
Bininda-Emonds, O. R. P. (ed.) Phylogenetic Supertrees: Combining Information to Reveal

the Tree of Life, pp. 331–351. Computational Biology, volume 3 (Dress, A., series ed.).

© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

Chapter 15

UNROOTED SUPERTREES
Limitations, traps, and phylogenetic patchworks

Sebastian Böcker

Abstract: Whereas biologists might think of rooted trees as the natural, or even the only,
way to display phylogenetic relationships, this is not the case for a
mathematician, to whom rooted and unrooted trees are graph-theoretical
constructions that can be transformed easily into one another. An unrooted tree
contains the same information as its rooted counterpart with the single
exception that it does not tell you where the “evolutionary process” started.
Rooting a tree is often more of an art than a science, and a pressing problem in
systematic biology is precisely the exact placement of a root. In addition,
many phylogenetic algorithms in fact output unrooted trees that are rooted
(artificially) in a subsequent step.

From this, it is clear that finding an unrooted supertree or parent tree is of the
same interest as it is for the rooted case. But, whereas a single unrooted tree
can always be transformed into a rooted tree carrying the same information,
this is no longer the case for collections of unrooted trees. Hence, the supertree
problem for rooted trees is a special case of that for unrooted trees. As is often
the case, this means that many things that can be done with rooted trees (the
special case) are no longer valid for unrooted trees (the general case). In fact,
the smallest possible example of a collection of unrooted trees that cannot be
transformed into a collection of rooted trees is already sufficient to
demonstrate that, unfortunately, many convenient features of the rooted
supertree problem do not carry over to the unrooted supertree problem.

On the positive side, if the set of input trees fulfills some minimality criterion,
then there exists a simple set of conditions to check whether there is exactly
one parent tree for this collection. In addition, the unique parent tree, should
one exist, can be constructed quickly because the set of input trees always
shows a certain “patchwork” structure.

Keywords: parent trees; patchworks; quartet trees; unrooted supertrees;

332 Böcker

1. Introduction

In the following, I will assume that all trees are unrooted unless stated
otherwise. The supertree problem — that is, combining a collection of leaf-
labeled trees with overlapping sets of labels (taxa) into a single “best” leaf-
labeled tree — has been studied for some time (Gordon, 1986; Purvis, 1995;
Sanderson et al., 1998). Supertree construction methods for unrooted trees
include DISK-COVERING (Huson et al., 1999a, b) and dyadic closure-based
approaches (Bryant and Steel, 1995; Böcker et al., 2000), to name just a few.
In the following, I will limit my attention to the problem of finding a “parent
tree” of the input collection: given a collection F of leaf-labeled trees with
generally distinct, although not necessarily disjoint label sets, we want to
amalgamate these trees into one leaf-labeled parent tree T so that all trees in
F are “induced” subtrees of T (see Section 2 for the distinction between
supertrees and parent trees). Hence, we want to know whether such a parent
tree T exists at all and, if so, whether it is determined uniquely by F. Many
supertree methods will try to amalgamate input trees even if no such parent
tree exists. But if a unique parent tree does exist for the input collection, all
reasonable supertree methods should return this parent tree.

There are several (computational) problems when trying to construct an
unrooted parent tree or when determining if such a parent tree is unique:

• There exist certain limitations that apply to all unrooted supertree
methods, and certain desirable characteristics for such supertree
methods cannot be comprised in a single supertree method (see
Section 3).

• The problem of determining whether there exists at least one parent
tree of F is provably difficult; that is, it is NP-complete (Steel, 1992).

• The complexity of determining whether some (known!) tree is the
unique parent tree of a given collection is still unknown.

• The problem of determining whether some input set of trees F
contains an excess-free subset (see Section 5) that has a unique parent
tree is also NP-complete (Böcker et al., 2000).

• Finally, there exist certain collections F of trees that have
exponentially many parent trees in the number of trees in F, as well as
in the number of leaves of F. Of course, this would be a trivial result
if F had a highly unresolved parent tree because all possible
refinements of this tree would also be parent trees of F. What makes
the construction presented in Section 4 more compelling is that our
(exponentially large) collection of parent trees will consist solely of
binary trees; that is, none of these trees will have any refinement. The
latter poses a threat to all supertree heuristics trying to circumvent the

Unrooted supertrees 333

runtime constraint by using a (more-or-less) intriguing construction
recipe. Such heuristics might return just one binary parent tree T to
the user that supports some hypothesis, concealing the fact that there
exist exponentially many such parent trees that possibly contradict the
same hypothesis.

But for certain collections of input trees, we can do better. If the set of
input trees fulfills some minimality criterion, then there exists a simple set of
conditions to check whether there is exactly one parent tree for this
collection. In addition, the unique parent tree can be constructed in quadratic
runtime. Here, the set of input trees always shows a certain “patchwork”
structure that allows us to merge only two trees at a time. Although the result
itself appears to be rather simple, its proof is cumbersome and lengthy. I
hope that by solving the case fulfilling the minimality criterion, we can find
a more efficient algorithm for a more general class of tree collections.

2. Definitions

Following Böcker et al. (2000), I begin by introducing some terminology.

• Given a tree T, a leaf is a vertex of T of degree one. Both a vertex that
is not a leaf, as well as an edge that is not incident with a leaf are
called interior. In the following, I assume that all interior vertices of T
are of degree at least three, and that there is at least one interior
vertex. Such a tree T is also called a phylogenetic tree.1 I will use the
terms “leaves”, “leaf labels”, and “taxa” interchangeably, depending
on the context. If all of the interior vertices have degree three, the tree
is said to be a binary (phylogenetic) tree.

