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SEQUENCING FROM COMPOMERS: USING MASS SPECTROMETRY
FOR DNA DE-NOVO SEQUENCING OF 200+ NT

SEBASTIAN BOCKER

ABSTRACT. One of the main endeavors in today’s Life Science remains the efficient sequencing
of long DNA molecules. Today, most de-novo sequencing of DNA is still performed using
electrophoresis-based Sanger Sequencing, based on the Sanger concept of 1977. Methods using
mass spectrometry to acquire the Sanger Sequencing data are limited by short sequencing
lengths of 15-25 nt.

We propose a new method for DNA sequencing using base-specific cleavage and mass spec-
trometry, that appears to be a promising alternative to classical DNA sequencing approaches.
A single stranded DNA or RNA molecule is cleaved by a base-specific (bio-)chemical reaction
using, for example, RNAses. The cleavage reaction is modified such that not all, but only
a certain percentage of those bases are cleaved. The resulting mixture of fragments is then
analyzed using MALDI-TOF mass spectrometry, whereby we acquire the molecular masses of
fragments. For every peak in the mass spectrum, we calculate those base compositions that
will potentially create a peak of the observed mass and, repeating the cleavage reaction for
all four bases, finally try to uniquely reconstruct the underlying sequence from these observed
spectra. This leads us to the combinatorial problem of Sequencing From Compomers and,
finally, to the graph-theoretical problem of finding a walk in a subgraph of the de Bruijn
graph. Application of this method to simulated data indicates that it might be capable of
sequencing DNA molecules with 200+ nt.

1. INTRODUCTION

Suppose we want to reconstruct an (unknown) string s over the alphabet ¥. Multiple copies
of s are cleaved with a certain probability whenever a specific character x € ¥ appears, com-
parable to the Partial Digestion Problem (Waterman, 1995). Then, every resulting fragment
y is scrambled by a random permutation so that the only information we are left with is how
many times y contains each character o € 3. In addition, we discard all fragments y that
contain the cleavage character more than k times for a fixed threshold k. This threshold is
usually chosen very small, for example k € {2,3,4}. If we are given such reduced and scram-
bled fragment sets for every character x € ¥, can we uniquely reconstruct the string s from
this information? The main challenge for such reconstruction is not scrambling the fragments,
but discarding fragments containing too many cleavage characters. Nevertheless, it is often
possible to reconstruct the string.

The above problem arises in the context of sequencing DNA by the use of mass spectrometry.
Today, most de-novo sequencing of DNA without any a priori information regarding the
amplicon sequence under examination, is still performed based on the Sanger concept, see
Sanger et al. (1977). Maxam and Gilbert (1977) proposed a method utilizing base-specific
chemical cleavage, but this method has not been viable for the dramatically increased demand
in DNA sequencing. Both sequencing technologies use gel or capillary electrophoresis to
acquire the experimental data. Other approaches like combining the Sanger concept with
mass spectrometry for data acquisition (Koster et al., 1996), or PyroSequencing (Ronaghi
et al., 1998) are limited by the short sequencing length of 15-25 nt, while Sequencing by
Hybridization (SBH) (Bains and Smith, 1988; Drmanac et al., 1989; Lysov et al., 1988) never
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became practical due to the high number of false reads as well as the current costs of SBH
chips.

Here we propose a new approach to DNA sequencing that is not based on the Sanger con-
cept, using MALDI-TOF mass spectrometry to acquire the experimental data. Since MALDI-
TOF mass spectrometry reads can be obtained in milliseconds to seconds, compared to hours
for electrophoresis reads, and mass spectrometry generally provides reliable and reproducible
results even under high throughput conditions, our approach seems to be a promising alterna-
tive to traditional electrophoresis-based de-novo sequencing. We have applied our method to
simulated mass spectra generated from random as well as biological sequences, and simulation
results indicate high chances of successful reconstruction even when sequencing 200 and more
nucleotides. The reconstruction accuracy, however, highly depends on the underlying sample
sequence.

The main focus of this paper is to give a suitable mathematical formulation for the problem
of reconstructing the sample sequence from compomers — that represent the randomly scram-
bled fragments — and to propose a branch-and-bound algorithm that is usually sufficient to
reconstruct the sequence in reasonable runtime.

2. EXPERIMENTAL SETUP AND DATA ACQUISITION

Suppose we are given a target DNA molecule (or sample DNA) of length 100-500 nt. Using
polymerase chain reaction (PCR) or other amplification methods we amplify the sample DNA.
We assume that we have a way of generating a single stranded target, either by transcription
or other methods,! and we talk about sample DNA even though the cleavage reaction might
force us to transcribe the sample to RNA. We cleave the single stranded sequence with a
base-specific chemical or biochemical cleavage reaction: Such reactions cleave the amplicon
sequence at exactly those positions where a specific base can be found. Such base-specific
cleavage can be achieved using endonucleases RNAse A (Rodi et al., 2002) and RNAse T1
(Hartmer et al., 2003), uracil-DNA-glycosylase (UDG, see von Wintzingerode et al., 2002),
pn-bond cleavage (Shchepinov et al., 2001), and others.

We modify the cleavage reaction by offering a mixture of cleavable versus non-cleavable “cut
bases,” such that not all cut bases but only a certain percentage of them will be cleaved. The
resulting mixture contains in principle all fragments that can be obtained from the sample
DNA by removing two cut bases, cf. Fig. 1 for an example. We call such cleavage reactions
partial.

MALDI (matrix assisted laser desorption ionization) TOF (time-of-flight) mass spectrom-
etry (MS for short) is then applied to the products of the cleavage reaction, resulting in a
sample spectrum that correlates mass and signal intensity of sample particles (Karas and
Hillenkamp, 1988).2 The sample spectrum is analyzed to extract a list of signal peaks with
masses and intensities.

We can repeat the above analysis steps using cleavage reactions specific to all four bases
— alternatively, we can apply two suitably chosen cleavage reactions twice, to forward and
reverse strands. So, we obtain up to four mass spectra, each corresponding to a base-specific
cleavage reaction. We repeat the following steps of the analysis for every cleavage reaction.

If the sample sequence is known, then exact chemical results of the used cleavage reactions
and, in particular, the masses of all resulting fragments are known in advance and can be
simulated by an in silico experiment. Clearly, this holds up to a certain extent only, and

1The method can easily be extended to deal with double stranded data, but we will concentrate in the
following on single stranded data.

