
FlipCut Supertrees: Towards Matrix
Representation Accuracy in Polynomial Time

Malte Brinkmeyer, Thasso Griebel, and Sebastian Böcker

Lehrstuhl für Bioinformatik, Friedrich-Schiller-Universität Jena, Ernst-Abbe-Platz 2,
07743 Jena, Germany, sebastian.boecker@uni-jena.de

Abstract. In computational phylogenetics, supertree methods provide
a way to reconstruct larger clades of the Tree of Life. The supertree
problem can be formalized in different ways, to cope with contradictory
information in the input. In particular, there exist methods based
on encoding the input trees in a matrix, and methods based on
finding minimum cuts in some graph. Matrix representation methods
compute supertrees of superior quality, but the underlying optimization
problems are computationally hard. In contrast, graph-based methods
have polynomial running time, but supertrees are inferior in quality.
In this paper, we present a novel approach for the computation
of supertrees called FlipCut supertree. Our method combines the
computation of minimum cuts from graph-based methods with a matrix
representation method, namely Minimum Flip Supertrees. Here, the
input trees are encoded in a 0/1/?-matrix. We present a heuristic to
search for a minimum set of 0/1-flips such that the resulting matrix
admits a directed perfect phylogeny. We then extend our approach by
using edge weights to weight the columns of the 0/1/?-matrix.
In our evaluation, we show that our method is extremely swift in practice,
and orders of magnitude faster than the runner up. Concerning supertree
quality, our method is sometimes on par with the “gold standard” Matrix
Representation with Parsimony.

This is a preprint of: Malte Brinkmeyer, Thasso Griebel and Sebastian Böcker.
FlipCut Supertrees: Towards Matrix Representation Accuracy in Polynomial Time.

In Proc. of Computing and Combinatorics Conference (COCOON 2011), volume 6842
of Lect Notes Comput Sci, pages 37-48. Springer, Berlin, 2011.

1 Introduction

When studying the relationship and ancestry of current organisms, discovered
relations are usually represented as phylogenetic trees: These are rooted trees
where each leaf corresponds to a group of organisms, called taxon. Inner vertices
represent hypothetical last common ancestors of the organisms located at the
leaves of its subtree. Supertree methods assemble phylogenetic trees with non-
identical but overlapping taxon sets, into a larger supertree that contains all
taxa of every input tree and describes the evolutionary relationship of these
taxa. Constructing a supertree is easy if no contradictory information is encoded



2 Malte Brinkmeyer, Thasso Griebel, and Sebastian Böcker

in the input trees [1]. The major problem of supertree methods is dealing with
incompatible data in a reasonable way. It is understood that incompatible input
trees are the rule rather than the exception in application.

Current supertree methods can roughly be subdivided into two major
families: matrix representation (MR) methods, and graph-based methods with
polynomial running time. The former encode inner vertices of all input trees
as partial binary characters in a matrix, which is then analyzed using an
optimization or agreement criterion to yield the supertree. In 1992, Baum [2] and
Ragan [14] independently proposed the matrix representation with parsimony
(MRP) method as the first matrix representation method. MRP is by far the
most widely used supertree method today, and constructed supertrees are of
comparatively high quality. Other variants have been proposed using different
optimization criteria, such as matrix representation with flipping (MRF) [5] and
matrix representation with compatibility. All MR methods have in common that
the underlying optimization problems are NP-hard [5, 7]. So, heuristic search
strategies have to be used. Still, running times of MR methods can be prohibitive
for large datasets. Recently, Ranwez et al. [16] presented SuperTriplets, a local
search heuristic based on triplet dissimilarity and triplet matrix encoding.

A particular matrix representation supertree method is “matrix representa-
tion with flipping”: Here, the rooted input trees are encoded in a matrix with
entries ‘0’, ‘1’, and ‘?’ [5]. Utilizing the parsimony principle, MRF seeks the
minimum number of “flips” 0 → 1 or 1 → 0 in the input matrix that make
the resulting matrix consistent with a phylogenetic tree, where ‘?’-entries can
be resolved arbitrarily. Evaluations indicate that MRF is on par with the “gold
standard” MRP [4].

