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SEQUENCING FROM COMPOMERS IN THE PRESENCE OF

FALSE NEGATIVE PEAKS

SEBASTIAN BÖCKER

Abstract. One of the main endeavors in today’s Life Science remains the efficient sequenc-
ing of long DNA molecules. Today, most de-novo sequencing of DNA is still performed using
electrophoresis-based Sanger Sequencing, based on the Sanger concept of 1977. Methods
using mass spectrometry to acquire the Sanger Sequencing data are limited by short sequenc-
ing lengths of 15–25 nt. Recently, we proposed a new method for DNA sequencing using
base-specific cleavage and mass spectrometry, that appears to be a promising alternative to
classical DNA sequencing approaches. This leads to the combinatorial problem of Sequencing
From Compomers (SFC) and, finally, to the graph-theoretical problem of finding a walk in a
subgraph of the de Bruijn graph. Simulations indicate that this method might be capable of
sequencing DNA molecules with 200+ nt.

But the way the Sequencing From Compomer Problem is formulated, it does not take
into account the problem of false negative peaks that is common for real-world data: Even
though an in silico simulation predicts a peak to be present in a mass spectrum, it is absent
from the measured mass spectrum. We may evade this problem by choosing a very sensitive
peak detection algorithm, minimizing the number of false negative peaks. Still, a single false
negative peak is usually sufficient to prohibit reconstruction of the correct DNA sequence by
SFC.

Here, we show how to extend SFC as well as sequencing graphs to deal with false negative
peaks. In addition, we present a branch-and-bound algorithm to find all sequences that
agree with the sample mass spectra with the exception of a certain number of false negative
peaks. Simulation results indicate that even in the presence of several false negative peaks,
the presented method might be capable of sequencing DNA molecules of length 200 nt.
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1. Introduction

Today, most de-novo sequencing of DNA without any a priori information regarding the
sample sequence under examination, is still performed based on the Sanger concept from 1977,
see (Sanger et al., 1977). Typically, gel or capillary electrophoresis is used to acquire the sample
data. Many other methods were proposed during the last decades (Maxam and Gilbert, 1977;
Bains and Smith, 1988; Lysov et al., 1988; Jett et al., 1989; Köster et al., 1996; Ronaghi et al.,
1998; França et al., 2002), but none was able to compete with Sanger Sequencing regarding
sequencing length, cost, and reliability. In particular, the sequencing length of 500–1000 bases
is an order of magnitude higher than for most other de-novo sequencing methods.

In (Böcker, 2003b) we propose a new approach to DNA de-novo sequencing not based
on the Sanger concept, using MALDI-TOF mass spectrometry to acquire the experimental
data. It has the potential advantages of fast data acquisition and reliability, among others.
Furthermore, we introduce the Sequencing From Compomers (SFC) Problem as an abstraction
of the resulting data analysis issues. Simulations indicate that this method might be capable
of sequencing DNA molecules with 200+ nt, so sequencing lengths have the same order of
magnitude as for Sanger Sequencing.

But a shortcoming of the Sequencing From Compomers Problem is its inability to cope with
false negative peaks in the mass spectra: A false negative peak (or missing peak) is a peak
that an in silico simulation predicts to be present in a mass spectrum — assuming “error-free”
biochemistry and mass spectrometry — but that cannot be detected in the measured mass
spectrum. We can possibly evade this problem by choosing a very sensitive peak detection
algorithm minimizing the number of false negative peaks, while simultaneously leading to the
detection of many false positive peaks: a false positive peak (or additional peak) is a peak
detected in the measured mass spectrum, that was not predicted by an in silico simulation.
Simulation results in (Böcker, 2003a) indicate that even a large portion of false positive peaks
will generally not interfere with reconstruction of the correct sequence. Still, a single false
negative peak is usually sufficient to prohibit reconstruction of the correct DNA sequence
using SFC.

In this paper, we extend the Sequencing From Compomer Problem — and, in particular, the
graph theoretical tool introduced in (Böcker, 2003b) to solve it — to deal with false negative
peaks in the sample mass spectrum. For that, we introduce the Weighted Sequencing from
Compomers (WSC) Problem and weighted sequencing graphs, and show how the latter can
be used to solve WSC. We have applied our method to simulated mass spectra generated
from random as well as biological sequences, and simulation results indicate high chances of
successful reconstruction even in the presence of false negative peaks.

2. Experimental setup and data acquisition

Suppose we are given an amplified, single stranded target DNA molecule (or sample DNA) of
length 100–500 nt.1 We cleave the sample sequence with a base-specific chemical or biochemical
cleavage reaction: Such reactions cleave at exactly those positions where a specific base can be
found. Several methods to achieve base-specific cleavage, such as RNAse A (Hartmer et al.,
2003), have been described in literature (Rodi et al., 2002; von Wintzingerode et al., 2002).
We modify the cleavage reaction by offering a mixture of cleavable versus non-cleavable “cut
bases,” such that not all cut bases but only a certain percentage will be cleaved. The resulting
mixture contains in principle all fragments that can be obtained from the sample DNA by
removing two cut bases, cf. Fig. 1 for an example. We call such cleavage reactions partial.

MALDI TOF mass spectrometry (MS for short) is then applied to the products of the
cleavage reaction, resulting in a sample spectrum that correlates mass and signal intensity of
sample particles (Karas and Hillenkamp, 1988). The sample spectrum is analyzed to extract

1We will talk about sample DNA even though a cleavage reaction might force us to transcribe the sample
to RNA.
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Figure 1. Partial cleavage using RNAse A with dCTP, rUTP, and dTTP.
Gray fragments indicate that corresponding peaks might not be detected in the
sample mass spectrum.

a list of signal peaks with masses and intensities. We can repeat the above procedure, as well
as the following analysis steps, using cleavage reactions specific to all four bases.

If the sample sequence is known, then exact chemical results of the used cleavage reactions
and, in particular, the masses of all resulting fragments are known in advance and can be
simulated by an in silico experiment. Clearly, this holds up to a certain extent only, leading
to the detection of false positive, and the non-detection of false negative peaks in the sample
mass spectrum.

Having said that, we can also solve the inverse problem: For every peak detected in the sam-
ple mass spectrum, we can calculate one or more base compositions (that is, DNA molecules
with unknown order but known multiplicity of bases) that could have created the detected
peak, taking into account the inaccuracy of the mass spectrometry read. Therefore, we obtain
a list of base compositions (or compomers, see the next section) and their intensities, for every
incorporated cleavage method.