• For a tree T = (V, E), let L(T) ⊆ V denote the set of leaf labels of T,
and for a collection F of such trees, let L (F) denote the union
∪T ∈ FL(T). Recall that the number of interior edges of T never
exceeds L(T) – 3, and equality holds if and only if T is binary (see,
for instance, Proposition 2.1.3 of Semple and Steel, 2003). Two trees
T = (V, E) and T' = (V', E') are isomorphic if L(T) = L(T'), and there
exists a bijection ψ : V → V' that, restricted to L(T), is the identity,
and that induces a bijection of E → E'.

• Given a tree T and a subset L ⊆ L (T), I denote by T L the
phylogenetic tree obtained from the smallest connected subgraph of T
containing (the leaves labeled by) L by making this subgraph

1 This definition differs from the one given in Semple and Steel (2003), but one can see easily that both
definitions are in fact equivalent.

334 Böcker

homeomorphically irreducible (i.e., by suppressing all degree-two
vertices). I refer to TL as an induced subtree of T and, more
specifically, as the subtree of T induced by L. Note that TL is binary
whenever T is, and that (TL')L is (isomorphic to) TL for any tree T
and sets L ⊆ L' ⊆ L(T).

• Given two trees T, T' with L(T) = L(T'), I write T ≤ T' if, up to a label-
preserving isomorphism, T can be obtained from T' by contracting
some interior edges of T'.

• Suppose that F := {T 1, …, T k} is a collection of trees. A tree T
displays F if Ti ≤ TL(Ti) holds for all i = 1, …, k. I say also that T
displays T' in case T displays {T'}.

• If T displays F and, in addition, L(F) = L(T) holds, then T is called a
parent tree of F.2 In this case, we say also that F can be amalgamated
into the parent tree T . If this parent tree T is unique (up to
isomorphisms), then I say that F defines T. Note that if F defines T,
then T is necessarily binary.

• A quartet tree is a binary tree T with L(T) = 4. I write xywz to
denote the quartet tree that has leaves labeled x, y separated from
leaves labeled w , z by its unique interior edge. For example, the
quartet tree 1245 is depicted on the left in Figure 1.

3. Limitations of unrooted supertree methods

I start this section with a simple example of a collection of trees that does not
have an equivalent in the setting of rooted trees. This example is smallest
possible with this property: it contains only three quartet trees on six taxa.
Clearly, all input collections consisting of two trees will either have at least
one leaf common to all (two) trees of the input collection, or the two trees
will not share a single leaf and construction of a supertree is not reasonable. I

2 Such trees are called supertrees in mathematical literature, but here I want to differentiate between the
output of a supertree method and the mathematically rigid concept of “parent trees.”

Figure 1. The three quartet trees of Example 1.

Unrooted supertrees 335

will make use of Example 1 throughout this chapter to illustrate several
limitations for the unrooted supertree problem.

Example 1. Consider the collection of quartet trees

(1) Q := {1245, 3461, 5623}

with leaf set L(Q) = {1, …, 6} as displayed in Figure 1. Note that any two
trees in this collection have exactly two leaves in common, and that no leaf
is present in all trees of the collection. The key observation is that there exist
(up to isomorphisms) exactly two parent trees for this collection of trees as
depicted in Figure 2 (see Böcker et al., 1999). I will denote the left parent
tree in Figure 2 by T+, the right parent tree by T–.

Following the reasoning of Steel et al. (2000), I will now collect several
properties that should be achieved (simultaneously) by all supertree methods
for unrooted trees (see also Wilkinson et al., 2004). Afterwards, I will show,
using the above example, that no supertree method exists that can satisfy all
the stated properties simultaneously.

First, it is clearly desirable that a supertree method should not rely on the
ordering of the input trees. In fact, I have only talked about collections (sets)
of input trees up to now that are unordered by definition. As long as we have
equal confidence in all the input trees, changing the order in which we
present these input trees to the supertree method should not change the
output of the method.

Second, renaming the taxa should not change the output of the method.
That is, if we replace a leaf label in all our input trees, then the output of the
supertree method should be the old supertree, except that the new label also
replaces the old label. In fact, this condition consists of two parts. First, no
supertree method should force the output of a unique supertree by, say,
lexicographically ordering the input taxa before applying the true supertree
construction. Otherwise, renaming a taxon from “cat” to “Felidae” could

Figure 2. The parent trees T+ (left) and T– (right) of Example 1.

336 Böcker

change the output of the method. Second, and more compelling, exchanging
the names of two taxa in our input collection of trees should return the old
supertree, except that the two taxa are also exchanged. As stated above, the
supertree method cannot pre-sort the input taxa to circumvent this
requirement.

Third, if the input collection has at least one parent tree, then the
supertree method should return a parent tree of the collection. So, if the input
trees do fit together, then the supertree method should select one of the
parent trees that achieves this.

I will now show that no supertree method for unrooted trees exists that
satisfies these three conditions at the same time (Proposition 1 in Steel et al.,
2000). Suppose our supertree method satisfies the first and second conditions
above. We will see that the third condition must fail necessarily for certain
input collections. To this end, consider again the collection of input trees
from Example 1. Recall that this collection has exactly two parent trees
(Figure 2). Suppose that our supertree method outputs the first parent tree,
T+. If we exchange taxa 2 and 6, and also taxa 3 and 5 of our input
collection, the collection becomes {1643, 5421, 3265}, which is exactly
the same input collection as before because the “changed order” of elements
is of no relevance. By the first condition, the method should therefore output
the same parent tree T+. But, by the second condition, the method should
output the tree T+, where leaves 2 and 6, as well as 3 and 5 are exchanged,
and this is in fact the other parent tree, T–! The same holds true if the
supertree method would output T–. Thus, if the first and the second
conditions hold, the output can be neither T+ nor T–. But this means that the
third condition is necessarily violated because these are the only parent trees
of the input collection.