2More precisely, MALDI-TOF mass spectrometers measure “mass per charge” instead of “mass” of sample
particles. To simplify matters, we speak of “mass” instead of “mass per charge” because most particles in a
MALDI mass spectrum will be single charged. Even more precisely, MALDI-TOF MS does not provide us with
masses but only with time-of-flight of sample particles, so calibration (correlation of time-of-flight and mass)
has to be determined beforehand.
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FIGURE 1. Partial cleavage using RNAse A with dCTP, rUTP, and dTTP.

measured spectra often differ significantly from the in silico predicted spectrum. Compared
to other mass spectrometry applications, though, there is only a comparatively small number
of differences between the simulated spectrum and the measured one.

Having said that, we can also solve the inverse problem: For every peak detected in the
measured mass spectrum, we can calculate one or more base compositions (that is, DNA
molecules with unknown order but known multiplicity of bases) that could have created the
detected peak, taking into account the inaccuracy of the mass spectrometry read. Therefore,
we obtain a list of base compositions and their intensities, depending on the sample DNA and
the incorporated cleavage method. We want to stress that this calculation is simple when we
are dealing with DNA or RNA, because the alphabet size is small and the average mass of a
base (about 300 Dalton®) is much higher than the maximal mass difference between any two
bases (about 50 Da). A simple algorithm based on searching X + Y (Cosnard et al., 1990)
can compute all base compositions in time O(m?), where m is the mass of the detected peak.
Every base composition with mass sufficiently close to the detected peak must be seen as a
potential explanation of the peak, and we use all such base compositions independently in the
following.

Clearly, we cannot use the trivial approach of de-novo sequencing because of the exponential
number of sequences: In this approach, we would (a) simulate the mass spectra for every
potential sequence, for example s € ¥ for some given length I, and (b) compare the resulting
simulated spectra against the measured mass spectrum, finding the one that gives a best fit of
the measured spectrum. Here a sequencing length of 200 nt results in about 2.6 - 101?° mass
spectra that we have to test for every cleavage reaction.

2.1. Limitations. The experimental setup described above has been successfully applied to
problems such as Pathogen Identification (von Wintzingerode et al., 2002) or SNP discov-
ery (Bocker, 2003; Rodi et al., 2002). There, information on the sample sequence(s) under
consideration is known beforehand, so that the requirements to the mass spectrometer (with
regards to calibration accuracy and resolution) are comparatively small. Furthermore, we can
use the additional information provided by the known reference sequence to reduce the algo-
rithmic complexity of answering such questions. In the setting of this paper, though, almost
no information but the mass spectrometry data itself is available.

3Dalton (Da), a unit of mass equal to - the mass of a carbon-12 nucleus, about 0.992 times the mass of a

single H atom.
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In real life, several limitations characteristic for mass spectrometry and the experimental
setup make the problem of de-novo sequencing from mass spectrometry data more challenging:

(i) Current mass spectrometers limit the mass range in which particles can be detected:
Signals above 8000 Dalton (= 25 nt) tend to get lost in the spectrum.

(ii) Using MS, we can determine masses up to some inaccuracy only. Novel MS technologies
like OTOF (orthogonal time of flight) MS allow us to measure particle masses with
an inaccuracy of less than 0.3 Da, while current (ATOF, axial time of flight) mass
spectrometers can show an inaccuracy of 1-2 Da under high throughput conditions.

(iii) Because MS spectra are noisy, it is often impossible to distinguish between signal peaks
with low intensities and noise peaks randomly found in the spectrum. Henceforth, one
has to choose between minimizing either the number of false positive, or the number
of false negative detected peaks.

(iv) For a fixed cleavage reaction, several potential base compositions can have nearly
identical masses. In the following, we independently use every potential explanation
of a mass signal as a base composition. Therefore we transform a single mass signal
found in the mass spectrum, into a list of base compositions with masses sufficiently
close to the signal mass, depending on the sample sequence and the incorporated
cleavage method.

(v) Using partial cleavage results in an exponential decay (in the number of uncleaved cut
bases) of signal intensities in the mass spectrum, so peaks from fragments containing
many uncleaved cut bases will be difficult or impossible to detect.

(vi) We often know 3-20 terminal bases of the sample string in advance. This can be
due to primer or promoter regions used for amplification, transcription, or the like.
Furthermore, the masses of terminal fragments located at beginning or end of the
sample sequence in general differ from those of non-terminal fragments, and it is often
possible to uniquely identify such fragments via their masses.

Depending on the underlying model of fragment ionization, we can calculate useful ratios
of cleaved vs. uncleaved cut bases: Let r € [0, 1] denote the portion of cleaved cut bases and
(1 — r) the portion of uncleaved cut bases, so that the ratio equals r : (1 — r). Useful choices
for r are r = %, %, and %, because these choices maximize peak intensities of certain types
of fragments in the mass spectrum. In addition, the use of small r <« % is not recommended
because then, it becomes difficult to discriminate between so-called noise peaks and any type

of signal peaks in the mass spectrum.

3. METHODS

3.1. The compomer spectrum. Let s = s;...s, be a string over the alphabet 3 where
|s| = n denotes the length of s. We denote the concatenation of strings a, b by ab, the empty
string of length 0 by e.

If s = axb holds for some strings a, x, b then x is called a substring of s, a is called a prefiz
of s, and b is called an suffix of s. We define the number of occurrences of x in s by:

ord,(s) := max{k : there exist sg,..., s, € X* with s = sgzsiz... xsk}

Hence, z is a substring of s if and only if ord,(s) > 1. For # € ¥! ord,(s) simply counts
the number of appearances of x in s. For general z, this is not necessarily the case, because
ord,(s) counts non-overlapping occurrences only.

For strings s,z € ¥* we define the string spectrum S(s,z) of s by:

(1) S(s,x) := {y € T* : there exist a,b € £* with s € {yzb, azyzb,azy}} U {s}

So, the string spectrum S(s,x) consists of those substrings of s that are bounded by x or by
the ends of s. In this context, we call s sample string and x cut string, while the elements
y € S(s,z) will be called fragments of s (under x).
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Ezample 1. Consider the alphabet ¥ := {0, A, C, G, T, 1} where the characters 0, 1 are exclu-
sively used to denote start and end of the sample string. Let s := 0ACATGTG1 and x := T,
then:

S(s,z) = {0ACA,G,G1,0ACATG, GTG1,0ACATGTG1}

The use of special characters 0, 1 to uniquely denote start and end of the sample sequence
is motivated by the observation that terminal fragments in general differ in mass from inner
fragments with otherwise identical sequence, see Lim. (vi). We make use of these characters
throughout this paper to reduce the symmetry of the problem, see Example 2 below.