In real life, several limitations characteristic for mass spectrometry and partial cleavage
make the problem of de-novo sequencing from mass spectrometry data more challenging:

• Current mass spectrometers limit the mass range in which particles can be detected:
Signals above 8 000 Da (≈ 25 nt) tend to get lost in the spectrum.
• Because MS spectra are noisy, it is often impossible to distinguish between signal peaks

with low intensities and “noise peaks” randomly found in the spectrum.
• Using partial cleavage results in an exponential decay (in the number of uncleaved cut

bases) of signal intensities in the mass spectrum, so peaks from fragments containing
many uncleaved cut bases will be difficult or impossible to detect.
• Peak intensities are comparatively hard to predict by an in silico simulation of the

cleavage reaction (Böcker, 2003c).

Here, we have listed only those limitations relevant in the context of false negative peaks,
see (Böcker, 2003b) for a more detailed list. In this paper, the last limitation above is of
particular interest to us: Potentially, the intensity of a peak in a sample mass spectrum is so
weak that this peak cannot be detected in the “noise” of the mass spectrum. A sensitive peak
detection algorithm can reduce the number of false negative peaks, but it cannot completely
eliminate them in all cases. The biochemical and physical causes for the variation of peak
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intensities are not completely understood, but it is believed that one of the causes are distinct
ionization characteristics of different biomolecules.

3. Methods

Mostly we will follow the notation of (Böcker, 2003b) and assume that the reader is familiar
with the basic concepts presented there.

3.1. The compomer spectrum. Let s = s1 . . . sn be a string over the alphabet Σ where
|s| = n denotes the length of s. We denote the concatenation of strings a, b by ab, the empty
string of length 0 by ε.

If s = axb holds for some strings a, x, b then x is called a substring of s, a is called a prefix

of s, and b is called a suffix of s. We define the number of occurrences of x in s by:

ordx(s) := max
{

k : there exist s0, . . . , sk ∈ Σ∗ with s = s0xs1x . . . xsk

}

Hence, x is a substring of s if and only if ordx(s) ≥ 1.
For strings s, x ∈ Σ∗ we define the string spectrum S(s, x) of s by:

(1) S(s, x) :=
{

y ∈ Σ∗ : there exist a, b ∈ Σ∗ with s ∈ {yxb, axyxb, axy}
}

∪ {s}

So, the string spectrum S(s, x) consists of those substrings of s that are bounded by x or by
the ends of s. In this context, we call s sample string and x cut string, while the elements
y ∈ S(s, x) will be called fragments of s (under x). We use special characters 0, 1 to uniquely
denote start and end of the sample string.

We use the following mathematical representation of base compositions: We define a com-

pomer to be a map c : Σ→ Z, where Z denotes the set of integers. We say that c is a natural

compomer if c(σ) ≥ 0 holds for all σ ∈ Σ. For the rest of this paper, we assume that all
compomers are natural compomers, unless explicitly stated otherwise. Let C+(Σ) denote the
set of all natural compomers over the alphabet Σ. Clearly, C+(Σ) is closed with respect to
addition, as well as multiplication with a scalar n ∈ N, where N denotes the set of natural
numbers including 0. We denote the canonical partial order on the set of compomers over Σ
by �, that is, c � c′ if and only if c(σ) ≤ c′(σ) for all σ ∈ Σ. Furthermore, we denote the
empty compomer c ≡ 0 by 0.

For Σ = {σ1, . . . , σk} we use the notation c = (σ1)i1 . . . (σk)ik to represent the compomer
c : σj 7→ ij omitting those characters σj with ij = 0. Since the characters 0, 1 appear at most
once in any fragment, we usually omit the indices for these two characters.

The function comp : Σ∗ → C+(Σ) maps a string s = s1 . . . sn ∈ Σ∗ to the compomer of s by
counting the number of characters of each type in s. Formally, we define comp(s) : Σ→ N by

comp(s)(σ) :=
∣

∣{1 ≤ i ≤ |s| : si = σ}
∣

∣ for all σ ∈ Σ.

For example, set Σ := {A,C,G,T} and c := comp(ACCTA), then c(A) = 2, c(C) = 2,
c(G) = 0, and c(T) = 1 or, equivalently, c = A2C2T1. The compomer spectrum C(s, x) of s
consists of the compomers of all fragments in the string spectrum:

(2) C(s, x) := comp
(

S(s, x)
)

=
{

comp(y) : y ∈ S(s, x)
}

Recall that the problem of reconstructing a string s from its compomer spectra C(s, x),
x ∈ X , cannot be used for experimental MS data: This approach does not take into account
the limitations of mass spectrometry and partial cleavage mentioned in the previous section.
In particular, signals from fragments y with ordx(y) above a certain threshold will be lost in
the noise of the mass spectrum. Hence, for strings s, x and k ∈ N∪{∞}, we define the k-string
spectrum of s by:

(3) Sk(s, x) := {y ∈ S(s, x) : ordx(y) ≤ k}
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The integer k is called the order of the string spectrum. The k-compomer spectrum of s is
defined by:

(4) Ck(s, x) := comp
(

Sk(s, x)
)

=
{

comp(y) : y ∈ S(s, x), ordx(y) ≤ k
}

If the cut string is a single character x ∈ Σ, we infer Ck(s, x) = {c ∈ C(s, x) : c(x) ≤ k}.
In applications, a tiny peak detected in a mass spectrum can account for several compomers

in the corresponding compomer set, and trying to minimize the number of unexplained de-
tected peaks contradicts the experimental observation. To this end, it makes more sense to
find all “good” strings with compomer spectra that are subsets of the measured compomer
(or mass) spectra. Accordingly, we define in (Böcker, 2003b):

Sequencing From Compomers (SFC) Problem. For a fixed order k ∈ N ∪ {∞}, let
X ⊆ Σ∗ be the set of cut strings and, for all x ∈ X , let Cx ⊆ C+(Σ) be a compomer set.
Finally, let S ⊆ Σ∗ be the set of sample string candidates. Now, find all strings s ∈ S that
satisfy Ck(s, x) ⊆ Cx for all x ∈ X .

Clearly, the formulation of SFC does not capture the problem of false negative peaks in the
sample mass spectrum: As described in Section 2, there is a number of factors that might lead
to the non-detection of a peak in a sample mass spectrum even though theory predicts it to
be present. In such cases, the set of “measured” compomers Cx ⊆ C+(Σ) will also be missing
a compomer that corresponds to the false negative peak or, formally: the set Ck(s, x) \ Cx is
non-empty. Then, the correct sample string is no solution of this instance of SFC. But other,
incorrect strings might be solutions of this instance, further aggravating the problem.