We could abandon the third condition and ask the supertree method to
return all parent trees in case more than one exists. This might not be
desirable from a phylogenetic standpoint, but it would at least allow the
supertree method to return a sensible output in case there is more than one
parent tree. But, besides the possible biological concerns over such an
output, I will show in the next section that there might be exponentially
many parent trees for certain collections of input trees. For example, for an
input collection of 40 quartet trees on a set of 43 taxa, there can be as many
as 1024 binary parent trees. In general, we could apply a consensus method
to the set of parent trees of our input collection, but it is not clear how to
carry out such calculations in a reasonable time.

Note that as soon as all the input trees have a leaf in common, we can
transform the whole collection into rooted trees and use a supertree method
to finally obtain an unrooted supertree by reattaching the artificial root leaf.
In case a unique parent tree of such an input collection exists, this parent tree

Unrooted supertrees 337

can be found and its uniqueness can be tested quickly. But, if there is more
than one choice for our pseudo-root, choosing different pseudo-roots might
lead to different (rooted and unrooted) supertrees, violating the second
condition we wanted our supertree method to fulfill.

4. Exponentially many parent trees

Clearly, as a result of the formal definition of “parent trees” I have
introduced above, the existence of (super-)exponentially many parent trees is
not always a relevant problem. This is because we require a parent tree to
“include all the information” of the input set of trees, but allow it to include
additional information that is not supported by the input trees. As an
example, define the collection of quartet trees

F* := {12jk  3 ≤ j < k ≤ n}

for some integer n ≥ 4 that has leaf set L(F*) = {1, …, n}. All such input
trees separate leaves 1 and 2 from any two other leaves. We can see easily
that (2n – 7)!! := 1 · 3 · 5 ··· (2n – 7) many binary parent trees of F* exist and,
therefore, also super-exponentially many parent trees in total. The binary
parent trees are exactly those binary trees with leaf set {1, …, n} having an
edge that separates leaves labeled 1 and 2 from leaves labeled 3, …, n, and
n – 4 arbitrary other interior edges. But, there is exactly one parent tree of F*

that is minimal with respect to ≤, and this tree (i.e., the tree with one interior
edge separating leaves 1 and 2 from all other leaves) is the one every
practitioner would probably be interested in. In fact, this tree is the strict
consensus (see next section) of all possible parent trees of the input tree
collection. Note that the production of so-called “novel clades” in supertrees
has been found to be highly undesirable by several biologists (e.g., Pisani
and Wilkinson, 2002; Gatesy and Springer, 2004; Wilkinson et al., 2004).

I will now use Example 1 to construct an input collection of trees such
that not only do exponentially many parent trees for this input tree collection
exist, but also such that every such parent tree is necessarily binary. In
addition, we will see such that these parent trees share practically no
information (i.e., the strict consensus of all these parent trees is almost the
star graph). This means that although the input tree collection F can be
amalgamated into a single parent tree, doing so would conceal the fact that
there are an exponential number of parent trees that, in total, contradict the
information yielded by the single parent tree completely. All heuristic
supertree methods returning one, or even a few, parent trees would fall into

338 Böcker

this trap. Let us suppose that such a heuristic returns a (randomly chosen)
parent tree T, then the fact that

• the constructed parent tree is binary,
• no less refined tree obtained by contracting edges in T that is a parent

tree of the input collection exists, and
• any two parent trees of F differ strongly; that is, they cannot be

transformed into each other by local optimization heuristics like a
single branch swapping

might falsely lead the user to believe that the constructed parent tree is
unique. By contrast, if a supertree method tries to construct all possible
parent trees of the input collection, then it has to output a huge number of
trees, and the size of the output itself makes this problem computationally
hard. In other words, polynomial runtime in the input size cannot be
achieved by such an approach.

Example 2. Consider the collection of quartet trees

(2) Q* := {2145, 3462, 5613, 2567}

with leaf set L(Q*) = {1, …, 7} as depicted in Figure 3. It is easy to check
that this collection is displayed (up to isomorphism) exactly by the two trees
depicted in Figure 4. In fact, I have extended Example 1 by adding a single

Figure 3. The four quartet trees of Example 2.

Figure 4. The parent trees T
 + (left) and T

 – (right); the median of the leaves 5, 6, and
7 is indicated by a square.

Unrooted supertrees 339

quartet tree 2567 so that the additional leaf 7 has to be placed together with
leaf 6 in both cases. Note also that I have exchanged leaves 1 and 2 to
simplify the construction presented below. I will denote the left parent tree in
Figure 4 by T + and the right parent tree by T –.

Why did I add an additional leaf and a quartet tree to Example 1? To
answer this question, look at the median of the leaves 5, 6, and 7 (i.e., the
unique vertex separating these three leaves) in T +. The median of 5, 6, and 7
is the vertex adjacent to leaves 6 and 7. But this is also true for T –! This
guarantees that if we amalgamate any binary tree T to T + (or T –) satisfying
the three conditions

1. 5, 6, 7 ∈ L(T),
2. 1, 2, 3, 4 ∉ L(T), and
3. the median of 5, 6, and 7 in T is adjacent to leaf 5,

then there exists a unique parent tree of T and T + or of T and T –, respectively
(for a formal proof, see Böcker, 1999). And why did I swap leaves 1 and 2?
Look at the median of leaves 1, 2, and 3 in T + and T –. In both cases, this
median is adjacent to leaf 1.