Graph-based methods make use of a graph to encode the topological
information given by the input trees. This graph is used as a guiding structure to
build the supertree top-down from the root to the leaves. The first graph-based
supertree method was the Build algorithm [1]. This algorithm is only applicable
to non-conflicting input trees, and, thus only of limited use in practice. This led
to the development of the MinCut (MC) supertree algorithm [18] and a modified
version, Modified MinCut (MMC) supertrees [12]. MC and MMC construct
a supertree even if the input trees are conflicting. All three methods share the
advantage of polynomial running time, what results in swift computations in
applications. On the downside, supertrees constructed by both MC and MMC
are consistently of inferior quality compared to those constructed using MR
methods [3].

Another graph-based method is PhySIC [15], a so-called veto supertree
method. A drawback of veto methods is that they tend to produce unresolved
supertrees in case of highly conflicting and/or poorly overlapping input trees.
PhySIC IST [17] tries to overcome this drawback by computing non-plenary
supertrees: The supertree does not necessarily contain all taxa from the input
trees. The Build With Distances algorithm (BWD) [21] is the first graph-
based method that uses branch length information from the input trees to build
the supertree. It also generalizes the Build algorithm but uses branch lengths



FlipCut Supertrees 3

to find better vertex partitions in the Build graph. Simulations indicate BWD
supertrees are of much better quality than MC and MMC supertrees, but results
are not on par with MRP [3].

In this paper, we concentrate on the matrix representation with flipping
framework. Recall that the problem is NP-hard [5], and only little algorithmic
progress has been made towards its solution. We can test whether an
MRF supertree instance admits a perfect phylogeny without flipping in time
O(mn log2(m+ n)) [13]. There exist no parameterized algorithms or non-trivial
approximation algorithms in the literature. Chen et al. [4] present a heuristic for
MRF supertrees based on branch swapping, and Chimani et al. [6] introduce an
Integer Linear Program to find exact solutions.

Our contributions. Here, we present a novel algorithm, named FlipCut,
based on minimizing the number of 0/1-flips in the matrix representation. Our
algorithm constructs the phylogenetic tree top-down, minimizing in each step
the number of required flips. Running time of our algorithm is comparable to
that of the MinCut algorithm: For n taxa and m internal nodes in the input
trees, running time is O(mn3). We show that our method usually outperforms
all other polynomial supertree methods with regards to supertree quality. In
contrast to MinCut supertrees, our results are interpretable in the sense that
we try to minimize a global objective function, namely the number of flips in
the input matrix.

2 Preliminaries

Let n be the number of taxa in our study; for brevity, we assume that our
set of taxa equals {1, . . . , n}. In this paper, we assume all trees to be rooted
phylogenetic trees, that is, there exist no vertices with out-degree one. If there
are unrooted trees in the input set, each such tree has to be rooted using an
outgroup. In this case, branch lengths (see Sec. 4) of edges incident to the root
can be ignored. We are given a set of input trees T1, . . . , Tl with leaf set L(Ti) ⊆
{1, . . . , n}. We assume

⋃
i L(Ti) = {1, . . . , n}. We search for a supertree T of

these input trees, that is, a tree with leave set L(T ) = {1, . . . , n}. For Y ⊆ L(T )
we define the induced subtree T |Y of T where all internal vertices with degree two
are contracted. Some tree T refines T ′ if T ′ can be reached from T by contracting
internal edges. We say that a supertree T of T1, . . . , Tl is a parent tree if T |L(Ti)

refines T , for all i = 1, . . . , l. In this case, T1, . . . , Tl are called compatible.
To cope with incompatibilities in the input, we employ the framework of

Flip Supertrees: We encode the input trees in a matrix M with elements in
{0, 1, ?}, where rows correspond to taxa. Each inner vertex (except the root)
in each input tree is encoded in one column of the matrix: Entry ‘1’ indicates
that the corresponding taxon is a leaf of the subtree rooted in the inner node,
whereas all other taxa are encoded ‘0’. The state of taxa that are not part of
the input tree is unknown, and represented by a question mark (‘?’). Columns
of the matrix are called characters, and we assume that the set of characters
equals {1, . . . ,m}. Clearly, m ≤ l(n − 2). In detail, m is the total number of



4 Malte Brinkmeyer, Thasso Griebel, and Sebastian Böcker

non-root inner vertices in T1, . . . , Tl. From the construction of M , we infer that
each column in M contains a least one ‘0’-entry and at least two ‘1’-entries.