3.2. Weighted compomers. Let R denote the set of real numbers and R≥0 that of non-
negative real numbers. To overcome the shortcoming of SFC, we introduce a compomer weight

function

(5) wcomp
x : C+(Σ)→ R≥0

where wcomp
x (c) represents the “chance” that the peak corresponding to the compomer c is

missing in a sample mass spectrum of the cleavage reaction with cut string x ∈ Σ∗. Intuitively,
wcomp

x can be used to penalize for missing compomers. In the following, we will limit our
attention to compomer weight functions with wcomp

x (c) ≥ 0 for all c ∈ C+(Σ). The simplest
weight function wcomp

x ≡ 1 corresponds to counting false negative peaks, see below. Another
simple but reasonable weight function — capturing the aspect of exponential decay of peak
intensities in partial cleavage experiments — is defined by

(6) wcomp
x (c) := rc(x)

where x ∈ Σ is the cut string of length 1, and the constant r ∈ [0, 1] corresponds to the portion
of uncleaved cut bases. If we have some stochastic model to compute the probability that a
peak corresponding to some compomer c will be missing from the sample spectrum, then a
straightforward choice for wcomp

x (c) is the log-likelihood of this event.
So, wcomp

x provides a penalty measure for compomers that are missing from an arbitrary

sample mass spectrum of the cleavage reaction with cut string x ∈ Σ∗. Now, we concentrate on
a fixed sample mass spectrum: We define a weight function wx : C+(Σ)→ R≥0 that takes into
account if we have observed a compomer in the fixed sample mass spectrum. A simple way
of doing so is to transform the sample mass spectrum for cut string x, into a set of observed
compomers Cx ⊆ C+(Σ) as described in Section 2: that is, for every peak detected in the mass
spectrum with mass m, we add all those compomers to Cx that have masses sufficiently close
to m. Then we define

(7) wx(c) :=
(

1− χCx
(c)

)

· wcomp
x (c) =

{

0 for c ∈ Cx
wcomp

x (c) for c /∈ Cx
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for all c ∈ C+(Σ), where χCx
is the characteristic function of Cx. In general, wx may also

consider peak intensities and peak masses in the sample mass spectrum: If we expect a peak
corresponding to some compomer c to have higher intensity then observed in the sample mass
spectrum, then we can assign some weight wx(c) > 0 to represent this unexpected intensity
loss. Motivated by (7), we call wx : C+(Σ)→ R≥0 a characteristic compomer weight.

Example 1. Let s := 0CTGATCCGCTATCCTGG1 be the sample string, x := T the cut
string, and k = 1 the order. Suppose that the set of observed compomers

CT := {0C1,0A1C1G1T1,A1G1,A1C3G2T1,C3G1,A1,A1C2T1,C2,C2G2T11,G21} ( C1(s, x)

that was generated from the detected peaks of some sample mass spectrum, is missing the
compomer C1(s, x) \ CT = {A1C3G1T1}. If we use the compomer weight function (6) with
r := 1

2 and the characteristic compomer weight wT from (7), then:

• wT(c) = 0 holds for all c ∈ CT
• wT(c) = 1 holds for all c ∈ C+(Σ) with c /∈ CT and c(T) = 0
• wT(c) = 1

2 holds for all c ∈ C+(Σ) with c /∈ CT and c(T) = 1

• in particular, wT(A1C3G1T1) = 1
2

A straightforward way to define a “false negative peak penalty” for a sample string candidate
s, is to sum up the weights wx(c) of all compomers c ∈ Ck(s, x). But this does not capture
the multiplicity of compomers in the compomer spectrum Ck(s, x): For wx(c) > 0, two strings
s, s′ with c ∈ Ck(s, x) ∩ Ck(s

′, x) will receive the same penalty for generating the compomer c,
even though c might correspond to a single fragment in s and to many fragments in s′.

Example 2. For s′ := 0CTGATCCTAGTCCTGG1 with x = T and CT from in Example 1, we
calculate C1(s

′, x) \ CT = {A1C2G1T1}. So, the cardinality |C1(s
′, x) \ CT| = 1 is the same as

for the correct sample string s in Example 1, and in case wT(A1C2G1T1) ≈ wT(A1C3G1T1),
we would have to regard s and s′ as strings of comparable “quality”. But this contradicts the
observation that the compomer A1C2G1T1 is generated three times by s′.

One way to solve this problem is to modify string and compomer spectra to be multisets
instead of simple sets. Here, we use a different approach that allows us to use regular sets:
We define the multiplicity of some compomer c ∈ C+(Σ) with respect to s, x ∈ Σ∗ by

(8) mults,x(c) :=
∣

∣

∣

{

(a, y, b) ∈ (Σ∗)3 : c = comp(y) and s ∈ {yxb, axyxb, axy, y}
}
∣

∣

∣

Informally, mults,x(c) simply counts the number and multiplicity of fragments y in S(s, x) such
that c = comp(y) holds. For s′ = 0CTGATCCTAGTCCTGG1 from Example 2 we calculate
mults′,T(A1C2G1T1) = 3.

This enables us to define a sensible “false negative peak penalty” wk,x : Σ∗ → R≥0 by:

(9) wk,x(s) :=
∑

c∈Ck(s,x)

mults,x(c) · wx(c)

For wcomp
x ≡ 1 and wx = 1 − χCx

defined in (7), wk,x(s) counts the number of compomers
(with multiplicities) missing from the sample compomer set Cx.

Example 3. For s, s′, x = T, CT, and wT from Examples 1 and 2, we calculate

w1,T(s) = mults,x(A1C3G1T1) · wT(A1C3G1T1) = 1 · 1
2 = 1

2

and w1,T(s′) = mults′,x(A1C2G1T1) · wT(A1C2G1T1) = 3 · 1
2 = 3

2 .

Hence, s′ is penalized stronger than the correct sample string s, as desired.

We use (9) to establish a weighted version of SFC taking into account false negative peaks.
Recall that we do not use the compomer sets Cx for doing so, because their information is
included in the characteristic compomer weights using, say, equation (7).
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Weighted Sequencing from Compomers (WSC) Problem. For a fixed order k ∈
N ∪ {∞}, let X ⊆ Σ∗ be the set of cut strings and, for all x ∈ X , let wx : C+(Σ) → R≥0 be
the characteristic compomer weight for cut string x. Finally, let S ⊆ Σ∗ be the set of sample
string candidates. Now, find all strings s ∈ S minimizing

(10) ϕ(s) :=
∑

x∈X

wk,x(s)

where wk,x is defined in (9).