We now want to “transpose” trees by adding a natural number to their
leaves that are also (labeled by) natural numbers. For example, the quartet
tree 1234 can be transposed to the tree 6789 by adding five to its
leaves / labels. We can assume without loss of generality that no interior
vertex is (labeled by) a natural number. Formally, given a tree T = (V, E), I
assume V ∩ N = L(T), where N denotes the set of natural numbers. For an
arbitrary tree T such that L(T) ⊆ N, I define the mapping φj for j ∈ N such
that φj(T) is the same tree as T, except that every leaf l of T is replaced by the
leaf l + j in φ j(T). Clearly, φ0(T) is (isomorphic to) the input tree T. As an
example, Figure 5 depicts the four trees φ4(T) for T ∈ Q*. Note that both
φ4(T

 +) and φ4(T
 –) satisfy the conditions stated in the previous paragraph: in

both cases, the median of 5, 6, and 7 is adjacent to leaf 5.
Define the transposed collections of quartet trees

Qk := {φ4k(T) T ∈ Q*}

Figure 5. The four quartet trees φ4(T) for T ∈ Q*.

340 Böcker

as well as the trees Tk
+:= φ4k(T

 +) and Tk
–:= φ4k(T

 –). Clearly, Tk
+ and Tk

– are
the unique parent trees of the collection Qk. As an example, the trees T0

+, T0
–,

T1
+, and T1

– are depicted in Figure 6.
Now consider the collection of quartet trees Q0 ∪ Q1 with leaf set L(Q0 ∪

Q1) = {1, …, 11}. One can show that any parent tree of this collection is the
amalgamation of a parent tree T0

+ or T0
– of Q0, and a parent tree T1

+ or T1
– of

Q1. These four parent trees are depicted in Figure 7. This example indicates
how the trees Tj

+ and Tj
– can be used as “binary switches” to construct

exponentially many parent trees. Eight parent trees exist for the collection Q0

∪ Q1 ∪ Q2, and these parent trees can be constructed by amalgamating any
parent tree of Q0 ∪ Q1 in Figure 7 with either T2

+ or T2
–. By repeating this

process, we see that the collection

(3) Q*
k := Q0 ∪ Q1 ∪ ··· ∪ Qk

with 4k + 4 elements and leaf set {1, …, 4k + 7} has exactly 2k+1 parent
trees, of which every one is binary (for a formal proof, see Böcker, 2002).

Finally, we want to know what information is shared by all parent trees
of the collection Q*

k. The strict consensus of a collection F of trees is a tree
T * such that T * ≤ T holds for all T ∈ F, and T * is maximal with respect to
this condition. Now, what is the strict consensus tree T * of Q*

k? This is in
fact a unique tree:

Lemma 1. For Q*
k as defined in Equation 3, let Fk denote the set of parent

trees of Q*
k. The strict consensus of all parent trees in Fk is the phylogenetic

Figure 6. The four trees Tk
i for k = 0, 1 (left, right) and i ∈ {+, –} (top, bottom); the

median of the leaves 5, 6, and 7 is indicated by a square.

Unrooted supertrees 341

tree T *
k with leaf set L(T *

k) = {1,…, 4k + 7} having a single interior edge
separating leaves {1,…, 4k + 5} from leaves {4k + 6, 4k + 7}.

I will omit the proof of this lemma, and just note that induction on k can
be used to prove the claim. Furthermore, all consensus methods applied to
the set of parent trees Fk face the following problem: every interior edge of
the potential consensus tree separates the leaves into two sets, both of
cardinality larger or equal two. Except for the edge separating 4k + 6, 4k + 7
from all other leaves, all such interior edges are supported either by none of
the input parent trees and should never be included in the output consensus
tree, or by exactly half of the input parent trees and contradicted by the other
half! Thus, the only reasonable output for any consensus method seems to be
the strict consensus tree described above — otherwise, the output would be
completely arbitrary. For example, if we choose one of the input parent trees
randomly as the output of the consensus tree method, every edge of the
output tree would be supported by half of the input trees, and this is as good
as it gets.

Note that the input collections Q*
k = Q0 ∪ ··· ∪ Qk have no equivalent in

the setting of rooted trees. The leaf sets of the subcollections Q j are
“walking” in the sense that L(Qj) ∩ L (Qj+1) = {4j + 5, 4j + 6, 4j + 7}
contains exactly three elements, whereas all other intersections of leaf sets
L(Qj) ∩ L(Qk) are empty for j – k > 1. The presented construction cannot
work when all leaf sets have at least one element in common.

It is worth mentioning that the constructed collections of quartet trees Q*
k

are excess-free (see the next section). Thus, Q*
k is of minimal cardinality in

the sense that all collections of quartet trees of smaller cardinality, but with
same leaf set, must have at least one non-binary parent tree.

Figure 7. The four parent trees of Q0 ∪ Q1.

342 Böcker

5. Solution to the parent tree problem for the minimum
case

As I mentioned in Section 1, the general problem of finding a parent tree is
NP-complete, and the complexity of deciding whether some given tree is the
unique parent tree of a collection is unknown. In this section, I finally
present a positive result: in those cases where some minimality criterion is
satisfied, it is possible to construct a unique parent tree of an input collection
of unrooted trees in polynomial time, even when there is no single leaf
shared by all trees of the input collection. If such a unique parent tree exists,
it is also the “most natural” output of any supertree method.