The classical (directed) perfect phylogeny model assumes that the matrix M
is binary, and that there exists an ancestral species that possesses none of the
characters, corresponding to a row of zeros. This is sometimes referred to as
directed perfect phylogeny. Further it is assumed that each transition from ‘0’ to
‘1’ happens at most once in the tree: An invented character never disappears and
is never invented twice. According to the perfect phylogeny model, M admits
a perfect phylogeny if there is a rooted tree with n leaves corresponding to the
n taxa, where for each character u, there is an inner node w of the tree such
that M [t, u] = 1 holds if and only if taxon t is a leaf of the subtree below w,
for all t. Given an arbitrary binary matrix M , we may ask whether M admits
a perfect phylogeny. Gusfield [10] shows how to check if a matrix M admits
a perfect phylogeny and, if possible, constructs the corresponding phylogenetic
tree in time Θ(mn). There exist several characterizations for matrices that admit
a perfect phylogeny, see for example [13].

We now ask whether a matrix with ‘?’-entries allows for a perfect phylogeny,
where ‘?’-entries can be arbitrarily resolved to ‘0’ or ‘1’. Interestingly, this can
also be decided in Õ(mn) time [13]. (As usual, the Õ(·) notation suppresses all
poly-log factors.) To resolve incompatibilities among the input trees, the Flip
Supertrees model assumes that the matrix M is perturbed. We search for a
perfect phylogeny matrix M∗ such that the number of entries where one matrix
M,M∗ contains a ‘0’ and the other matrix a ‘1’, is minimal. This is the number
of “flips” required to correct the input matrix M , also referred to as the cost of
the instance. Unfortunately, finding the matrix with minimum flip costs is an
NP-complete problem, even for an input matrix without ‘?’-entries [5].

To evaluate the quality of our supertrees, we use different measures: Each
internal node of a rooted tree T induces a cluster Y ⊆ L(T ). The Robinson-
Foulds (RF) symmetric distance between two trees T, T ′ is the number of clusters
induced by one tree but not the other, divided by the number of clusters induced
by both trees. Another score between trees T, T ′ is the maximum agreement
subtree (MAST). This is a subset of leaves Y ⊆ L(T ) = L(T ′) of maximum
cardinality such that T |Y = T ′|Y holds. The MAST distance of T, T ′ then equals
1− |Y | / |L(T )|.

3 The FlipCut algorithm

The MinCut algorithm [18] as well as the Modified MinCut algorithm [12]
construct supertrees by resolving conflicts in the input trees in a recursive top-
down procedure. This has been adapted from the Build algorithm [1] that
returns a supertree only if the input trees are compatible. A related algorithm
was given by Pe’er et al. [13]. This algorithm tests whether an MFST instance
M allows for a perfect phylogeny without flipping, by resolving all ‘?’-entries.
In fact, these two problems are equivalent: The input trees can be encoded in
a matrix M as described in Sec. 2. Also, an input matrix M with m columns



FlipCut Supertrees 5

can be transformed into m input trees, where each column c is transformed into
a tree with those taxa t satisfying M [t, c] 6=?, having a single non-trivial clade
with taxa t such that M [t, c] = 1. In the following, we show how to apply the
idea of finding minimum cuts to the algorithm of Pe’er et al..

For a subset S ⊆ {1, . . . , n} of taxa and a subset D ⊆ {1, . . . ,m} of
characters, the FlipCut graph G(S,D) is a bipartite graph with vertex sets S and
D, and an edge (t, c) is present in G(S,D) if and only if M [t, c] = 1, for t ∈ S
and c ∈ D. A character vertex c ∈ D is semiuniversal (in S,D) if M [t, c] ∈ {1, ?}
holds for all t ∈ S. We immediately remove all semiuniversal character vertices
from G(S,D), as all ‘?’-entries can be resolved to ‘1’ without flipping [13].

The algorithm of Pe’er et al. proceeds as follows: We start with S ←
{1, . . . , n} and D ← {1, . . . ,m}. We then construct the FlipCut graph G(S,D).
If this graph is connected, the algorithm terminates, as there is no perfect
phylogeny resolving M . Otherwise, we recursively repeat for each connected
component S′, D′ of the FlipCut graph with |S′| > 1. In case the algorithm does
not terminate early, then the sets S′ of taxa computed during the course of the
algorithm, define the rooted phylogenetic tree.