The following two generalizations of WSC are evident: In applications, we will usually
extend our search to strings s such that ϕ(s) is sufficiently close to the minimal weight. To
do so, we define a nondecreasing weight delta function δweight : R≥0 → R≥0 and search for all
strings s ∈ S such that

(11) ϕ(s) ≤
(

1 + δweight(ϕmin)
)

· ϕmin

where ϕmin ∈ R≥0 denotes the minimum of ϕ on S. Though the definition allows for an
arbitrary function δweight, this will generally be a constant or linear function. Secondly, we
can limit our search to strings s ∈ S such that ϕ(s) ≤ b holds for some given threshold b ∈ R≥0.

It is clear that SFC can be seen as a special case of every version of WSC: For an instance
of SFC, we set wcomp

x ≡ 1 and use wx from (7). For δweight ≡ 0 and b := 0, a string s ∈ S is a
solution of SFC if and only if it is a solution of WSC. So, every version of WSC is at least as
hard as SFC.

3.3. The de Bruijn graph. A directed graph consists of a set V of vertices and a set E ⊆
V 2 = V ×V of edges. An edge (v, v) for v ∈ V is called a loop. We limit our attention to finite
directed graphs with finite vertex sets. A walk in G is a finite sequence p = (p0, p1, . . . , pn)
of elements from V with (pi−1, pi) ∈ E for all i = 1, . . . , n, and |p| := n denotes the length

of p. An edge weighting of a directed graph with edge set E is a function w̃ : E → R; in the
following, we concentrate on edge weightings such that w̃(e) ≥ 0 holds for all edges e ∈ E.

For an alphabet Σ and an order k ≥ 1, the de Bruijn graph Bk(Σ) is a directed graph with
vertex set Vk := Σk and edge set

Ek :=
{

(u, v) ∈ V 2
k : uj+1 = vj for all j = 1, . . . , k − 1

}

where u = (u1, . . . , uk) and v = (v1, . . . , vk). We use the Cartesian product notation v =
(v1, . . . , vk) instead of the string notation v = v1 . . . vk for the sake of lucidity. In the following,
we denote an edge

(

(e1, . . . , ek), (e2, . . . , ek+1)
)

of Bk(Σ) by (e1, . . . , ek+1) for short.

For a cut string x ∈ Σ1 of length 1, a compomer alphabet over (Σ, x) is a subset

(12) Σx ⊆ {c ∈ C+(Σ) : c(x) = 0} ∪ {∗}

where ∗ ∈ Σx denotes a special source character we require to be an element of every compomer
alphabet. Note that we can add compomer characters c, c′ ∈ Σx: For the source character
∗ ∈ Σx we formally define c+ ∗ = ∗+ c = ∗ for every compomer c.

Recall that the edges of the de Bruijn graph Bk

(

Σx \ {∗}
)

are (k+ 1)-tuples of compomers
over the alphabet Σ. We use the notation

(13) e[i,j] := ei + comp(x) + ei+1 + comp(x) + · · · + ej−1 + comp(x) + ej ∈ C+(Σ)

for 1 ≤ i ≤ j ≤ k + 1 to denote the compomer corresponding to parts of an edge e =
(e1, . . . , ek+1) of Bk(Σx), if the reference to the cut string x is clear. Note that e[i,j] = ∗
holds if and only if there exists an index i′ ∈ [i, j] such that ei′ = ∗. Otherwise, we have
e[i,j](x) = j − i in case x ∈ Σ1.

For sample string s ∈ Σ∗ and cut string x ∈ Σ∗, we call strings s0, . . . , sl ∈ Σ∗ satisfying

(14) s = s0xs1xs2x . . . xsl

and ordx(sj) = 0 for all j = 0, . . . , l an x-partitioning of s. For x ∈ Σ1, there exists exactly
one x-partitioning of s.
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Example 4. The T-partitioning of s := 0CTGATCCGCTATCCTGG1 from Example 1 is

(s0, s1, s2, s3, s4, s5) = (0C,GA,CCGC,A,CC,GG1).

Let Σ be an alphabet, x ∈ Σ1 a cut string of length 1, and Σx a compomer alphabet over
(Σ, x). A string s ∈ Σ∗ is called compatible with a walk p = p0 . . . p|p| in the de Bruijn graph
Bk(Σx) if the x-partitioning s0, . . . , sl ∈ Σ∗ of s from (14) satisfies l = |p| and

(15) pj =
(

cj−k+1, cj−k+2, . . . , cj
)

for j = 0, . . . , l ,

where cj := comp(sj) for j = 0, . . . , l, and c−j := ∗ for all integers j > 0. Note that we have
modified the definition of compatibility from (Böcker, 2003b) to take into account the source
character ∗. This will allow us to state Theorem 1 below in a formally simple way.

Remark 1. If p is compatible with some string s then (∗, . . . , ∗) is the first vertex of p.

Proposition 2. For an alphabet Σ and a cut string x ∈ Σ1, let Σx be a compomer alphabet

over (Σ, x), and s ∈ Σ∗ a sample string. Then there exists a walk p in the de Bruijn graph

Bk(Σx) compatible with s if and only if comp(sj) ∈ Σx holds for all j = 0, . . . , l, where

s0, . . . , sl ∈ Σ∗ is the unique x-partitioning of s. Furthermore, there exists at most one such

walk p.

Proposition 3. Let Σx be a compomer alphabet over (Σ, x). For every walk p in the de Bruijn

graph Bk(Σx), there exist one or more strings s ∈ Σ∗ compatible with p.

3.4. Weighted sequencing graphs. We now generalize the concept of directed sequencing
graphs (Böcker, 2003b) to take into account compomer weights of false negative peaks. For a
characteristic compomer weight wx : C+(Σ)→ R≥0, a cut string x, and a compomer alphabet
Σx ⊆ {c ∈ C+(Σ) : c(x) = 0} ∪ {∗}, we define the weighted sequencing graph Gk(x,Σx;wx) of
order k ≥ 1 as follows: This is an edge-weighted directed graph, consisting of the de Bruijn
graph Bk(Σx) of order k, together with an edge weighting w̃x : Ek → R≥0 defined by

(16) w̃x(e1, . . . , ek+1) :=

k+1
∑

i=1

wx(e[i,k+1])

Example 5. Let x := T be the cut string and wT be the characteristic compomer weight from
Example 1. Set the compomer alphabet

Σx := C0(s, x) = {0C1,A1G1,C3G1,A1,C2,G21}

for s also from Example 1. We have depicted the weighted sequencing graph G1(T,ΣT;wT)
in Figure 2.