Following (Bocker, 2003), we introduce a mathematical representation of base compositions:
We define a compomer to be a map ¢ : ¥ — Z, where Z denotes the set of integers. We say
that ¢ is a natural compomer if ¢(o) > 0 holds for all ¢ € ¥. For the rest of this paper, we
assume that all compomers are natural compomers, unless explicitly stated otherwise. Let
C+(X) denote the set of all natural compomers over the alphabet ¥. Clearly, C4(X) is closed
with respect to addition, as well as multiplication with a scalar n € N, where N denotes the
set of natural numbers including 0. For finite 3, in particular, C4(X) is isomorphic to the set
NP>, We denote the canonical partial order on the set of compomers over ¥ by =, that is,
¢ =< if and only if ¢(o) < (o) for all o € X. Furthermore, we denote the empty compomer
¢ =0 by 0.

Suppose that ¥ = {o1,...,0%}, then we use the notation ¢ = (01);, ... (0k)i, to represent
the compomer ¢ : 0 — i; omitting those characters o; with i; = 0. For DNA, ¢ represents the
number of adenine, cytosine, guanine, and thymine bases in the compomer, and ¢ = A;C;G; T
denotes the compomer with ¢(A) =14, ..., ¢(T) = [. Since the characters 0, 1 appear at most
once in any fragment, we usually omit the indices for these two characters.

The function comp : ¥* — C4(X) maps a string s = s1... s, € X* to the compomer of s by
counting the number of characters of each type in s:

comp(s) : ¥ — N, O'l—>‘{1§’i§|5|;5i:0'}|

Note that compomers comp(-) are also called Parikh-vectors, see (Autebert et al., 1997).
The compomer spectrum C(s,z) of s consists of the compomers of all fragments in the string
spectrum:

(2) C(s,x) := comp(S(s,z)) = {comp(y) : y € S(s,z)}
For Example 1 we can compute:
C(S,T) = {0A2C1, Gl, Gl]_, 0A2C1G1T1, G2T11, 0A2C1G2T21}

Now, the following question arises: For an unknown string s and a known set of cleavage
strings X', can we uniquely reconstruct s from its compomer spectra C(s,z), = € X? One
can easily see that this problem becomes trivial if there exist characters 0, 1 that uniquely
denote the start and end of the sample string — then, for suitable X like X = %!\ {0,1},
the subsets {c € C(s,z) : ¢(0) = 1} are sufficient to reconstruct s. This fact was exploited
in the Maxam-Gilbert approach (1977). Furthermore, this problem is related to, and appears
to be computationally at most as hard as, the well-known Partial Digestion Problem (PDP,
see Waterman, 1995): There, one cleaves a sample sequence using restriction enzymes, and
measures the lengths of the resulting fragments. It seems likely that we can use algorithms
efficiently tackling PDP (Skiena et al., 1990; Skiena and Sundaram, 1994), to solve the above
problem in reasonable runtime.

Unfortunately, this approach must fail when applied to experimental MS data, because our
theoretical approach of compomer spectra does not take into account the limitations of mass
spectrometry and partial cleavage mentioned in the previous section. As we have seen there,
Lim. (v) suggests that the probability that some fragment y cannot be detected, strongly
depends on the multiplicity of the cut string x as a substring of y. In fact, signals from
fragments with ord,(y) above a certain threshold will most probably be lost in the noise of
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the mass spectrum and, due to Lim. (iii) and (iv), this threshold will be rather small — say,
k < 4 — in real-life applications. This leads us to the following two definitions: For strings
s,z and k € NU {oco}, we define the k-string spectrum of s, where k is called the order of the
string spectrum, by:

(3) Sk(s,z) :={y € S(s,z) : orde(y) <k}
The k-compomer spectrum of s is, in analogy to above, defined by:
(4) Cr(s,x) := comp (Sk(s,z)) = {comp(y) : y € S(s,2), ordy(y) <k}

If the cut string is a single character x € X, we infer C(s,z) = {c € C(s,z) : ¢(x) <
For Example 1 we calculate Cy(s,T) = {0A3Cy, Gy, G11}, Ci(s,T) = Co
{0A2C1G1T1, GQTll}, and CQ(S,T) = Cl(s, T) U {0 A2C1G2T21} = C(S, T).
Under what conditions can we uniquely reconstruct a sample string s from its compomer
spectra Ci(s,z), © € X7 One can easily see that different strings can share the same
k-compomer spectra:

Ezample 2. Let ¥ := {0,A,B,1}. Then, we cannot uniquely reconstruct the sample string s =
0BABAABI1 from its complete cleavage compomer spectra Cy(s, A) and Cy(s,B), because the
string OBAABABI1 leads to the same spectra. Analogously, the string s = 0BABABAABAB1
cannot be reconstructed from its compomer spectra Ci(s,z) for z € {A,B}, and we can create
such examples for every order k. Furthermore, every string s and its reverse string have
identical compomer spectra if all cut strings have length one or — more generally — if all cut
strings are symmetric.

Yet, the question stated above does not take into account the problem of false positives:
That is, compomers in the set C, that do not correspond to actual fragments of the sample
sequence. Due to Lim. (i) and (iv), transforming a mass spectrum into a set of compomers
will in general create huge numbers of false positive compomers, since there is usually only
one sample fragment corresponding to a peak, but there may be many more compomers with
almost identical mass. This number is potentially further increased in view of false positive
peaks, see Lim. (iii).

To address this issue we can formulate an optimization problem as follows: For a fixed order
k€ NU{oo} let X C ¥* be a set of cut strings, and let C, C C4(X¥) be compomer sets for
x € X. Let S C ¥* be the set of sample string candidates. Now, find a string s € S with
Cr(s,z) C Cy for all z € X' that minimizes ), |C; \ Cx(s,)|. A potential choice of S C ¥*
are all strings s such that |s| lies in some given interval I, or strings with prefix 0 and suffix
1. In addition, we may want to search for those strings s of minimal length.

We cannot offer a solution to this problem, but note that the (purely combinatorial) opti-
mization formula f(s) := > . [Cs \ Ci(s, )| does not adequately reproduce the experimen-
tal “truth”: In applications, a tiny peak detected in a mass spectrum can account for several
compomers in the corresponding compomer set due to Lim. (iv), and trying to minimize the
number of “unused” compomers contradicts the experimental observation. To this end, it
makes more sense to find all “good” strings that satisfy at least the inclusion condition:

Sequencing From Compomers (SFC) Problem. For a fixed order £ € N U {oc}, let
X C ¥* be the set of cut strings and, for all z € X, let C, C C4(X) be a compomer set.
Finally, let S C »* be the set of sample string candidates. Now, find all strings s € S that
satisfy Cp(s,z) C Cy for all z € X.