Assume that G(S,D) is connected at some point of the algorithm — how can
we disconnect the graph by means of modifying the input matrix M? Obviously,
it does not help to insert new edges in G(S,D). Removing an edge (t, c) from
G(S,D) can be achieved by two different operations: either flip M [t, c] from
‘1’ to ‘0’, or make character c semiuniversal by flipping all entries satisfying
M [t′, c] = 0 to ‘1’, for t′ ∈ S. Recall that any semiuniversal character c is
deleted immediately, resulting in the deletion of all edges incident to c. This
comes at the cost of w(c) := #{t ∈ S : M [t, c] = 0} flips in the matrix. To
disconnect G(S,D) we can use an arbitrary combination of these edge deletion
operations.

Formally, we assume all edges in G(S,D) to have unit weight, and that each
character vertex c has weight w(c). The weight of a bipartition of taxa vertices is
the minimal cost of a set of edge and vertex deletions, such that the two subsets
of taxa vertices lie in separate components of the resulting graph. We search for
a bipartition of minimal weight.

Clearly, this problem is closely related to finding minimal cuts in an
undirected graph. Unfortunately, there exist two important differences here:
First, we are not searching for an arbitrary cut in the graph G(S,D) but instead,
require that the set of taxa vertices is partitioned. Second, these algorithms
do not allow us to delete vertices. We conjecture that the first modification is
relatively easy to overcome. However, it is not obvious how to include vertex
deletions in these algorithms.

To this end, we drop back to an older approach for finding minimum cuts:
We fix one taxon vertex s, and for all other taxa vertices t we search for a
minimum s-t-cut, allowing vertex deletions. Among these cuts, the cut with
minimal weight is the solution to the above problem. To find a minimum s-t-
cut with vertex deletions, we transform G(S,D) into a directed network H(S,D)
with capacities: Each taxa vertex t is also a vertex in the network, each character



6 Malte Brinkmeyer, Thasso Griebel, and Sebastian Böcker

vertex c is transformed to two vertices c− and c+ plus an arc (c−, c+) in the
network, and an edge (t, c) in G(S,D) is transformed to two arcs (t, c−) and
(c+, t) in the network. Arcs (c−, c+) have weight w(c), all other arcs have unit
weight. By the generalized min-cut max-flow theorem, finding a minimum cut in
G(S,D) is equivalent to computing a maximum flow in the network H(S,D) [8].
Note that for all taxa s, t, the maximum s-t-flow in H(S,D) equals the maximum
t-s-flow. We reach:

Lemma 1. Let S ⊆ {1, . . . , n}, D ⊆ {1, . . . ,m}, and M ∈ {0, 1, ?}m×n. We
construct the network H := H(S,D) for the input matrix M . The minimum
number of 0/1 flips required in M to make the induced FlipCut graph G(S,D)
disconnected, equals the minimum cost of a minimum 1-t-cut in the network H,
over all t = 2, . . . , n.

We now proceed in a recursive top-down procedure to construct the supertree,
similar to [12, 13, 18]. Due to space constraints, we omit the simple pseudocode
of the algorithm. The subsets S ⊆ {1, . . . , n} that are output during the course
of the algorithm, form a hierarchy which can be transformed into the desired
supertree. As the algorithm reproduces that of Pe’er et al. in case the input trees
are compatible or, equivalently, in case the input matrix allows for a perfect
phylogeny without flipping, we infer:

Lemma 2. In case the input matrix M allows for a perfect phylogeny without
flipping, then the FlipCut algorithm returns the perfect phylogeny tree.

What is the running time of the above algorithm? At most n−1 minimum cuts
have to be computed in total, as this is the number of inner nodes in the resulting
phylogenetic tree. We reach a running time of O(n·T (m,n)) where T (m,n) is the
time required for computing all maximum 1-t-flows in the networks H(S,D) with
at most m character vertices and n taxa vertices. The running time is dominated
by the algorithm we use for constructing maximum flows. For a network H =
(V,E), Hao and Orlin [11] compute maximum flows from one source to all other

vertices in O
(
|V | · |E| · log(|V |2 / |E|)

)
time, using the maximum flow algorithm

of Goldberg and Tarjan. For a bipartite graph with vertex set V1 ∪ V2 and
|V1| ≤ |V2|, running time can be improved to O

(
|V1| · |E| · log(|V1|2 / |E|)

)
[11].