This section reviews work found in more detail in Böcker (1999), and all
theorems and lemmata are drawn from that work unless stated otherwise.

Let F = {T1, T2, …, Tk} denote a collection of binary trees. If T is the
unique parent tree of the collection F, then we can show that

(4) L(T) – 3 ≤

€

(
j=1

k

∑ L(Tj) – 3)

must always hold. I refrain from giving a formal proof here (see, for
example, Böcker et al., 1999), but will explain instead the idea behind this
formula. Every binary tree T has exactly L(T) – 3 interior edges. Thus,
Equation 4 compares the number of interior edges of the parent tree with the
sum of interior edges of the input trees. Now, for every interior edge of the
parent tree, at least one interior edge in at least one input tree should exist
that “distinguishes” the interior edge of the parent tree. Otherwise, we could
remove the interior edge from the parent tree, and the resulting tree would
still be a parent tree, violating our assumption of uniqueness.

Equation 4 suggests that particular attention should be paid to the
minimum case; that is, the case where equality holds. To this end, I define
the excess of the collection F by

exc (F) := L(F) –

€

(
T∈F

∑ L(T)– 3) – 3,

and I say that F is excess-free if exc (F) = 0 holds. Clearly, exc ({T}) =
L(T)– (L(T)– 3) – 3 = 0 holds for every binary tree T. The main result
of this section now follows.

Theorem 1. Suppose F is a non-empty and excess-free collection of binary
trees. Then F uniquely defines a parent tree T if and only if #F = 1 or there

Unrooted supertrees 343

exists a bipartition of F into two proper, disjoint subsets F1, F2 ⊂ F such
that Fj is excess-free and uniquely defines a parent tree Tj for j = 1, 2, and T
is the unique parent tree of T1, T2.

The non-trivial part of this theorem is equivalent to the following lemma.

Lemma 2. Given a collection of binary trees F that is excess-free, uniquely
defines a parent tree, and has cardinality at least two, then there exist two
distinct trees T, T' ∈ F such that the collection {T, T'} is excess-free and
uniquely defines a parent tree.

Check carefully what Theorem 1 says — and even more importantly —
what it does not say. First, the theorem guarantees the existence of a unique
parent tree. But if the conditions of the theorem are violated, there might be
either no parent tree at all or more than one parent tree. Using Theorem 1,
we cannot distinguish between these two cases! But this does not come as a
surprise because, as I stated above, the problem of deciding if there exists at
least one parent tree of a collection of input trees is NP-complete, and below
I present an algorithm with polynomial runtime to check whether the
conditions of the theorem are fulfilled. Second, Theorem 1 deals with binary
input trees only, and cannot be extended to non-binary input trees. In the
following, I assume that our input collection consists solely of binary trees.
Third, the theorem deals with (excess-free) tree collections of minimum size,
and cannot be extended to minimal tree collections; that is, collections that
define a unique parent tree, while any subcollection on the same leaf set has
at least two parent trees (see Example 3 below). Finally, it should be obvious
that biological data will almost always violate the strict conditions of the
theorem, prohibiting its direct application. The idea is that, by using
Theorem 1, we might be able to prove that certain supertree methods have
certain desirable properties.

Example 3 (Steel, 1992). The set of quartet trees Q := {1235, 2457,
1347, 3456, 1567} has a unique parent tree with leaf set {1, …, 7};
namely, the caterpillar depicted at the top of Figure 8. For every
subcollection of Q of cardinality two to four, at least two parent trees exist.

Actually, Steel (1992) showed only that no subcollections of cardinality
four that have a unique parent tree exist, which is sufficient to show that Q is
minimal as defined above. But, we can see easily that all but one
subcollections Q' ⊆ Q of cardinality Q' ∈ {2, 3} have positive excess and,
hence, cannot have a unique parent tree; whereas Q' := {1235, 2457,
1347}, being the unique excess-free subcollection, also has two parent

344 Böcker

trees. In particular, this means that no two distinct trees T, T' ∈ F exist such
that the collection {T, T'} defines a parent tree (compare to Lemma 2).

Lemma 2 indicates how we can reconstruct a parent tree for the minimum
case. Given our excess-free input collection F, we search for two trees T, T'
∈ F such that the collection {T, T'} is excess-free and uniquely defines a
parent tree. Then, we amalgamate T and T' into a parent tree T'' (in fact,
Lemma 4 below allows us to check whether a unique parent tree exists
without actually constructing it), and replace T and T' in F by T''. In so
doing, we have reduced the cardinality of the set F by one, and we repeat the
process until only one parent tree is left. Surprisingly, this means that we
construct a rooted tree (or, equivalently, a hierarchy) with leaves labeled by
the trees of our input collection that tells us the order in which the input trees
must be amalgamated to construct the parent tree of our collection (see
Example 4). Böcker et al. (2000), present an algorithm with runtime
O(L(F)2) to reconstruct the unique parent tree of an excess-free input
collection.

Example 4. Let F := {1236, 1346, 2456, 2567} denote a collection of
quartet trees. One can show that the unique parent tree of this collection is
the caterpillar tree depicted at the top of Figure 8. In addition, Figure 8
displays an amalgamation hierarchy that shows how the input trees can be
amalgamated pairwise.

But why does this simple algorithm work? That is, why can we
amalgamate any two trees of the input collection that form an excess-free
subcollection? Is there no possibility that we will run into a dead end by

Figure 8. Hierarchy of amalgamation for the input collection F := {1236, 1346,
2456, 2567} from Example 4.