Given a walk p = (p0, . . . , pl) in a directed graph G with edge weighting w̃x, we define the
weight of p by

(17) w̃x(p) :=
l

∑

j=1

w̃x(ej) , where ej := (pj−1, pj) for all j = 1, . . . , l.

Theorem 1. Let s ∈ Σ∗ be a string, x ∈ Σ1 a cut string, and wx : C+(Σ) → R a charac-

teristic compomer weight. Suppose we are given a walk p in the weighted sequencing graph

Gk(x,Σx;wx) where Σx is a compomer alphabet over (Σ, x). If s and p are compatible, then

(18) wk(s, x) = w̃x(p)

holds, where wk(s, x) is defined in (9) and w̃x denotes the edge weighting of Gk(x,Σx;wx).

Proof. From Remark 1 we know that (∗, . . . , ∗) is the first vertex of p. We use induction on
l = |p|, where p =

(

(∗, . . . , ∗)
)

is clearly compatible with s = ε, and both have zero weight.
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Figure 2. The weighted sequencing graph G1(T,ΣT;wT) from Example 5.
Solid edges e represent an edge weight w̃(e) = 0, while dashed edges e′ represent
an edge weight w̃(e′) = 1

2 .

Since s, p are compatible we know |p| = l, and (15) hold for p = (p0, . . . , pl) and the
x-partitioning s0, . . . , sl of s. Suppose that wk(s

′, x) = w(p′) holds for p′ = p0 . . . pl−1 and
s′ = s0xs1x . . . xsl−1.

Let j0 := max{0, l − k}. Now, Sk(s, x) contains Sk(s
′, x) as well as sjxsj+1x . . . xsl for all

j = j0, . . . , l. Formally,

mults,x(c
∗
j ) = mults′,x(c∗j ) + 1

holds for all c∗j := comp(sjxsj+1x . . . xsl) where j = j0, . . . , l. For all remaining compomers

C+(Σ) the multiplicity does not change between s′ and s. Inserting into (9) gives us

wk(s, x)− wk(s
′, x) =

l
∑

j=j0

(

mults,x(c
∗
j )−mults′,x(c∗j )

)

· wx(c∗j ) =

l
∑

j=j0

wx(c∗j ) .

On the other hand, let e := (pl−1, pl) be the last edge of p. We derive e = (e1, e2, . . . , ek+1) =
(cl−k, cl−k+1, . . . , cl) what implies

e[i,k+1] = comp(eix . . . xek+1) = cl−k+i−1 + comp(x) + · · · + comp(x) + cl

for i = 1, . . . , k + 1. So, e[i,k+1] = ∗ and wx(e[i,k+1]) = 0 holds for l − k + i − 1 < 0 or,
equivalently, for i ≤ k−l; while e[i,k+1] = c∗l−k+i−1 for i > k−l. Using the index transformation
l − k + i− 1 7→ j we calculate

w̃x(p)− w̃x(p′) = w̃x(e) =

k+1
∑

i=1

wx

(

e[i,k+1]

)

=

k+1
∑

i=max{1,k−l+1}

wx

(

c∗l−k+i−1

)

=
l

∑

j=max{l−k,0}

wx

(

c∗j
)

=
l

∑

j=j0

wx

(

c∗j
)

and finally conclude wk(s, x)− wk(s
′, x) = w̃x(p)− w̃x(p′). �

Clearly, weighted de Bruijn graphs are a generalization of directed sequencing graphs,
that are subgraphs of de Bruijn graphs: By choosing an edge weighting of 1 for edges not
present in the directed sequencing graph, and 0 for all other edges, both graphs contain the
same information. But note that there exists no immediate correspondence between directed
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sequencing graphs Gk(C, x) and weighted sequencing graphs Gk(x,Σx;wx): Given an edge
(e1, . . . , ek+1) ∈ (Σx)k+1 of the de Bruijn graph, (16) uses only the weights of compomers
e[i,k+1] for i = 1, . . . , k + 1 while for directed sequencing graphs, all e[i,j] for 1 ≤ i ≤ j ≤ k + 1
are taken into account. This is used to thin out directed sequencing graphs, but has no direct
equivalent in the setting of weighted sequencing graphs.

We must point out that in the definition of weighted sequencing graphs, we assume the
compomer alphabet Σx to be known beforehand. But this is not the case in applications
where peaks corresponding to fragments with no internal cut base might be missing from the
sample mass spectrum. On the other hand, our constructions are based on the assumption
that C0(s, x) ⊆ Σx holds for the correct sample string s. If this condition is violated then the
correct sample string cannot be constructed using weighted sequencing graphs. Work on this
topic is currently in progress.

4. Algorithm

The algorithm presented in this section evolved from the one presented in (Böcker, 2003b).
Let Σ be a constant and finite alphabet where 0,1 ∈ Σ uniquely denote the first and last
character of our sample strings. Let X = Σ1 \ {0,1} be the set of cut strings, and k ∈ N

the fixed order. We suppose that we know a compomer alphabet Σx such that C0(s, x) ⊆ Σx

holds for the correct sample string s. We are given characteristic compomer weights wx :
C+(Σ) → R≥0 for x ∈ X that were generated from sample mass spectra, and a set S ⊆ Σ∗

of strings. We want to solve the Weighted Sequencing from Compomers Problem in the form
that we search for all strings s ∈ S with ϕ(s) ≤ b for some threshold b ∈ R, and (11) in case a
solution exists. For the sake of brevity, we define the nondecreasing function b′ : R≥0 → R≥0

by b′(x) := min
{

b, (1 + δweight(x)) · x
}

and search for strings s with ϕ(s) ≤ b′(ϕmin). We
further concentrate on the case that

(19) S =
{

s ∈ Σ∗ : lmin ≤ |s| ≤ lmax, and s = 0 s′ 1 for some s′ ∈ (Σ \ {0,1})∗
}

contains all strings of length in a given interval, which is especially relevant for applications.
To solve WSC, we present a depth-first search that backtracks through sequence space,

moving along the edges of the sequencing graphs in parallel. In this way, we implicitly build
walks in the weighted sequencing graphs of order k that are compatible with the constructed
strings. By Theorem 1, every such string s has the same weight ϕ(s) as the sum of weights
of the compatible walks. This allows us to do a branch-and-bound check by stopping the
recursion as soon as the resulting string has weight above one of the thresholds, because all
edge weights are non-negative.