Our networks H(S,D) are bipartite and have O(n + m) vertices and O(mn)
edges, and we may assume n ≤ m. So, a minimum cut with vertex deletions in
G(S,D) can be computed in O(mn2) time. We infer:

Lemma 3. Given an input matrix M over {0, 1, ?} for n taxa and m characters,
the FlipCut algorithm computes a supertree in O(mn3) time.

As presented here, the FlipCut algorithm may compute different solutions
for the same input: This is because there can be several co-optimal minimum
cuts, and our algorithm arbitrarily chooses one of these cuts. We can solve this by
removing all edges and vertices that are part of at least one minimum cut, similar
to the MinCut algorithm [18]. In the following, we ignore this modification: We
weight all edges with real numbers, so the existence of several minimum cuts of
identical weight is practically impossible.



FlipCut Supertrees 7

4 Using branch lengths

To compare branch lengths from different trees in a real-world study, we first
have to normalize them. Due to space constraints, we defer the details to the full
version of this paper. We can use branch lengths in a straightforward fashion:
We weight each column of the matrix by the length of the branch that was
responsible for generating the column. This can be easily incorporated into the
FlipCut graph, by weighting edges and character vertices. In this way, flipping
an entry is cheaper for those branches that are possibly wrong, and harder for
those branches that are most likely true.

In our evaluations, a different weighting called “Edge & Level” showed a
better performance: Each character vertex c corresponds to an internal edge
e = (u, v) in one of the input trees, inducing the corresponding column in the
matrix M . We set the weight of character c and, hence, the corresponding column
in M to l(c) := w(e) ·depth(v). Here, l(c) is the length of branch e, and depth(v)
is the number of edges on the path from the root to v in the input tree.

5 The undisputed sibling problem

Given a set of input trees, assume that some taxon x appears as a sibling of
another taxon y in all the input trees in which it is present at all. In other
words, for all trees where x is present, we also find y, and both are siblings.
We call such x an undisputed sibling. Then, it is reasonable to assume that x
is also a sibling of y in the supertree, possibly accompanied by other siblings.
Unfortunately, Flip Supertrees does not necessarily enforce this: Minimizing the
number of flips, it is sometimes cheaper to separate x and y. This is a seemingly
rare but still undesirable effect of this objective function.

To counter the above effect, we use a data reduction rule that is applied to
all input trees before we compute FlipCut supertrees: If there is an undisputed
sibling x of y, then remove x from all input trees. We repeat this until we find no
more undisputed siblings. Note that by removing an undisputed sibling, we might
produce new undisputed siblings. After we have computed the supertree, we re-
insert all undisputed siblings in reverse order. If y has more than one undisputed
sibling at the same time, we re-insert all siblings in one node, resulting in a
polytomy in the supertree.

There exist two possibilities to remove the undisputed sibling x: Either we
simply delete x from the input trees, resulting in a deletion of row x from the
input matrix, and subsequent deletion of all columns that have only a single
‘1’-entry. Or, we decide to add the weight of x and y in those trees where x is
removed. In the matrix, we then treat 0/1-entries to be weighted by a positive
integer. In our implementation, we concentrate on the first variant.

6 Experiments

We want to evaluate the performance of the FlipCut supertree method in
comparison to Matrix Representation with Parsimony (MRP), Matrix Repre-



8 Malte Brinkmeyer, Thasso Griebel, and Sebastian Böcker

sentation with Flipping (MRF), Build With Distances (BWD), PhySIC IST,
and SuperTriplets. Recall that MC and MMC supertrees are of comparatively
low quality, and consistently worse than BWD [3], so we excluded these two
methods from our study. We use simulated data in our evaluation since here,
the true tree (or model tree) is known. Thus, results of different methods can
be compared at an absolute scale. Our evaluation study proceeds in the usual
fashion: A model tree is generated, and gene sequences are evolved along the
branches. Sequences at the taxa of the model tree are used as datasets from
which source trees for a supertree method are inferred. Finally, the resulting
supertree is compared to the model tree using distance or similarity measures.

For our simulations, we used a dataset1 that was generated using the
SMIDgen protocol described in [20]. Compared to previous protocols, this
protocol better reflects data collection processes used by systematists when
gathering empirical data. This includes creation of densely-sampled clade-based
trees as well as sparsely-sampled scaffold trees. Model trees having either 100,
500 or 1000 taxa were generated with 30 replicates for the 100 and 500 taxon
case, and ten replicates for the 1000 taxa case. We defer further details to the
full version of this paper.