Unrooted supertrees 345

amalgamating two “wrong” trees in the beginning such that we end up with a
partially merged set of trees and can no longer find two trees to merge?

In fact, Lemma 2 is sufficient to prove that the algorithm will return the
unique parent 0 in case it exists. To this end, note that the parent tree T * of F
necessarily displays T'', where T'' denotes the unique parent tree of {T, T'}.
By contrast, all trees that display T'' must also display T and T'. This implies
that the collection F' := F – {T, T'} ∪ {T''} also has the unique parent tree
T *. Finally, we can show that the collection F' is also excess-free, and the
lemma guarantees that we can find two trees in F' that we can amalgamate,
and so on.

But a more exhaustive answer to these questions lies in a certain structure
that subcollections of our input collection exhibit. We need a new
mathematical tool to capture the concept behind this structure. Let X denote
an arbitrary set, and let P(X) denote the set of all subsets of X. I say that
C ⊆ P(X) (that is, C ⊆ X holds for all C ∈ C) is a patchwork if the following
condition is satisfied:

If A, B ∈ C and A ∩ B ≠ Ø, then A ∩ B ∈ C and A ∪ B ∈ C.

Example 5. Let X := R denote the set of real numbers. Then, the set of all
intervals in X , C := {[a , b]  a , b ∈ R} forms a patchwork. Given two
intervals [a, b] and [c, d], these intervals are either disjoint, or [a, b] ∩ [c, d]
and [a, b] ∪ [c, d] both form intervals. The same holds true for open and
half-open intervals, and if X is the set of rational or natural numbers, or the
set of integers.

The following two lemmata show that such patchwork structures appear
naturally in the context of constructing parent trees from minimum
collections, and that the elements of this patchwork are of interest when
trying to reconstruct the parent tree.

Lemma 3 (Lemma 3.10 of Böcker et al., 1999). Given an excess-free
collection F of binary trees with a unique parent tree, the subcollections of
F that are excess-free form a patchwork.

Lemma 4. Given an excess-free collection F of binary trees with a unique
parent tree, a subcollection F' ⊆ F is excess-free if and only if the collection
F' has a unique parent tree.

The latter lemma tells us that to check whether some subcollection of our
input collection F (that has a unique parent tree) also defines some unique
parent tree, it is sufficient to calculate the excess of the collection. For

346 Böcker

Example 4, we know already that subcollections {1236, 1346} and
{2456, 2567} are excess-free. In addition, the collection {1236, 1346,
2456} is excess-free and, hence, has a unique parent tree: the caterpillar on
leaves 1, …, 6. This allows for an alternative hierarchy to reconstruct the
unique parent tree of the collection. Also note that if we replace the input
tree 2456 by 2457 in Example 4, then the “hierarchy of amalgamation”
presented in Figure 8 displays the unique way of constructing the parent tree.

Patchworks were introduced in Böcker and Dress (2001), and several
equivalent conditions were introduced for a patchwork to be ample. I call C
⊆ P(X) ample if the following condition holds:

If A, C ∈ C satisfies A ⊂ C, and there exists no B ∈ C
with A ⊂ B ⊂ C, then C \ A ∈ C.

Recall that “A ⊂ B” denotes a proper subset A ⊆ B with A ≠ B. A set C ⊆
P(X) is called a hierarchy if it satisfies:

If A, B ∈ C, then A ⊆ B, B ⊆ A, or A ∩ B = Ø holds.

A hierarchy C ⊆ P (X) is called maximal if there exists no hierarchy C ' ⊆
P(X) such that C ⊂ C '. Recall that there is a one-to-one correspondence
between hierarchies C ⊆ P(X) and rooted trees with leaf set X.

Theorem 2 (Theorem 1 of Böcker and Dress, 2001). A patchwork C ⊆
P(X) contains a maximal hierarchy if and only if C is ample; Ø, X ∈ C; and
{x} ∈ C for all x ∈ X holds.

In view of exc ({T}) = 0 and exc (F) = 0 for our input collection F, this
implies that the excess-free subcollections of F,

C(F) := {F' ⊆ F  exc (F') = 0}

form an ample patchwork if and only if C(F) ∪ {Ø} contains a maximal
hierarchy.

We can use the theory of patchworks to prove some non-trivial
equivalences. Theorem 3 of Böcker and Dress (2001) states more equivalent
conditions for a patchwork to be ample. I utilized these conditions in Böcker
(1999) to show that Theorem 1 and Theorem 3 below are in fact equivalent,
and that the non-trivial part of these theorems is equivalent to Lemma 2.

Proving the results presented up to this point is possible almost
completely using combinatorics on leaf sets without referring explicitly to
the parent tree T of the input collection. Unfortunately, this is not enough to

Unrooted supertrees 347

prove Theorem 1. For its proof as presented in Böcker (1999), many more
mathematical tools would have to be introduced. But even then, a lengthy
“proof residual” remains, going beyond the scope of this chapter. Thus, I
will present only some of the concepts and ideas used for proving Theorem 1
because they are of interest even without the proof itself.

In the following, we want to take the structure of the parent tree into
account. To this end, we suppose that we know the parent tree in advance.
From that, we can derive certain necessary conditions on our input
collection, and, if an input collection violates any of these conditions, we
know that our assumption of a unique parent tree must be violated as well.