Note first that this problem differs substantially from PDP and related problems, and
approaches for solving PDP cannot be modified to tackle SFC: Such approaches (Skiena et al.,
1990; Skiena and Sundaram, 1994) rely on the fact that fragments of s where exactly one base
in s has been cleaved, can be detected. Unfortunately, these are precisely the fragments that
will always be missing from the compomer sets C, due to Lim. (v)! So, SFC is somewhat
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“in-between” the Partial Digestion Problem and the Double Digestion Problem (DDP, see
Pearson, 1982; Waterman, 1995).

Second, it is trivial to find solutions to the SFC Problem in case S = X*, because s =
e always satisfies the inclusion conditions. So, S should be chosen to exclude such trivial
solutions.

Note that even small compomer sets may lead to a huge number of solutions, that is,
exponentially many in the fixed length of the reconstructed strings:

Example 3. Let ¥ := {A,B}, k := 0, and S := X" for some n € N; furthermore X := !,
Ca := {B1}, and Cp := {A1,As}. Every string s € S that is an arbitrary concatenation
505152 ... s, where so € {A,AA} and s; € {BA,BAA} for j =1, ...,k satisfies the conditions
Co(s,A) C Ca and Cy(s,B) C Cp.

In applications, SFC is of interest because there hopefully are fewer solutions for exper-
imental data and, as mentioned above, the optimization problem we introduced, does not
capture all aspects of the connection between sample sequences and mass spectra. A reason-
able approach here is to judge every solution s € S of SFC by, say, an adequate probability
measure.

3.2. The undirected sequencing graph. In this section, we introduce undirected sequenc-
ing graphs to tackle the SFC Problem of order k£ = 1. We shall see in the following section that
this concept can be seen as a special case of the more elaborate directed sequencing graphs.
For the sake of lucidity, we concentrate on the undirected case first.

In the following, we often limit our attention to cut strings z of length 1 to simplify our
constructions. Doing so, we still cover all (bio-)chemical cleavage reactions mentioned in
Section 2. We indicate in Section 6 how to extend our constructions to arbitrary cut strings
x € X*. Note that we do not distinguish between the character x € ¥ and the corresponding
string of length 1.

An (undirected) graph consists of a set V' of vertices, and a set E C (‘2/) UV = {{u,v} :
u,v € V} of edges. An edge {v} for v € V is called a loop. We suppose that such graphs are
finite, that is, have finite vertex set. A walk in G is a finite sequence p = (po,p1,...,pn) Of
elements from V' with {p;—1,p;} € E for all i = 1,...,n. Note that p is in general not a path
because pg,...,p, do not have to be pairwise distinct. We still use the letter p to denote a
walk for convenience. The number |p| := n is defined to be the length of p.

Let C C C4+(X) be an arbitrary set of compomers, and let z € ¥ be a single cut string
of length one. We define the undirected sequencing graph G,(C,z) = (V, E) as follows: The
vertex set V' consists of all compomers ¢ € C such that ¢(z) = 0 holds. The edge set E consists
of those {u,v} with u,v € V that satisfy:

(5) u+comp(z)+v €C
The vertices u, v are not required to be distinct in this equation.

Ezample 4. For ¥ := {0,A,C,G, T, 1}, s :== 0CTAATCATAGTGCTG1, and z := T we can

calculate the compomer spectrum of order 1:
C:=Ci(s,T) = {0C1,0A5C1 T, Ay, A3C Ty, A1Cy,
A2C1G1 Ty, A1G1, A1C1G2Ty, C1Gy, C1G2oT1, Gy 1}
We have depicted the corresponding sequencing graph G, (C,T) in Figure 2.
How are sequencing graphs related to the SFC Problem? To this end, we say that a string
s € ¥* is 1-compatible with a compomer set C C C4 (%) under z € X1 if Cy(s,x) C C holds.
Then s is a solution to the SFC Problem of order 1 with respect to z. And, we say that s

is compatible with a walk p = pg...p; in the sequencing graph G, (C,x) if there exist strings
80,...,8; € X* such that

(6) § = S0XTS1TST . .. XS]
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0C, A, C,G, G,1

FIGURE 2. The sequencing graph G(C, T) from Example 4.

satisfying | = |p| and comp(s;) = p; for j = 0,...,1. This definition implies ord,(s;) = 0 for
Jj=0,...,1. We call strings so,...,s; satisfying (6) and ord,(s;) = 0 for all j =0,...,l an
x-partitioning of s. For z € X!, there exists exactly one z-partitioning of s.

In Example 4, the walk (0C1, Ag, A1Cq, A1Gq, G11) is compatible with our input sequence s,
but other sequences like 0OCTAATCGTG1 or 0OCTAATCGTGATGCTG1 are also compatible
with walks in G (C,T).

The next lemma follows from the above definitions, see Lemma 3 for a proof:

Lemma 1. Let s € ¥* be a string and C C C(X) a set of compomers. Then, s is 1-compatible
with C under x € X' if and only if there exists a walk p in Gy(C,x) such that s is compatible
with p. Furthermore, this walk p is unique.

Proposition 2. For every walk p of a sequencing graph G,(C,z) there exist one or more
sequences s € X* that are compatible with p and, hence, 1-compatible with C.

Although basic, the above lemma allows us to search for all strings 1-compatible with a
compomer set by simply building all walks in a graph if our set of cut strings X equals
¥\ {0,1}: Let C, be compomer sets and let p, be walks in G(Cp,z) for all z € X. If a
sample string s € X* is compatible with p, for every x € X, then s is uniquely determined
by this property: For the prefix  of s of length 1, we infer from (6) that for every string s’
compatible with p,., z is also a prefix of s’. Repeating this argument leads to s = s’ as claimed.

We do not provide an algorithm here to build 1-compatible strings based on the above
observation but refer the reader to the next section where we tackle the more general case of
directed sequencing graphs.

3.3. The directed sequencing graph. A directed graph consists of a set V of vertices and
aset £ C V2=V xV of edges. An edge (v,v) for v € V is called a loop. Again, we limit
our attention to finite directed graphs with finite vertex sets. A walk in G is a finite sequence
p = (po,P1,---,Pn) of elements from V with (p;—1,p;) € E for all : = 1,...,n, and |p| :=n
denotes the length of p.