For the simulation study, we know that all branch lengths are computed
under the same model of sequence evolution. This can be seen as an optimal
condition for the BWD and FlipCut algorithm. Again, we defer the evaluation
on whether branch length normalization changes the quality of reconstructed
supertrees, to the full version of this paper.

We implemented the FlipCut algorithm in Java as part of the EPoS
framework [9]. In order to to illustrate the influence of branch-length to our
approach, we use two different weighting schemes for edges and character vertices
in the graph model: First, unit costs, where branch lengths are ignored. Here,
the cost of deleting an edge is one, and the cost of deleting a character vertex c
is just the number of zeros in the corresponding column in matrix M . Second,
“Edge & Level”, where we make use of branch lengths. We multiply deletion
costs for character vertex c and all edges incident to c by w(c) = l(e) · depth(v).
Here, l(e) is the length of branch e = (u, v), depth(v) is the number of edges on
the path from the root to v, and c corresponds to v.

MRP supertrees were computed using PAUP* 4.0b10 [19] with TBR branch
swapping strategy, random addition of sequences, no limit on the maximal
number of trees in memory, and 100 replicates. MRF supertrees were generated
using the implementation provided by Duhong Chen2, also with the TBR branch
swapping strategy. For 100 taxa model trees, we used 30 replicates for the
search, and in case of 500 and 1000 taxa model trees only ten replicates,
because on our cluster the implementation failed with more replicates. BWD
supertrees were constructed using the implementation by Stephen J. Willson.3

For the PhySIC IST supertrees [17] we used the implementation provided by

1 http://www.cs.utexas.edu/~phylo/datasets/supertrees.html
2 http://genome.cs.iastate.edu/CBL/download/
3 http://www.public.iastate.edu/~swillson/software.html



FlipCut Supertrees 9

Model Scaff. MRP MRP MRF BWD PhySIC IST ST FlipCut
tree factor #TO avg* c = 0.5 c = 1 unit E&L

100 20% 19/30 18:47 3:01 ≈ 1 s 16:16 28:02 0:05 < 1 s < 1 s
taxa 50% 20/30 4:36 5:15 ≈ 1 s 17:04 10:57 0:05 < 1 s < 1 s

75% 14/30 16:47 5:40 ≈ 1 s 17:02 12:52 0:06 < 1 s < 1 s
100% 0/30 0:36 4:51 ≈ 1 s 5:54 08:33 0:06 < 1 s < 1 s

500 20% 30/30 – 45:37 20:41 – – 8:56 0:30 0:22
taxa 50% 30/30 – 18:36 29:49 – – 11:59 0:55 0:42

75% 30/30 – 16:36 33:30 – – 15:46 0:40 0:38
100% 30/30 – 34:14 31:54 – – 18:55 0:12 0:15

1000 20% 10/10 – – – – – – 8:21 2:28
taxa 50% 10/10 – – – – – – 15:42 4:41

75% 10/10 – – – – – – 13:23 6:59
100% 10/10 – – – – – – 1:51 1:50

Table 1. Running times (min:sec) of the different algorithms. MRP #TO is the number
of timeouts of MRP where computation was stopped after one hour, and MRP avg* is
the average running time of those runs that stopped before the time limit. ST is the
SuperTriplets method. BWD computed four supertrees for different distance models
within the measured time.

the authors.4 PhySIC IST offers a parameter to tune the method from “veto”
to “voting-like”. In our simulation, we used 0.5 and 1 as parameter settings.
We generated SuperTriplets supertrees [16] using the implementation provided
by the authors.5. All computations were performed on a Linux cluster of AMD
Opteron-2378, 2.4 GHz CPUs, with 16 GB of memory.

7 Results

We first consider running times of MRP, MRF, BWD, PhySIC IST, Super-
Triplets, and the FlipCut algorithm presented here, see Table 1. For each
instance, we use a running time limit of one hour in case of 100 and 500 taxon
model trees, and two hours in case of 1000 taxon model trees. Entries ‘–’ indicate
that no instance was finished within the time limit: Regarding MRP, PAUP*
returns a consensus of the current trees in memory if the time limit is exceeded.
In contrast, the MRF implementation returns no tree. PhySIC IST crashes for
model tree sizes of 500 and 1000 taxa, and the SuperTriplets implementation
crashes for model tree sizes of 1000 taxa.