Limiting ourselves to quartet trees only can reduce the complexity of the
formalism used. However, because every binary tree T can be encoded
uniquely usingL(T) – 3 quartet trees, this does not limit the results
obtained. For example, the caterpillar from Example 4 can be encoded using
the collection F of four elements provided in the example. To this end, let us
suppose from now on that we are given a collection of quartet trees Q.

The next complexity reduction comes from the following. I say that an
(interior) edge e of a tree T displays a quartet tree abcd with a, b, c, d ∈
L(T) if, by removing the edge e from T, the resulting graph contains a, b in
one connected component and b, c in the other component. I say that the
quartet tree abcd distinguishes e if e is the unique edge of T that displays
abcd. Now suppose that T is the unique parent tree of the collection Q of
quartet trees. One can show easily that every interior edge e of T is
distinguished by at least one quartet tree in Q. In addition, every quartet tree
distinguishes at most one interior edge of T.

If we now assume that our input collection is excess-free, then there are
exactly as many interior edges in the binary parent tree T as there are quartet
trees in Q. Thus, every quartet tree in Q distinguishes exactly one interior
edge of T. This means that we can assume in the following that, given an
excess-free collection of quartet trees Q and parent tree T, we can construct a
one-to-one mapping q from the interior edges of T (denoted E *) onto the
quartet trees Q. In addition, we can assume that q(e) distinguishes e for all e
∈ E *; such mappings q are called tight in Böcker (1999) and Böcker et al.
(1999). If no such mapping exists, the parent tree is not unique, and, as noted
above, constructing all parent trees of Q might be computationally hard.

I now formulate Theorem 1 in a way that allows us to use the tools
introduced above:

Theorem 3. Given a quartet encoding q of a binary tree T with interior
edges E *, the tree T is the unique parent tree of the collection Q := q(E *) if
and only if (a) q is tight and (b) the patchwork C of subsets F ⊆ E * satisfying
exc (q(F)) = 0 is ample.

348 Böcker

By looking at interior edges of T instead of quartet trees in Q , we have
gained the possibility to derive certain features of sets of interior edges. In
fact, patchwork structures appear for a second time. Given a tree T with
interior edges E *, I say that F ⊆ E * is a patch if the subgraph induced by F
(that is, removing vertices v if no edge e ∈ F containing v exists) is
connected and, therefore, a tree. Now, one can see easily that the set of all
patches of a given tree T forms a patchwork too! One useful application of
this concept is that excess-free subsets form patches in the tree domain:

Lemma 5 (Lemma 3.6 iii of Böcker et al., 1999). Suppose q is a tight
quartet encoding of a tree T and that F ⊆ E * is a subset of interior edges. If
the collection of quartet trees q(F) is excess-free, then F is a patch.

A simple application of this lemma is the following example.

Example 6. Let q denote a tight quartet encoding of the tree T depicted in
Figure 9. Let F1, F2 denote a partitioning of E *; that is, subsets F1, F2 ⊆ E *

of interior edges of T with F1 ∩ F2 = Ø and F1 ∪ F2 = E *. Clearly, there
exist no such sets F1, F2 with F1 = F2 = 3, and F1 and F2 are both
patches. This implies that for all collections of quartet trees Q that have the
unique parent tree T depicted in Figure 9, there is no partitioning of Q into
two subsets Q1, Q2 of cardinality three that are both excess-free. In turn, this
implies that no two trees T1, T2 with L(T1) = L(T2) = 6 exist such that T
is the unique parent tree of the collection {T1, T2}.

As mentioned above, applying our results to biological data will not lead
to satisfactory results because the strict conditions of Theorem 1 will be
violated almost always. But the theorem can be used to prove that the dyadic
closure (Colonius and Schulze, 1981; Dekker, 1986) can be guaranteed to

Figure 9. Parent tree from Example 6.

Unrooted supertrees 349

return the “correct” answer in certain cases. Suppose Q is an arbitrary
collection of quartet trees, and that all these quartet trees are induced
subtrees of some (unknown) parent tree T. The dyadic closure applies two
simple rules to any two trees in the collection Q to infer other quartet trees
that are also induced subtrees of T, and adds these trees to Q. The dyadic
closure of any collection Q can be computed in O(n5) time for n :=  L(Q)
(see Erdös et al., 1999). In Böcker et al. (2000), the dyadic closure operation
was combined with the Berry-Gascuel construction (Berry and Gascuel,
1997) to form the DYADIC TREE CONSTRUCTION algorithm.

The “performance guarantee” mentioned above is as follows. Suppose we
are given a collection of quartet trees Q. If Q contains an (unknown) subset
Q' ⊆ Q with leaf set L(Q') = L(Q) that is excess-free and has a unique parent
tree T, then the DYADIC TREE CONSTRUCTION algorithm will (in polynomial
runtime) either construct T or output that no parent tree of Q exists. But in
case no such subset exists, the algorithm might be able to construct one or
more parent trees, to decide that no such parent tree can exist, or get stuck
without providing such information. It would be nice to decide upfront if a
collection of quartet trees Q contains a subset Q' ⊆ Q that is excess-free and
has a unique parent tree T, but, unfortunately, this problem is also NP-
complete (Böcker et al., 2000).

6. Conclusions

The problem of constructing unrooted supertrees or parent trees comprises
certain risks that have no equivalent in the rooted tree setting. In particular,
we have seen that unrooted supertree methods cannot achieve certain
desirable properties simultaneously, and that there can be a large number of
supertrees containing contradicting information. These problems can be
circumvented by choosing input collections such that all input trees share
one or more leaves. Finally, we have seen how to derive performance
guarantees for an intuitively stringent supertree method in Section 5.
Although Theorem 1 cannot be applied to biological data, it might allow for
other performance guarantees of this type, or for loosening the “suggestion”
that all input trees should share a leaf.