4.1. Recursively building the sequencing graphs. First, we have to build the sequencing
graphs Gx := Gk(x,Σx;wx) for x ∈ X . This means that for every edge e of the de Bruijn
graph Bk(Σk), we have to calculate and store the edge weight w̃x(e). Assume that we can
calculate the characteristic compomer weight wx in constant time. The trivial approach using

(16) needs O
(

|Σx|
k+1 k

)

time. A faster method of generating Gk(x,Σx;wx) is to iteratively

build the graphs Gκ(x,Σx;wx) for κ = 1, . . . , k, what can be done in O
(

|Σx|
k+1) time for

|Σx| ≥ 2.

4.2. The depth-first search. We make use the of the following notations: s is the current
string that will be a prefix of all string candidates constructed in subsequent recursion steps.
ψ ∈ R≥0 denotes the weight of the current prefix string s, and ψmin ∈ R≥0 ∪ {∞} denotes the
weight of the best solution found so far. Clearly, ψmin ≥ ϕmin always holds. As we want to
construct only strings s satisfying ϕ(s) ≤ b′(ϕmin), we can stop the recursion as soon as ψ is
too large. To this end, ψbound := b′(ψmin) ∈ R≥0 ∪ {∞} denotes the current weight bound. hx

denotes the weight change that is added to ψ if we append the character x ∈ Σ \{0} to s. For

x 6= 1, hx equals the weight of some edge in Gx. Next, h̃x ≥ hx denotes the induced weight
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change if we append the character x ∈ Σ \ {0,1}: Appending x will force edge transitions in
Gσ for σ 6= x in subsequent recursion steps. Finally, vx denotes the active vertex in Gx.

Now, we start the recursion with s := 0, ψ := 0, ψmin :=∞, and ψbound := b. We initialize
the current vertices vx := (∗, . . . , ∗) for all x ∈ X .

In the recursion step, let s be the current prefix string, ψ its weight, ψmin the best solution
weight, and ψbound the current weight bound. For all x ∈ X , let vx be the current active
vertices in the sequencing graph Gx. Let sx be the unique string satisfying ordx(sx) = 0 such
that either xsx is a suffix of s, or sx = s if ordx(s) = 0. Set cx := comp(sx).

• If |s|+ 1 ≥ lmin then calculate the weight change h1 appending 1.
◦ If ψ + h1 ≤ ψbound then output s1 as a string candidate with weight (ψ + h1).
◦ If ψ + h1 ≤ ψmin then ψmin ← ψ + h1 and ψbound ← b′(ψ + h1).

• If |s| < lmax, then calculate the weight change hx and the induced weight change h̃x

appending x, for all x ∈ Σ\{0,1}. For every character x satisfying ψ+ h̃x ≤ ψbound do
a recursion step: Replace s by the concatenation sx; replace ψ by ψ + hx; and in the
sequencing graph Gx, replace the active vertex vx = (v1, v2, . . . , vk) by (v2, . . . , vk, cx)
that is a vertex of Gx.
• Return to the previous level of recursion.

Here the weight change hx and induced weight change h̃x of a character x ∈ X can be cal-
culated as follows: Firstly, if cx ∈ Σx then let hx := w̃x(v1, . . . , vk, cx) where vx = (v1, . . . , vk)
is the active vertex in Gx. For cx /∈ Σx we set hx :=∞. Secondly, let

h̃x := hx +
∑

σ∈X\{x}

h̃x,σ

where h̃x,σ for σ 6= x is defined as follows: Let vσ = (v1, . . . , vk) be the active vertex in Gσ.
Let Eσ denote the set of edges (v1, . . . , vk, c

′
σ) in Gσ starting in vσ and satisfying cσ � c′σ. If

Eσ = ∅ then set h̃x,σ :=∞. Otherwise, we define h̃x,σ := mine∈Eσ
w̃σ(e).

Finally, the weight change h1 of the end character 1 ∈ Σ is calculated as follows: For all
x ∈ X , let vx = (v1, . . . , vk) be the active vertex in Gx. Set c′x := cx + 11, where 11 denotes
the compomer containing exactly one end character. Then, we set

h1 :=
∑

x∈X

w̃x(v1, . . . , vk, c
′
x)

where, in analogy to above, we set h1 := ∞ if there exists at least one x ∈ X such that
c′x /∈ Σx.

As a post-processing step of the algorithm, we can sort out all string candidates s with
weight ϕ(s) > b′(ψmin). Example 6 shows a single step of the algorithm.

Example 6. Let Σ = {0,A,C,G,T,1} be the DNA alphabet. Suppose we enter the recursion
step of the above algorithm with current prefix string s = 0GACAGGCTCTTA and weight
ψ = ψbound− 2. Portions of the weighted sequencing graphs of order k = 2 and, in particular,
the active vertices and their successors are displayed in Fig. 3. Here, we have omitted some
edges e leaving the active vertex with weight w̃x(e) > 2, because no such edge will be used in

the calculations of hx and h̃x for x ∈ X . Now, the weight changes and induced weight changes
for x ∈ X are as follows:

• For the character A we have h̃A ≥ hA = w̃A(C1,C2G2T3, 0) = 3, so ψ + h̃A > ψbound

and A is not appended to s.
• For C we have hC = w̃C(A1G2,T1,A1T2) = 0, but h̃C,A = w̃A(C1,C2G2T3,C2G2T3) =

1.5, h̃C,G = w̃G(A2C1, 0,A1C3T5) = 0, and h̃C,T = w̃T(C1, 0,A1C2) = 1. Hence,

h̃C = 0 + 1.5 + 0 + 1 = 2.5 still prohibits to append the character C in view of
ψ + h̃C > ψbound. The reasoning behind this is as follows: At some recursion step, we
will have to append the character A, forcing an edge transition in GA. But among all
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Figure 3. One step of the algorithm as described in Example 6: Portion of
the weighted sequencing graphs GA, GC (top, left and right) and GG, GT

(bottom, left and right). Active vertices marked in gray, some edges e with
weight w̃(e) ≥ ψbound − ψ omitted.