The directed sequencing graphs defined below will be edge-induced subgraphs of the de
Bruijn graph (de Bruijn, 1946): For an alphabet 3 and an order k > 1, the de Bruijn graph
Bj(X) is a directed graph with vertex set V = X* and edge set

E={(u,v) €V?: ujig=v; forall j=1,....,k—1}

where v = (u1,...,u;) and v = (v1,...,v;). In the following, we denote an edge
((el, coek), (e, ... 7€k+1)) of Bx(X) by (e1,...,exs1) for short.

For an arbitrary set of compomers C C C;(X) and a cut string 2 € ¥ of length one, we define
the directed sequencing graph Gy (C,z) of order k > 1 as follows: Gi(C,x) is an edge-induced
sub-graph of Bj(X,) where

(7) Yy:={ceC : c¢(x) =0},



SEQUENCING FROM COMPOMERS 9

and an edge e = (e1,...,exq1) of Bx(X,) belongs to Gi(C,z) if and only if the following
condition holds:

(8) eit+cy e+t tei_1+et+e; €C forall 1<i<j<k+1
where ¢, := comp(z). By definition, the vertex set of G%(C,z) is a subset of (X,)*.

Ezample 5. Let C := Ca(s,T), where s = 0CTAATCATAGTGCTG1 was defined in Exam-
ple 4. We have depicted the directed sequencing graph Gs(C,T) in Figure 3. Note that
there exist two paths connecting 0C; and G11 in G(C,T), but only one directed walk from
(0C1,Ag) to (C1G1,G11) in G2(C, T): The ambiguity of the compomer AyC;G1 Ty is resolved
in Co(s,T) by the existence of compomers A;C1G1Ty and AyCoGo Ty, and the non-existence
of compomers 0A3;CoG1 Ty and AsC1GoTH1.

(0C,.A,)

(A,,0C)) \‘mAC)
2’1\ 207V

A
(A,C,A,) (A.C,A.G.)

(A.G,,A,C,) \‘mece)
17171 \ 1 1’\1A1
(Q@AQN\ (C,G,,G,1)

(G,1,C,G,)

FIGURE 3. The directed sequencing graph G5(C,T) from Example 5.

We want to point out that the alphabet ¥, of the underlying de Bruijn graph does not
coincide with the sequence alphabet ¥, unlike the Sequencing By Hybridization approach
introduced by Pevzner (1989), but instead consists of those compomers ¢ € C with ¢(x) = 0.
The main distinction between SFC and SBH, though, is that we search the de Bruijn graph
for walks instead of Eulerian paths:

e We have to deal with many false positive edges here, because of “noise” peaks, misin-
terpreted peaks, and misinterpreted compomers.
e We do not know the multiplicity of compomers in C,, and compomers ¢ € C, of small
“order” will regularly correspond to two or more fragments of the sample sequence.
Analogously to the previous section, we say that a string s € X* is k-compatible with a
compomer set C C C,(X) under # € X! if Cx(s,z) C C holds. Note that by definition, such a
string s satisfies the condition of the Sequencing From Compomers Problem of order k. The
string s is called compatible with a walk p = pg...pp in the sequencing graph Gi(C, z) if the
x-partitioning so, ..., s, € X* of s from (6) satisfies [ = |p| + k — 1 and

(9) pj = (Cj,Cj.H,...,CjJrk,l) fOI‘ jZO,...,’p’ s

where ¢; := comp(s;) for j = 0,...,1. Recall that ord,(s;) = 0 must hold for j = 0,...,|p|.
We note that the definitions of “l-compatible” in the previous section, and “k-compatible”
for k = 1 are equivalent, and so are the graphs G, (C,z) and G1(C,x): For every edge {u, v}
with u # v in G,(C,x) there exist two edges (u,v) and (v,u) in G1(C,z), and for every loop
{v} in G4(C,x) there exists a loop (v,v) in G1(C,x).

Ezxample 6. For s := 0BABABABAABABABLI1 created analogously to Example 2, the graph
G2(C,B) for C := Ca(s,B) is depicted in Figure 4. If we remove the (superfluous) vertices
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(A1,0) and (1,A;), there still exist two walks of length 6 from (0A;, A1) to (A1, A1) that
traverse all edges of the resulting graph; the two sequences compatible with these two walks
are our initial sequence, plus the “stutter” sequence 0BABABAABABABABI1, respectively:
The positions 7 and 8 of s are exchanged in this string.

FIGURE 4. The directed sequencing graph G3(C,B) from Example 6.

Lemma 3. Let s € ¥* be a string with ord,(s) > k for x € X', and let C C C(X) be a set
of compomers. Then, s is k-compatible with C under x if and only if there exists a walk p in
the sequencing graph Gy (C,x) such that s is compatible with p. Furthermore, this walk p is
unique.

Proposition 4. For every walk p of a sequencing graph Gy(C,z) there exist one or more
sequences s € X* compatible with p and, hence, k-compatible with C.

It is straightforward to derive the proof of Lemma 3 from the definitions:

Proof of Lemma 3. Suppose that s is k-compatible with C, and let sg,...,s € X* be the
z-partitioning of s. Using equation (9) we can define [ — k + 1 compomers po, . .., p_r41 € CF,
then the definition of Cy(s,z) implies {comp(s;) : 7 = 0,...,l} € ¥, and, hence, that
p = (po,...,Pi—k+1) is a walk in the de Bruijn graph B(X,). By definition of Cx(s,z), (8)
must hold for every edge (e1,...,ex11) of p, so p is also a walk in Gi(C,x) as claimed. If s is
compatible with paths p,p’ in Gi(C, z) then (9) implies p = p'.

Suppose now that s is compatible with a walk p in Gi(C,z). Let sg,...,s € X* be the
x-partitioning of s, then [ = |p| — k + 1 must hold. Let y € S(s,z) be a fragment of s with
ord;(y) < k, then there exist indices ig, jo with jo —i9 < k such that y = s;,x...xs;,. Let
J = min{io, |[p| — k} then by (9), the (5 + 1)-th edge of p is

e = ((comp(s;). ..., comp(s; k1)), (comp(sjs1), ., comp(s;ir)) )
and, since e is an edge of G (C, ), we infer from (8) that
comp(s;,) + comp(z) + - - - + comp(z) + comp(s;,) € C
must hold and, hence, comp(y) € C. We conclude Ci(s,x) C C as claimed. O

For a given set of compomers, how sparse is the corresponding sequencing graph in general?
Clearly, the de Bruijn graph of order k over the alphabet X, has \Ex\k vertices and \Exlkﬂ
edges. Unfortunately, the number of vertices and edges of a sequencing graph may be of the
same order as those of the de Bruijn graph itself even for small compomer sets of size O(k |£,])
and “short” strings of length O(n? + kn), as the following two lemmata show:



SEQUENCING FROM COMPOMERS 11

Lemma 5. Let ¥ be an alphabet of size |S| > 2, x € X' a cut string of length one, and
let k € N be the fized order. Then, for every n € N there exist compomer sets C,, C C4 (%)
satisfying

(10) IChl=(k+1)(n+1) and |E;=n+1 for ¥, ={ceC, : c(z)=0}

such that the corresponding sequencing graph Gp(Cn,x) has ("Zk)

("Zﬁ#) = O(nF 1) edges.