PAUP* often runs into timeouts even for the smallest instances containing
only 100 taxa. Similarly, PhySIC IST can process only instances of this size.
MRF, BWD, and SuperTriplets can process instances with up to 500 taxa
in less than one hour. In contrast, our FlipCut method is several orders of

4 http://www.atgc-montpellier.fr/physic_ist/ with option ‘-c’
5 http://www.supertriplets.univ-montp2.fr/download.php



10 Malte Brinkmeyer, Thasso Griebel, and Sebastian Böcker

magnitude faster than any other method. Even large instances with 1000 taxa
can be processed in a matter of minutes.

Next, we investigate the accuracy of reconstructed supertrees. Results are
shown in Fig. 1 and 2. Recall that PhySIC IST usually computes non-plenary
supertrees: Here, we first restrict the model tree to the taxon set of the supertree.
This favors PhySIC IST for all distance measures but the MAST distance, so
PhySIC IST results must be interpreted with some caution.

For the RF distance, we see that for all model tree sizes, MRP supertrees are
of the best quality. For 100 taxa model trees, MRP, the PhySIC IST variants,
and MRF show the best performance, followed by FlipCut “Edge & Level”. For
500 taxa model trees, performance from best to worst is: MRP, MRF, FlipCut
“Edge & Level”, BWD, and FlipCut unit costs. SuperTriplets performs good
for small and large scaffold density. For 100 taxa model trees, performance from
best to worst is: MRP, FlipCut “Edge & Level”, and FlipCut unit costs.

The the MAST distance and 100 taxa model trees, PhySIC IST 1 performs
significantly worse than all other methods. MRP outperforms the other methods
only with input tree sets with a scaffold density of 75% and 100%. Both FlipCut
“Edge & Level” and MRP compute supertrees such that the MAST between
supertree and model tree consistently contains more than half of the taxa. MRP,
MRF, and FlipCut “Edge & Level” perform almost on par. For 500 taxa model
trees, we see three groups: MRP and MRF perform best, closely followed by
FlipCut “Edge & Level” and SuperTriplets. Performance of FlipCut unit
cost and BWD is much worse. Finally, for 1000 taxa model trees, MRP performs
best, but FlipCut “Edge & Level” is on second place with similar performance
except for scaffold density 100%.

0.
1

0.
2

0.
3

0.
4

100 Taxa

R
F−

D
is

ta
nc

e

20 50 75 100

0.
1

0.
2

0.
3

0.
4

500 Taxa

Scaffold Factor
20 50 75 100

0.
1

0.
2

0.
3

0.
4

1000 Taxa

20 50 75 100

Flip Unit Flip Edge BWD MRP MRF S−Triplet Physic 0.5 Physic 1.0

Fig. 1. Simulation results, quality of reconstructed supertrees. We plot the Robinson-
Foulds distance between the calculated supertree to the true model tree, averaged over
all simulation replicates. From left to right, model trees with 100, 500, and 1000 taxa.



FlipCut Supertrees 11

0.
5

0.
6

0.
7

0.
8

100 Taxa

M
as

t

20 50 75 100

0.
5

0.
6

0.
7

0.
8

500 Taxa

Scaffold Factor
20 50 75 100

0.
5

0.
6

0.
7

0.
8

1000 Taxa

20 50 75 100

Flip Unit Flip Edge BWD MRP MRF S−Triplet Physic 0.5 Physic 1.0

Fig. 2. Simulation results, quality of reconstructed supertrees. We plot the MAST
distance between the calculated supertree and the true model tree, averaged over all
simulation replicates. From left to right, model trees with 100, 500, and 1000 taxa.

8 Conclusion

We have presented a novel supertree method named FlipCut supertrees. Our
method combines the intuition behind both Minimum Flip and MinCut su-
pertrees. We have also presented a heuristic that ensures that undisputed siblings
will be present in the constructed supertree. The FlipCut supertree method has
polynomial running time and is extremely swift in practice. Regarding supertree
quality, performance of the FlipCut algorithm is sometimes even on par with
MRP.

Besides the much better performance in simulations, FlipCut supertrees
offer a fundamental advantage over MinCut supertrees: We have defined a global
objective function that we want to minimize, whereas no such objective can be
defined for MinCut and its derivatives. Besides the theoretical amenity of such
a objective function, this also has practical implications: We can compare the
quality of different supertrees based on our objective function; and we can also
compare the quality of partial solutions. We conjecture that this fact will allow
us to further improve the quality of FlipCut supertrees. Finally, we want to
evaluate methods for weighting the edges in the FlipCut graph. The “Edge &
Level” weighting presented here, is merely meant to demonstrate the impact of
weighting edges on the quality of constructed supertrees.