edges of GA starting in (C1,C2G2T3) that come into question, (C1,C2G2T3,C2G2T3)
has minimal weight. The edge (C1,C2G2T3,G2T1) is not considered in this calculation:
At this future point of the recursion, the newly added character C will be a prefix of
sA and, hence, C1 � cA. But C1 6� G2T1, so after appending the character C, the
edge traversed next in GA cannot be (C1,C2G2T3,G2T1).
• The character G will be appended, because hG = w̃G(A2C1, 0,A1C2T3) = 0,

h̃G,A = w̃A(C1,C2G2T3,G2T1) = 0.5, h̃G,C = w̃C(A1G2,T1,A2G2T4) = 0, h̃G,T =

w̃G(C1, 0,A1G1) = 1 and, finally, h̃G = 0 + 0.5 + 0 + 1 = 1.5. Hence, we have

ψ + h̃G = ψ + 1.5 < ψbound.
• The character T will also be appended, because we calculate hT = w̃T(C1, 0,A1) = 1,

h̃T,A = w̃A(C1,C2G2T3,G2T1) = 0.5, h̃T,C = w̃C(A1G2,T1,A2G2T4) = 0, h̃T,G =

w̃G(A2C1, 0,A1C3T5) = 0 and, finally, h̃G = 1 + 0.5 + 0 + 0 = 1.5. Again, we infer

ψ + h̃G = ψ + 1.5 < ψbound.

In total, we conclude that the characters G,T will be appended to s in two recursion
steps: For x = G we replace s by 0GACAGGCTCTTAG and update the active vertex vG ←
(0,A1C2T3) in GG, while ψ stays constant. For x = T we replace s by 0GACAGGCTCTTAT
and update the active vertex vT ← (0,A1) in GT and weight ψ ← ψ + hT = ψ + 1.

Theorem 2. For all x ∈ X := Σ\{0,1}, let wx be characteristic compomer weights satisfying

wx(c) ≥ 0 for all compomers c. Let Σx be a compomer alphabet over (Σ, x). For a fixed order
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k and S as defined in (19), the algorithm of this section will return all strings s ∈ S and their

weights ϕ(s) that are solutions of WSC and satisfy C0(s, x) ⊆ Σx.

Proof. Let s be an output string of the algorithm and ψ the associated weight. Traversing
through the sequencing graphs, we have implicitly constructed walks px in Gx for all x ∈ X
that are compatible with s, and from the construction we also infer that ψ equals the sum of
weights of these walks. Using Theorem 1 we conclude

ψ =
∑

x∈X

w̃x(px) =
∑

x∈X

wk(s, x) = ϕ(s).

We will show below that in case ϕmin ≤ b, the algorithm outputs at least one string s with
ϕ(s) = ϕmin, so ψmin = ϕmin holds when the algorithm terminates. After post-processing,
clearly ψ ≤ b′(ψmin) = b′(ϕmin) holds for every output string with weight ψ.

Now, at any stage of the algorithm we have ϕmin ≤ ψmin, because ψmin denotes the minimum
weight found so far, while ϕmin is the global minimum of ϕ. Hence, every string s with
ϕ(s) ≤ b′(ϕmin) also satisfies ϕ(s) ≤ ψbound in view of b′(ϕmin) ≤ b′(ψmin) = ψbound, because
b′ is a nondecreasing function.

It remains to be shown that all strings s ∈ S that satisfy ϕ(s) ≤ b′(ϕmin) and C0(s, x) ⊆ Σx,
are constructed by the algorithm. To this end, let s ∈ S be such a string. By Proposition 2,
there exist unique walks px in Gx compatible with s, for every x ∈ X . We will show by
induction that every proper prefix s′ of s is an input to the recursion step of the algorithm.

To this end, let s′x, sx be strings with ordx(sx) = 0 such that either s′ = s′xxsx holds, or
s′x = ε and sx = s if ordx(s) = 0. Using again Proposition 2, there exist a unique walk in
Gx compatible with s′x, and from the uniqueness of such walks we infer that this walk p′x is
a sub-walk of px. Since all edge weights are non-negative, we have w̃x(p′x) ≤ w̃x(px). One
can easily check that entering the recursion, the active vertex in Gx is the last vertex of p′x,
denoted v′x. In addition, ψ equals

∑

x∈X w̃x(p′x) at this point. Let u′x denote the vertex in px

that succeeds the last vertex of p′x.
The induction basis is trivial for s′ = 0. Assume that s′ = s′′x for some s′′ ∈ Σ∗ and x ∈ Σ.

Let p′σ denote the sub-walks in Gσ corresponding to s′ as defined above, and let p′′σ denote the
sub-walks corresponding to s′′. One can easily see that p′σ = p′′σ for all σ 6= x, while p′x equals
p′′x extended by the single vertex u′′x = v′x.

We have to show that x is an admissible character satisfying ψ + h̃x ≤ b′(ϕmin). Now, the
active vertex in Gσ is v′′σ = v′σ and eσ := (v′σ, u

′
σ) is an edge of pσ and, hence, of Gσ . From

the compatibility of s with pσ we infer that c′σ � comp(sσ) = cσ where c′σ denotes the last

component of the vector u′σ. This implies eσ ∈ Eσ and, hence, h̃x,σ = mine∈Eσ
w̃σ(e) ≤ w̃σ(eσ).

This proves

ψ + h̃x =
∑

σ∈X

w̃σ(p′′σ) + hx +
∑

σ∈X\{x}

h̃x,σ

= w̃x(p′′x) + hx +
∑

σ∈X\{x}

(

w̃σ(p′′σ) + h̃x,σ

)

≤ w̃x(p′x) +
∑

σ∈X\{x}

w̃σ(pσ)

≤
∑

σ∈X

w̃σ(pσ) = ϕ(s) ≤ b′(ϕmin) ≤ ψbound

as claimed.
We conclude that s′ with s′1 = s is also an input of the recursion step. We can show that

at this point, ψ equals ϕ(s)−h1, and it follows that s′1 = s is an output of the algorithm. �
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What are time and space requirements of the described algorithm? Because there can
be exponentially many solutions to WSC, the worst-case runtime is also exponential in the
number of detected peaks, as well as the maximal length of an output string lmax. In addition,
the runtime can still be exponential even if there is a unique solution to WSC, or no solution

at all. Since the de Bruijn graph Bk(Σx) has |Σx|
k+1 edges, we need O(mk+1) memory to store

the weighted sequencing graphs, where m := max{|Σx| : x ∈ X}. For n := max{|s| : s ∈ S}
we need O(n) memory in the recursion part of the algorithm. The critical factor is obviously
storing the sequencing graphs and in general prohibits the use of orders k > 2: For k = 3
and |Σx| = 200 we have to store 6.4 · 109 edge weights in memory. Work on this problem is
currently in progress.