= O(n*) wertices and

We omit the proofs of this and the following lemma and only note that the sets
(11) Cn:={ApB; :m=0,...,n and i =0,...,k}
satisfy the conditions of the above lemma for z := B.

Lemma 6. There exist strings s € X* over the alphabet ¥ = {A, B} of length O(n?+kn) with
Ci(s,B) =C,, as defined in (11).

In view of Lemmata 5 and 6, one can suspect that it is impossible to perform de-novo
sequencing from compomers. Fortunately, this seems not to be the case neither for random
sequences nor for biological sequence data, see Section 5.

4. ALGORITHM

Let ¥ be a constant and finite alphabet where 0,1 € ¥ uniquely denote the first and last
character of our sample strings. Let X = X!\ {0,1} be the set of cut strings, and k € N the
fixed order. We are given sets of compomers C, for x € X and a set S C ¥* of strings, and
want to solve the Sequencing From Compomers Problem, that is, find all sample strings s € S
satisfying Ci(s,z) C C, for all z € X. We further concentrate on the case especially relevant
for applications, where

(12) S={s€X" : lnin <|5| < lmax, and s =0s"1 for some s’ € (X\ {0,1})"}

contains all strings of length in a given interval. This is because we either know the approxi-
mate length of the unknown string due to our experimental setup, or we can easily estimate
it if necessary.

To solve SFC, we present a depth-first search that backtracks through sequence space,
moving along the edges of the sequencing graphs in parallel. In this way, we implicitly build
walks in the directed sequencing graphs of order k that are compatible with the constructed
sequences. Because of Lemma 3, these sequences are in fact k-compatible with C, under z
for every x € X and, hence, are solutions to SFC. In every recursion step of the algorithm,
we attach every character x € X to the previously known string s. This forces us to do an
edge transition in the sequencing graph G (C,,z), and we can stop the recursion if this edge
transition is not possible. In addition, we do another branch-and-bound check by testing if it
will be possible in the future to do edge transitions in all other sequencing graphs.

4.1. Building the sequencing graphs. First, we have to build the sequencing graphs G, :=
Gr(Cy,x) for z € X. For ¥; = {c € C; : c(xr) = 0} we search for all those vectors e €
(3.)FF! that satisfy (8). We make use of the trivial approach here: For every (k + 1)-
tuple (eq,...,exr1) € (B2)F! we test if it satisfies equation (8) with C = C,. This can be
performed in O(\EwlkJrl k2) time using a hash table to check ¢ € C, and, since ¥, and k are
small in applications, this approach is sufficient here. If the condition is satisfied, we add
(e1,...,ex) and (ea,...,exr1) to the vertex set of G, and we add (eq,...,ex+1) to the edge
set of G,.. A faster algorithm for building G (C,, x) is to iteratively build the graphs G (C,, x)
fork =1,...,k.

For applications, we have to slightly modify the construction of our sequencing graphs G:
Firstly, Gi(Cy, z) contains superfluous edges and vertices (cf. Example 6), because we know
from (12) that characters 0,1 are uniquely used to denote beginning and end of any string
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s € S. So, we can limit the above calculations to edges e = (eq, ..., ex+1) such that e;(0) < 1,
ej+1(0) =ej(1)=0for j=1,...,k, and ex41(1) < 1.

More important, there remains one last problem: We do not know where to start in the
sequencing graph! To this end, let * ¢ ¥, denote a special source character. We add the source
vertex (x,...,*) to G, but further edges and vertices are necessary to enter the “regular” part
of the graph: A source edge is an edge e = (eq, ..., exy1) of the de Bruijn graph By (Ex U {*})
such that there exists some k € {2,...,k+ 1} with:

eci=xforj=1,...,k—1,ande; #xfor j=r,k+1,....k+1
e e.(0)=1,¢€j41(0) =¢;(1)=0for j=r,k+1,...,k, and ex41(1) <1
e Equation (8) holds only for k <i<j<k-+1

We add all source edges to the edge set of GG, and we add all induced vertices to the vertex

set of G,: These induced vertices are of the form (x,...,*,vx,...,v;) where 2 < k < k and
v,(0) = 1. Note that the resulting graph G, is a subgraph of By, (Ex U {*}) Now, we can use
the source vertex (x,...,*) of G, as our start vertex vStrt,

We do not have to explicitly construct a sink, since the recursion below terminates as soon
as we can add the end character 1. Note again that due to Lim. (vi), the masses of fragments
from beginning and end of the sample string in general differ from those of all other fragments
in applications, what has to be taken into account when computing the sets C,.

4.2. The depth-first search. Now, we start the recursion with the string s := 0. We
initialize the current vertices v, := v3%* for all z € X.

In the recursion step, let s be the current sample string, and for all z € X, let v, be the
current active vertices in the sequencing graph G,. Let s, be the unique string satisfying
ord,(s;) = 0 such that either zs, is a suffix of s, or s, = s if ord,(s) = 0. Set ¢, := comp(s,).

o If [s| + 1 > iy and we can do an edge transition to an end vertex in all sequencing
graphs G, for x € X, then output sl as a sequence candidate.

o If [s| < lax, then let ¥, C ¥ be the set of admissible characters as defined below. For
every admissible character « € 3, do a recursion step: Replace s by the concatenation
sx; and in the sequencing graph G, replace the active vertex v, = (v1,v9,...,v;) by
(va,...,v, c;) that is a vertex of Gj.

e Return to the previous level of recursion.

Here we call a character x € X admissible if the following two conditions hold:

e Let v, = (v1,...,vx) be the active vertex in G,. Then, the (k+1)-tuple (v1,..., vk, Cz)
must be an edge of the sequencing graph G, .

e For every o € X'\ {z}, let v, = (v1,...,v;) be the active vertex in G,. Then, there
must exist at least one edge (vy,...,vg, ) in the sequencing graph G, such that
¢ = holds.

