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Abstract. Peptide mass fingerprinting is an important technique that
allows to identify a protein from its fragment masses obtained by mass spec-
trometry after enzymatic fragmentation: An experimental mass fingerprint
is compared with or aligned to several reference fingerprints obtained from
protein databases using in-silico digestion. Recently, much attention has
been given to the questions of how to score such an alignment of mass spec-
tra and how to evaluate its significance; results have been developed mostly
from a combinatorial perspective. In particular, existing methods generally
do not (or only at the price of a combinatorial explosion) capture the fact
that the same amino acid can have different masses because of, e.g., isotopic
distributions or variable chemical modifications.

We offer several new contributions to the field: We introduce the notions
of a probabilistically weighted alphabet, where each character can have differ-
ent masses according to a specified probability distribution, and the notion
of a random weighted string as a fundamental model for a random protein.
We then develop a general computational framework, which we call weighted
HMMs for various length and mass statistics of cleavage fragments of ran-
dom proteins. We obtain general formulas for the length distribution of a
fragment, the number of fragments, the joint length-mass distribution, and
for fragment mass occurrence probabilities, and special results for so-called
standard cleavage schemes (e.g., for Trypsin). We also discuss how to effi-
ciently implement the probability computations. Computational results are
provided, as well as a comparison to proteins from the SwissProt database.



Contents

1 Introduction 2

2 The Random Weighted String Model 3
2.1 Weighted Alphabets and Strings . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Probabilistically Weighted Alphabets and Strings . . . . . . . . . . . . . . 5
2.3 Random Weighted Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Fragmentation of Random Weighted Strings 8
3.1 Fragmentation Models: Cleavage Schemes and Weighted HMMs . . . . . . 9
3.2 Fragment Length Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Number of Fragments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Length-Mass Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Fragment Mass Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Occurrence of Masses in Random Weighted Strings 27

5 Efficient implementation 31
5.1 Length Bounds for Decompositions . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Memory Efficient Computation of f̄ ′ . . . . . . . . . . . . . . . . . . . . . 32
5.3 Compression and Interpolation of p . . . . . . . . . . . . . . . . . . . . . . 33
5.4 Computation of Simple Cleavage Models . . . . . . . . . . . . . . . . . . . 35
5.5 Standard Cleavage Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Conclusion 38

A Amino Acid Weights and Frequencies 39

B Isotopic Distributions of Amino Acids 40

C Restriction Enzymes 41

1



1 Introduction

Mass spectrometry (MS) plays a key role in today’s proteomics experiments [1]. The
main application of mass spectrometry is the identification of proteins either by de-novo
sequencing [2] or by peptide-mass fingerprinting together with a database search [11].

In peptide-mass fingerprinting, the protein is biochemically digested into fragments
using restriction enzymes. The set of masses of these fragments, the so-called peptide
mass fingerprint (PMF), is measured using MS and compared to a set of reference spec-
tra, usually obtained from in-silico digested database sequences. Different comparison
tools have been developed, prominent ones being Mascot [13] based on the MOWSE
scoring system [12] and ProFound [21]. One major problem in developing spectra com-
parison methods is to estimate the statistical significance of its results. First of all, a
statistical model of the fragmentation and the resulting mass fingerprints is needed.

Presently, there are two major approaches to cope with this problem: (1) One can
use a statistical model based on strongly simplifying assumptions, such as the uniform
distribution of fragment masses [12], to reduce the problem complexity considerably.
However, such models may not fit well to real data [18]. (2) Alternatively, one can
derive the model from empirical data, e.g., from large samples of mass spectra [9] where
we have to deal with the problem that mass spectra depend on the instruments used,
the technical instrument settings such as voltage, laser energy and temperature, and
on the biochemical preparation of the samples. Another possibility is to use in-silico
digestion of whole protein sequence databases [18]. The problem here is that statistical
significance values are data dependent and are thus hard to compare to other results.
If, for example, sequences are added to the database, the significance values of other
interpretations also change. Moreover, we are frequently only interested in the proteome
of one species. Deriving an empirical model is often difficult as most species-specific
protein databases are too small to get reliable statistical data for fragments and using a
very large non-specific database may result in biased estimates.