The complete process of de-novo sequencing from mass spectrometry data can now be
performed as follows: Firstly, we generate detected compomer sets Cx for all x ∈ X as described
in (Böcker, 2003b). These sets are used in (7) to define characteristic compomer weights wx

that, in turn, allow us to build weighted sequencing graphs Gx. We use the algorithm of
Section 4.2 to generate all sample string candidates s that are solutions to WSC satisfying
C0(s, x) ⊆ Σx. Clearly, we can further evaluate the generated sample string candidates by, say,
an appropriate likelihood measure, taking into account MS data from all cleavage reactions.

Recall that for DNA sequencing, a heuristic used to analyze the mass spectrometry data
may or may not find the correct sample string. But this is not acceptable in the setting of
de-novo sequencing.

5. Results

We use two types of simulated mass spectrometry data to test the algorithm; application
of the method to “real-world” mass spectrometry data is in preparation. Firstly, we generate
random sample DNA sequences with uniform base distribution. Secondly, we use a region of
4 Mb around human ApoE (Lai et al., 1998) and randomly cut out sample DNA of the desired
length.

For our initial evaluation, we set the order of our sequencing graph to be k = 2, and choose
a sample DNA length of 200 nt. We simulate four cleavage reactions based on “real-world”
RNAse cleavage, where we generate only fragments of order at most k, assuming that peaks
from fragments of order k+ 1 and higher cannot be detected in the mass spectrum. Then, we
calculate masses of all resulting fragments and disturb peak masses by at most δmass = 0.3 Da,
the mass accuracy of the measurement.

We address false negative peaks in the following way: By Theorem 2 we have to guarantee
Σx ⊆ C0(s, x) for the correct sample string s, so we assume that all fragments y ∈ S(s, x) of
order ordx(y) = 0 can be detected in the simulated sample spectrum. Choose a number n of
false negative peaks. We remove a total of n peaks from the four simulated spectra, where
every peak corresponds to a fragment y ∈ S(s, x) with ordx(y) ≥ 1. Doing so, we have to
take into account fragment multiplicities, see (8) and (9). We conduct these simulations for
n = 0 corresponding to no false negative peaks, and for n = 5, 10, 15 false negative peaks.
Here, five false negative peaks represent approximately 1.25% of the peaks in the initially
simulated sample mass spectra. Even this small ratio of false negative peaks is reasonable
for applications, because we can use an extremely sensitive peak detection, since simulations
indicate that the detection of false positive peaks does not interfere with our method.

Next, we transform the spectrum into a set of compomers Cx as indicated in Section 2: For
every peak in the simulated mass spectrum, we calculate all compomers of order at most k that
might possibly create a peak with mass at most δmass off the perturbed signal mass. Note that
we do not simulate false positives (additional) peaks here. Finally, we use the characteristic
compomer weight wx as defined in (7), where wcomp

x ≡ 1 corresponds to counting peaks. We
use the algorithm from Section 4 to construct all string s with ϕ(s) ≤ b := n, where we choose
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the length bounds lmin := 190 and lmax := 210. For every parameter set, 1000 runs were
conducted.

# ambiguous Random sequence data ApoE sequence data
bases n = 0 n = 5 n = 10 n = 15 n = 0 n = 5 n = 10 n = 15

0 96.4 95.1 91.9 88.9 83.8 81.0 76.7 71.5
2 3.2 4.0 6.3 6.5 7.1 8.7 9.8 8.4
3 0 0.4 0 0.3 0.4 0.3 0.3 0.3
4 0.2 0 0.5 0.9 2.3 2.6 2.8 2.1
5 0.1 0 0.1 0.3 0.2 0.4 0.1 0.5

6–10 0.1 0 0.2 0.5 3.0 2.6 2.1 1.9
11+ 0 0.3 0.6 0.9 2.9 2.9 3.3 3.1

undecidable 0 0.2 0.4 1.7 0.3 1.5 4.9 12.2

runtime 2 ms 3 s 8 s 53 s 5 s 26 s 80 s 200 s

Table 1. Results of the simulations for k = 2, l = 200, and δmass = 0.3. For
a number m of ambiguous bases, we list the percentage of input strings where
the output shows m ambiguous bases. See text for details.

We present the results of our simulations in Table 1. Here we provide the percentage of
strings that were constructed with a certain number of ambiguous bases: An ambiguous base
is a column in the multiple alignment of all output strings, where the aligned output strings
differ. As for SFC, we found no case of a single ambiguous base. To limit the runtime of the
branch-and-bound algorithm, we stop the algorithm as soon as 5 · 107 branching events are
reached after approximately 20 minutes runtime, see below. In all other cases, the correct
input string was among the output string candidates by design. The average “runtime” of the
branch-and-bound algorithm for one input string was measured on an UltraSparc III processor
with 750 MHz.

One can see that reconstruction “accuracy” decreases for increasing numbers of false nega-
tive peaks. But this comes as no surprise: Informally, a high number of false negative peaks
moves the problem into the direction of spectrum order k = 1. We have seen in (Böcker,
2003a) that for k = 1, even short strings of length 100 bp cannot be uniquely recovered from
their mass spectra in most cases. The increase of “undecidable” input strings, on the other
hand, might limit the presented approach to a small number of false negative peaks. We
assume that this effect is less pronounced for k ≥ 3.

6. Discussion and improvements

We have introduced the Weighted Sequencing from Compomers Problem that stems from
the analysis of mass spectrometry data from partial cleavage experiments. WSC extends the
Sequencing From Compomers Problem introduced in (Böcker, 2003b) by taking into account
false negative peaks in the sample mass spectra. Although WSC is computationally difficult in
general, we have introduced an approach to perform de-novo sequencing from such data. The
introduced method uses weighted de Bruijn graphs to construct all DNA sequences that are
“compatible” with the observed mass spectra. We tested the performance of our approach on
simulated mass spectrometry data from random and biological sequences. Simulation results
indicate that the presented approach is capable of reconstructing the correct sequence in many
cases if the ratio of false negative peaks is small, and ambiguities are often limited to a small
number of bases. So, this approach may enable de-novo sequencing even when false negative
peaks must be taken into account in the mass spectrometry data.

As noted in Section 5, our simulations are only a first step in evaluating the power of
the presented approach. A more thorough simulation analysis is currently in progress, in
particular for spectrum order k = 3. In addition, to guarantee a reasonable runtime in the
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string construction recursion, better branch-and-bound conditions are necessary. Finally, the
condition C0(s, x) ⊆ Σx can be too restrictive in applications. Work on this is also in progress.
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