Is the problem of exponentially many parent trees, as introduced in
Section 4, likely to arise in practice? This depends strongly on the kind as
well as the “amount” of input data provided to the given supertree method. If
an unrooted supertree method tries to reconstruct a parent tree given a
collection of trees of minimal cardinality then, as a result of the small size of
Example 2, it is possible that one or more subcollections of trees analogous
to Q * (from Equation 3) can be found in the input collection. But if the input

350 Böcker

collection is not of minimal size, it is unclear if and how frequently these
problems might arise. Yet, the existence of this phenomenon suggests the
possibility of circumventing it in the first place, for example by choosing
input trees with at least one leaf in common.

Acknowledgements

I want to thank Mike Steel who suggested the outline of this chapter and
gave helpful feedback on the manuscript, and Olaf Bininda-Emonds for not
losing hope when I was late with my submission. I also thank the latter and
my two anonymous reviewers for many helpful suggestions that improved
the readability of this chapter. Support was provided by the Deutsche
Forschungsgemeinschaft (BO 1910/1–1) within the Computer Science
Action Program.

References

BERRY, V. AND GASCUEL, O. 1997. Inferring evolutionary trees with strong combinatorial
evidence. In T. Jiang and D. T. Lee (eds), Computing and Combinatorics: Third Annual
International Conference, COCOON '97, Shanghai, China, August 20–22, 1997:
Proceedings. Lecture Notes in Computer Science 1276:111–123. Springer, Berlin.

BÖCKER, S. 1999. From Subtrees to Supertrees. Ph.D. thesis, Universität Bielefeld, Germany.
(Available from http://archiv.ub.uni-bielefeld.de/disshabi/2000/0001.ps)

BÖCKER, S. 2002. Exponentially many supertrees. Applied Mathematical Letters 15:861–865.
BÖCKER, S., BRYANT, D., DRESS, A. W., AND STEEL, M. A. 2000. Algorithmic aspects of tree

amalgamation. Journal of Algorithms 37:522–537.
BÖCKER, S. AND DRESS, A. W. 2001. Patchworks. Advances in Mathematics 157:1–21.
BÖCKER, S., DRESS, A. W., AND STEEL, M. A. 1999. Patching up X -trees. Annals of

Combinatorics 3:1–12.
BRYANT, D. AND STEEL, M. A. 1995. Extension operations on sets of leaf-labelled trees.

Advances in Applied Mathematics 16:425–453.
COLONIUS, H. AND SCHULZE, H.-H. 1981. Tree structures for proximity data. British Journal

of Mathematical and Statistical Psychology 34:167–180.
DEKKER, M. 1986. Reconstruction Methods for Derivation Trees. Master’s thesis, Vrije

Universiteit, Amsterdam, the Netherlands.
ERDÖS, P. L., STEEL, M. A., SZÉKELY, L. A., AND WARNOW, T. J. 1999. A few logs suffice to

build (almost) all trees (Part 1). Random Structures and Algorithms 14:153–184.
GATESY, J. AND SPRINGER, M. S. 2004. A critique of matrix representation with parsimony

supertrees. In O. R. P. Bininda-Emonds (ed.), Phylogenetic Supertrees: Combining
Information to Reveal the Tree of Life, pp. 369–388. Kluwer Academic, Dordrecht, the
Netherlands.

G ORDON, A. 1986. Consensus supertrees: The synthesis of rooted trees containing
overlapping sets of labelled leaves. Journal of Classification 3:335–348.

HUSON, D., NETTLES, S. AND WARNOW, T. 1999a. Disk-covering, a fast-converging method
for phylogenetic tree reconstruction. Journal of Computational Biology 6:369–386.

Unrooted supertrees 351

HUSON, D., VAWTER, L., AND WARNOW, T. 1999b. Solving large scale phylogenetic problems
using DCM2. In T. Lengauer, R. Schneider, P. Bork, D. Brutlag, J. Glasgow, H.-W.
Mewes, and R. Zimmer (eds), Proceedings of the Seventh International Conference on
Intelligent Systems for Molecular Biology, pp. 118–129. AAAI Press, Menlo Park,
California.

PISANI, D. AND WILKINSON, M. 2002. Matrix representation with parsimony, taxonomic
congruence, and total evidence. Systematic Biology 51:151–155.

PURVIS, A. 1995. A composite estimate of primate phylogeny. Philosophical Transactions of
the Royal Society of London, Series B 348:405–421.

SANDERSON, M. J., PURVIS, A., AND HENZE, C. 1998. Phylogenetic supertrees: assembling the
trees of life. Trends in Ecology and Evolution 13:105–109.

SEMPLE, C. AND STEEL, M. 2003. Phylogenetics. Oxford University Press, Oxford.
STEEL, M. A. 1992. The complexity of reconstructing trees from qualitative characters and

subtrees. Journal of Classification 9:91–116.
STEEL, M. A., DRESS, A. W., AND BÖCKER, S. 2000. Simple but fundamental limitations on

supertree and consensus tree methods. Systematic Biology 49:363–368.
WILKINSON, M., THORLEY, J. L., PISANI, D., LAPOINTE, F.J., AND MCINERNEY, J. O. 2004.

Some desiderata for liberal supertrees. In O. R. P. Bininda-Emonds (ed.), Phylogenetic
Supertrees: Combining Information to Reveal the Tree of Life, pp. 227–246. Kluwer
Academic, Dordrecht, the Netherlands.