We say that we can perform an edge transition to an end vertex in a sequencing graph
G, for x € X if the following holds: Let v, = (v1,...,v;) be the active vertex in G,. Set

/

¢, := cg + 11, where 1; denotes the compomer containing exactly one end character. Then,

the (k 4+ 1)-tuple (v1,...,vg,c,) must be an edge of the sequencing graph G,.

Theorem 1. For fized order k, X := 3\ {0,1}, and S as defined in (12), the algorithm of
this section solves the Sequencing From Compomers Problem by returning all strings s € S
that satisfy Cr(s,z) C Cy for allx € X.

Proof. 1t is clear from the construction that any output string s is compatible with a walk in
G, and, by Lemma 3, k-compatible with C, for all z € X.

It remains to be shown that all strings s € S that are k-compatible with C, for all x € X,
are constructed by the algorithm. To this end, let s € S be such a string. By Lemma 3, there
exist unique walks p* = p§ p{...pY in G, compatible with s, for every z € X. We will show
by induction that every proper prefix s’ of s is an input to the recursion step of the algorithm.
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This implies that s’ with s'1 = s is also an input of the recursion step. Analogously to the
reasoning below, one can show that at this point, we can perform edge transitions to an end
vertex in every sequencing graph. It follows that s'1 = s is an output of the algorithm.

The induction basis is trivial for s’ = 0. Assume that s’ = 5z for some § € ¥* and z € X.
Let sg,...,s; be the z-partitioning of § as defined in (6). The uniqueness of the z-partitioning
of s implies comp(s;) = pj for j =0,...,l. In addition to the claim above, we claim that
in the current recursion step, the active vertex in G is set to (pj_,,,,...,pf). To simplify
matters, we ignore the case [ < k that one can solve analogously. By the induction hypothesis,
we know that § is an input of the recursion step, and that the active vertex in G at this point
is still (pf_p,.... 00 1)

We claim that x is admissible: We know that (pf_,,...,p]) is an edge of p” and, hence, of G,
so the first condition is satisfied. For 0 € X \ {z}, note that the active vertex has not changed

since the last time we appended o. Analogously to above, we can show that pg,...,p _1,¢s
are the compomers of the o-partitioning of s; note again that ord,(s,) = ¢,(c) = 0. Hence,
the active vertex in Gy is (p%,_4,---,0%_1), and (p%,_,...,p3,) is an edge of G,. Since s’

is a prefix of s, we infer ¢, = comp(s,) = p7,, so the second condition is satisfied, too. This
implies that x is admissible.

It follows directly from the construction of the algorithm that the new active vertex in G,
is set to (pj_,q,---,pf). Consequently, s’ = §x is an input of the recursion step, where the
new active vertex in G is (pf_j1,--,P]), as claimed. O

What are time and space requirements of the described algorithm? Clearly, there can
be exponentially many solutions to SFC (cf. Example 3), so the worst-case runtime is also
exponential in the problem size as well as the maximal length of an output string. In addition,
the runtime can still be exponential if there is a unique solution to SFC, or no solution at all.
On the contrary, the space requirements are rather moderate: We need O(m**!) memory to
store the sequencing graphs, where m := max{|X;| : z € X'}. For n := max{|s| : s € S}
we need O(n) memory in the recursion part of the algorithm, because every recursion step
uses only constant memory: The reconstructed sequence itself is not stored in the recursion
step but only the current character. The critical factor is obviously storing the sequencing
graphs, but note that in applications, these graphs are supposedly sparse and a suitable graph
representation will allow storing such graphs with much less memory requirements than the
worst-case O(m**1) suggests.

The complete process of de-novo sequencing from mass spectrometry data can now be
performed as follows: For every cleavage reaction, apply a peak detection algorithm to extract
those parts of the measured mass spectrum that most probably correlate to particles in our
sample. For every detected peak, calculate all compomers with at most & cleavage bases
and with mass sufficiently close to that of the detected peak. Note that we can limit these
calculations to compomers containing at most one character 0,1. In this way, we generate
compomer sets C, for all x € X. As described in Section 4.1, we build sequencing graphs
G from these compomer sets. We use the algorithm of Section 4.2 to generate all sequence
candidates that are k-compatible with our input compomer sets C,.

After generating all sequence candidates in this fashion, we want to further evaluate these
sequence candidates taking into account the mass spectrometry data available from all cleavage
reactions. A simple scoring scheme for doing so was described in (Bécker, 2003), where only
slight modifications are needed to deal with partial cleavage data. A more advanced scoring
scheme could compute likelihood values for the model [reference sequence is s] to calculate a
score for every sequence candidate s. Such scoring schemes can use additional information
such as peak intensities, overlapping peaks, and peaks corresponding to fragments of order > k
to discriminate between sequence candidates. We do not go into the details of this problem
here.
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Note that for the application of DNA sequencing, we cannot circumvent the complexity
of SFC by, say, introducing heuristics with good time complexity: Such heuristics might or
might not find (all of ) the solutions of SFC. But this is not acceptable in the setting of de-novo
sequencing.

5. RESuLTS

In the following, we report some preliminary results of our approach; a more detailed
evaluation is currently in progress.

In the absence of sufficient data to test the algorithm, we simulated cleavage reactions and
mass spectra, and examined the performance of the algorithm from the previous section on
this simulated data. We used two data sets to generate the sample DNA: First, we generated
random sample DNA sequences proposing that all bases have identical frequency % of occur-
rence. Second, we used the Human LAMBI1 gene (ENSG00000091136, see Reich et al., 2001)
and chopped it into approximately 400 pieces, using both exons and introns. For a preliminary
evaluation of the method, we performed simulations for sequence length [ = 200 and order
k = 2, only. Our initial simulations indicate that the presented approach can be used to tackle
SFC.

We simulated four cleavage reactions based on real world RNAse cleavage, where we gen-
erated only fragments of order at most k = 2, supposing that peaks from fragments of order
k + 1 and higher cannot be detected in the mass spectrum. Then, we calculated masses of
all resulting fragments, and addressed Lim. (ii) (calibration and resolution of the mass spec-
trometer) in the following way: We say that § > 0 is the accuracy of the mass spectrometer,
where ¢§ is the maximal difference between an expected and the corresponding detected mass.
For our initial evaluation we used § = 0.3 Da corresponding to OTOF mass spectrometry. We
perturbed every signal from the expected list of peaks so that its mass differs by at most §
from the expected mass, and for every resulting peak we calculated all compomers of order at
most k that might possibly create a peak with mass at most ¢ off the perturbed signal mass.
In this way, we created the sets C, for z € ¥. Note again that we do not take into account
the intensities of peaks.