Acknowledgments. Additional implementation by Markus Fleischauer.

References

1. A. V. Aho, Y. Sagiv, T. G. Szymanski, and J. D. Ullman. Inferring a tree from
lowest common ancestors with an application to the optimization of relational
expressions. SIAM J. Comput., 10(3):405–421, 1981.

2. B. R. Baum. Combining trees as a way of combining data sets for phylogenetic
inference, and the desirability of combining gene trees. Taxon, 41(1):3–10, 1992.



12 Malte Brinkmeyer, Thasso Griebel, and Sebastian Böcker

3. M. Brinkmeyer, T. Griebel, and S. Böcker. Polynomial supertree methods revisited.
In Proc. of Pattern Recognition in Bioinformatics (PRIB 2010), volume 6282 of
Lect. Notes Comput. Sc., pages 183–194. Springer, 2010.

4. D. Chen, O. Eulenstein, D. Fernández-Baca, and J. G. Burleigh. Improved
heuristics for minimum-flip supertree construction. Evol. Bioinform. Online, 2:391–
400, 2006.

5. D. Chen, O. Eulenstein, D. Fernández-Baca, and M. Sanderson. Minimum-
flip supertrees: complexity and algorithms. IEEE/ACM Trans. Comput. Biol.
Bioinform., 3(2):165–173, 2006.

6. M. Chimani, S. Rahmann, and S. Böcker. Exact ILP solutions for phylogenetic
minimum flip problems. In Proc. of ACM Conf. on Bioinformatics and
Computational Biology (ACM-BCB 2010), pages 147–153, 2010.

7. W. Day, D. Johnson, and D. Sankoff. The computational complexity of inferring
rooted phylogenies by parsimony. Math. Biosci., 81:33–42, 1986.

8. L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press,
Princeton, New Jersey, 1962.

9. T. Griebel, M. Brinkmeyer, and S. Böcker. EPoS: a modular software framework
for phylogenetic analysis. Bioinformatics, 24(20):2399–2400, 2008.

10. D. Gusfield. Efficient algorithms for inferring evolutionary trees. Networks, 21:19–
28, 1991.

11. J. X. Hao and J. B. Orlin. A faster algorithm for finding the minimum cut in a
directed graph. J. Algorithms, 17(3):424 – 446, 1994.

12. R. D. M. Page. Modified mincut supertrees. In Proc. of Workshop on Algorithms
in Bioinformatics (WABI 2002), volume 2452 of Lect. Notes Comput. Sc., pages
537–552. Springer, 2002.

13. I. Pe’er, T. Pupko, R. Shamir, and R. Sharan. Incomplete directed perfect
phylogeny. SIAM J. Comput., 33(3):590–607, 2004.

14. M. A. Ragan. Phylogenetic inference based on matrix representation of trees. Mol.
Phylogenet. Evol., 1(1):53–58, 1992.

15. V. Ranwez, V. Berry, A. Criscuolo, P.-H. Fabre, S. Guillemot, C. Scornavacca, and
E. J. P. Douzery. PhySIC: a veto supertree method with desirable properties. Syst.
Biol., 56(5):798–817, 2007.

16. V. Ranwez, A. Criscuolo, and E. J. P. Douzery. Supertriplets: a triplet-based
supertree approach to phylogenomics. Bioinformatics, 26(12):i115–i123, 2010.

17. C. Scornavacca, V. Berry, V. Lefort, E. J. P. Douzery, and V. Ranwez. PhySIC IST:
cleaning source trees to infer more informative supertrees. BMC Bioinformatics,
9:413, 2008.

18. C. Semple and M. Steel. A supertree method for rooted trees. Discrete Appl.
Math., 105(1-3):147–158, 2000.

19. D. Swafford. Paup*: Phylogenetic analysis using parsimony (*and other methods),
2002. Version 4.

20. M. S. Swenson, F. Barbancon, T. Warnow, and C. R. Linder. A simulation study
comparing supertree and combined analysis methods using SMIDGen. Algorithms
Mol. Biol., 5(1):8, 2010.

21. S. J. Willson. Constructing rooted supertrees using distances. Bull. Math. Biol.,
66(6):1755–1783, 2004.


