer using a 1.0 GHz Pentium III processor. For k = 1, the
trivial approach of scoring every single-base sequence variation has to score 8 sequence
variations per base pair and sample. Using the argumentation of Section 3.3, we can
derive approximations for the number of sequence variations that we have to score when
using the “trivial” approach in case k > 1. This leads us to approximately 5411

3 sequence
variations per base pair and sample for sequence variation cost k = 2, and approximately
16 6764

9 sequence variations per base pair and sample for k = 3. For random strings,
the presented numbers are slightly too high because we are dealing with finite strings
(amplicons), and since some of the counted sequence variations are not minimal. On the
other hand, these numbers will be much higher in most cases for biological sequences.
Approximations for the runtime of scoring all potential sequence variations are also
depicted in Table 1. It is obvious for k = 1 that the presented approach is superior
to the “trivial” approach, but the latter is completely out of consideration for high
throughput analysis in case k ≥ 2 due to runtime constraints. Using the presented
algorithm, though, the sequence variation analysis for k = 3 was performed in 0.33
seconds per analyzed mass spectrum and is therefore still suited for “real time” analysis
of mass spectrometry data.

Note that the outlined scoring scheme for sequence variation candidates is compara-
tively simple and easy to compute. The scoring of sequence variations was implemented
in C++ and highly optimized. Using more sophisticated approaches to score sequence
variations will shift the runtime advantage even more into the direction of the presented
approach.

6. Discussion and improvements

We have presented a computational approach to perform SNP and mutation discovery
using base-specific cleavage and mass spectrometry for data acquisition. In particular,
we have presented a time-efficient method to significantly reduce the number of sequence
variations that have to be evaluated. Using base-specific cleavage and mass spectrometry
for SNP and mutation discovery has the advantages of high throughput (4 mass spectra
can be measured in 5–10 seconds) and potentially increased sensitivity and specificity
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over classical Sanger Sequencing, and is in most cases sufficient to characterize and
localize the detected SNPs. Potential additional advantages are the possibility to do
pooling or multiplexing, see below. Better scoring schemes may enable the analysis of
the cleavage mass spectra without any user interaction.

Besides SNP and mutation discovery, there are other applications where the approach
described herein can be utilized. As an example, “re-sequencing” refers to either test-
ing a previously sequenced region for sequencing errors, or to determine the genomic
sequence of an organism (like a virus or a bacterium) when the genomic sequence of a
closely related organism is known. Both applications can be tackled using the presented
approach, but the sequence variation cost of interest for the latter problem might well
be k � 3.

The intensity of a peak in a MS spectrum might indicate the multiplicity of the re-
spective compomer. If we can, up to some extent, predict the multiplicity of compomers
in the sample spectrum, this additional information can easily be integrated into the
presented approach.

Finally, we want to point out that the presented method can easily be adopted for
pooling as well as multiplexing : When pooling samples, we want to analyze mixtures

of samples where the ratio of two present genotypes differs significantly from the 50:50
ratios expected for heterozygous samples. As an example, this is of special interest in
the case of mutation discovery in potentially cancerous tissue. For multiplexing, instead
of analyzing a single continuous stretch of the sample sequence of length 900 nt, we
analyze, say, three distinct stretches of length 300 nt each in parallel. In both cases,
only minor modifications to the presented approach are necessary.
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Appendix

Lemma 2. Given a random i.i.d. string s = s1s2s3 . . . on an alphabet of four letters. Let

the random variable X denote the natural number so that the substring s′ = s1 . . . sX

contains exactly three letters of the alphabet, while s′′ = s1 . . . sX+1 contains all four

letters. Then, E(X) = 71
3 .

Proof. Counting those strings of length n that contain at most 3 out of 4 letters, we
infer using inclusion/exclusion that for n ≥ 1,

Prob(X ≥ n) =
1

4n

(

(

4
3

)

3n −
(

4
2

)

· 2n +
(

4
1

)

)

=
1

4n
(4 · 3n − 6 · 2n + 4) .

The probability that the substring s′ has length exactly n is

Prob(X = n) = Prob(X ≥ n) − Prob(X ≥ n + 1)

=
1

4n
(3n − 3 · 2n + 3) for n ≥ 1.

The expected length of such a substring is

E(X)=
∞
∑

n=1

n · Prob(X = n)

=

∞
∑

n=1

n ·

(

3

4

)n

− 3

∞
∑

n=1

n ·

(

1

2

)n

+ 3
∞

∑

n=1

n ·

(

1

4

)n

=
3/4

(1 − 3
4)2

− 3 ·
1/2

(1 − 1
2)2

+ 3 ·
1/4

(1 − 1
4)2

=12 − 6 +
4

3
= 7

1

3
as claimed. �
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