When simulating the mass spectrometry analysis, we simulate neither false positives (addi-
tional peaks) nor false negatives (missing peaks) here. The former does not change the results
dramatically: Every signal peak can potentially be interpreted as many different compomers
due to Lim. (iv). Hence, the compomer lists do contain many false positives. The latter, on
the contrary, makes it necessary to modify our approach to deal with real world data.

We want to reconstruct our sample DNA from the cleavage reaction data using sequencing
graphs of order 2 and the algorithm presented in the previous section. We assumed that the
length of the sample sequence is known with a relative error of 10%, so we set lpin := 180
and lpax = 220. In addition, we assumed that 8 bases at the start and end of the sequence
were known in advance, so our sample sequences had a total length of 216 nt. As we learned
from these simulations, the most common sequencing error of our approach seems to be the
exchange of two bases belonging to a “stutter” repeat (cf. Examples 2 and 6).

We present the results of our simulation in Table 1. Here we provide the number of am-
biguous bases for the given setup: Formally, an ambiguous base is a column in the multiple
alignment, taken over all output sequence candidates, where the aligned output sequences
differ. One can see that even when the input sequence was not reconstructed uniquely, there
are often only a few ambiguities in the output sequences: The average ratio of ambiguous
bases was % for the random sequences, and % for the LAMBI1 sequences. As one could
have expected, there were no sample sequences with exactly one ambiguous base. By design,
the correct sequence was always among the output sequence candidates.
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# ambiguous bases random seq. LAMBI seq.

0 961  (96.4 %) 341 (90.0%)

2 30 (3.0%) 22 (5.8%)

3 1 (0.1 %) 0 (0%)

4 5 (0.5 %) 4 (1.1 %)

5 0 (0%) 1 (0.3%)

6 0 (0%) 2 (0.5 %)

8 0 (0%) 2 (0.5 %)

10+ 0 (0%) 6 (1.8%)

total 997 (100.0 %) 378 (100.0 %)

TABLE 1. Results of the simulations for & = 2, [ = 200, and § = 0.3. For a
number m of ambiguous bases, we have listed the absolute and relative number
of input sequences where a unique reconstruction of the sequence was possible
(m = 0) or not possible (m > 0).

6. DISCUSSION AND IMPROVEMENTS

We have introduced the Sequencing From Compomers Problem that stems from the anal-
ysis of mass spectrometry data from partial cleavage experiments. Although this problem is
computationally difficult in general, we have introduced a computational approach to perform
de-novo sequencing from such data. The introduced method uses sub-graphs of the de Bruijn
graph to construct all sequences that are compatible with the observed mass spectra. We
tested the performance of our approach on simulated mass spectrometry data from random as
well as from biological sequences. Surprisingly, our approach is capable of reconstructing the
correct sequence in most cases, and ambiguities are limited most of the time to the exchange of
two bases in a “stutter repeat.” The local information of compomers derived from substrings
of the input sequence that contain only a few (here, k = 2) cleavage bases, is often sufficient
to reconstruct the input string. Our simulations indicate that the presented approach may
enable de-novo sequencing with an experimental setup that differs completely from Sanger
Sequencing, and still allows for sequencing lengths that are of the same magnitude as those of
Sanger Sequencing. Using base-specific cleavage and mass spectrometry for de-novo sequenc-
ing has the advantages of high throughput (4 mass spectra can be measured in less than 10
seconds) and potentially increased sensitivity and specificity over classical Sanger Sequencing.
Potential additional advantages are the possibility to perform pooling or multiplexing, see
below.

As noted in Section 5, the simulation results of that section are only a first step in evaluating
the power of our approach. A more thorough simulation analysis is currently in progress.

We mentioned earlier that our setup can easily be extended to cut strings = of arbitrary
length. Moreover, it makes sense to replace the cut bases x € ¥ by sets of cut strings X C X*
because there exist enzymes that are specific to, say, both pyrimidines C or T at a certain
position. For example, the enzyme Hinfl cleaves all sequences of the form GANTC, and here
we define X := {GAATC, GACTC,GAGTC,GATTC}. The generalization of the presented
tools is pretty much straightforward, but note that (a) we can no longer simply calculate the
order of a compomer, and (b) we have to cope with cleavage that happens within a cut string.

Our approach does at no point depend on the fact that we are sequencing DNA. In theory,
another application can be de-novo sequencing of proteins, given that we have ways of amino
acid (or cut string) specific cleavage of such polypeptides. In reality, this may be difficult
because there are 20 characters in the protein alphabet, so a straightforward generalization
would call for 20 distinct cleavage reactions. In addition, calculating all compomers for a given
mass becomes computationally difficult. However, protein “sequencing” using tryptic digest
and a lookup database is a broadly used tool in Proteomics. Note that our approach differs
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fundamentally from MS/MS peptide sequencing approaches (Danéik et al., 1999; Patterson
and Aebersold, 1995). Furthermore, our approach does not rely on data from MALDI-TOF
MS but will work with any method that allows us to determine base compositions of the
cleavage reaction products.

Finally, we want to point out that the presented method can easily be adopted for pooling
as well as multiplexing: When pooling sequences, we want to analyze mixtures of samples,
or heterozygous samples. Our approach will in principal return all sequences found in the
mixture, and only a subsequent analysis has to be modified accordingly. For multiplexing,
instead of sequencing a single continuous stretch of the sample sequence of length 200 nt, we
analyze, say, ten distinct stretches of length 20 nt each in parallel. Here we can iteratively
search for 10 appropriate walks in every sequencing graph.

The intensity of a peak in a MS spectrum may indicate the multiplicity of the respective
compomer. This motivates the question whether we can uniquely reconstruct the string s
from Cy (s, x) if we define all sets in equations (1-4) to be multisets instead of simple sets.

Clearly, there are more elaborate ways to use sequencing graphs for solving SFC than the
depth-first search algorithm we used. In particular, a depth-first search is not fully appropri-
ate: As we have noted in Section 5, the most common ambiguities are stutter repeats where
resulting sequences are compatible with walks that are identical except for a short de-tour
element.

On the theoretical side of the problem, it would be interesting to characterize transforma-
tions of strings that, like stutter repeats, do not change the compomer spectra of the string
for some given order k.

Finally, we have mentioned in the previous section that in this paper, we do not take into
account the problem of false negative peaks that is common in applications. This will be
addressed in a forthcoming paper.
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