In [6], a new approach was proposed to compute significance values. Here, the prob-
ability that an i.i.d. random protein sequence contains at least one fragment of certain
mass was computed using a dynamic programming approach based on uniform character
distributions and for fixed character masses. However, not all amino acids occur with the
same frequency in natural proteins, and the same amino acid may have different masses
because of isotopic distributions, or, for example, different variable post-translational
modifications that may or may not be present. Therefore, more general models and
computational approaches are needed.

This report provides both a general model, namely random weighted strings that
we introduce in Section 2, and a computational framework for several different kinds
of fragment statistics, namely weighted HMMs (wHMMs) that we define and apply in
Section 3. The wHMM framework is quite general; is comprises, for example, random
i.i.d. and Markovian proteins of arbitrary order, and many different cleavage rules. For
our results, however, we focus on i.i.d. strings and standard cleavage schemes, to be
defined subsequently. We derive the exact distribution of fragment lengths, the exact
distribution of the number of fragments, the exact joint length-mass distribution, and
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the mass distribution of fragments. From these results, we derive the probability that a
given fragment mass occurs at least once in a string of given length (Section 4).

We have implemented our results and compare the i.i.d. model predictions to empir-
ical data obtained from the SwissProt database, release 48 (September 2005, [3]). In
Section 5, we discuss various methods to reduce the memory consumption as well as
time efficient implementations.

Related work. Our results can be seen as generalizations of two lines of previous re-
search.

First, our model of probabilistically weighted strings extends the concept of weighted
strings [8], where the weights of characters are fixed and not probabilistic. Weighted
strings have been used in the setting of mass spectrometry to generate peptide candi-
dates [10, 17], to compute possible decompositions of masses into character masses [7]
and to find submasses [4]. General combinatorics of weighted strings were investigated
in [8].

Second, the waiting times for cleavage points between fragments (i.e., the fragment
lengths) are waiting times for specific, possibly overlapping, patterns in strings. For
strings without weights, the statistics of such overlapping patterns [14, 19, 15] and sets
of patterns [16] have been intensively investigated in bioinformatics and statistics [20],
and our results on random weighted strings naturally contain some of these as particular
cases.

Notational conventions. We write L(X) for the distribution of a random variable
(r.v.) X; the generic probability measure is denoted by P. Distributions are represented
as probability vectors, e.g., we write x[m] = P(X = m) for some finite range of integers
m.

We write L(X)⊗L(Y ) for the product measure of L(X) and L(Y ), i.e., the distribution
of the pair (X, Y ) if X and Y are independent. Further, L(X)?L(Y ) = L(X+Y ) denotes
the convolution of the distributions of two independent r.v.s X and Y . These notations
generalize to more than two r.v.s. The convolution of two vectors x[i], y[j] is defined as
(x?y)[k] :=

∑

i x[i] ·y[k− i], where the finite value range of k is derived from the ranges
of i and j.

For a string s we denote the substring from index i to index j (inclusive) by si:j , and
we write s` := s1:`.

2 The Random Weighted String Model

In the life sciences, mass spectrometry is traditionally used for proteomics experiments
such as de novo sequencing or peptide identification by database search. Similar tech-
niques are in development to measure DNA molecules and metabolites. We restrict
ourselves to the modeling of protein and DNA experiments which have a common ba-
sis: In both cases, the molecules consist of an unknown sequence of well-known single
molecules, amino acids and nucleotides, respectively. In bioinformatics, such molecules
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are traditionally modeled as strings over fixed and finite alphabets of characters. In
the context of mass spectrometry, we assign a mass to each character and refer to such
strings as weighted strings. We extend the weighted string model of [8] to also capture
isotopic distributions and post-translational modifications of proteins. In this model,
one character may take on different masses with certain probabilities. These probabili-
ties are known up to great precision in the case of isotopes and can be experimentally
estimated in the case of post-translational modifications. Moreover, the frequency of
occurrence of characters can be estimated from sequence databases or stochastic models
of sequence evolution. This leads to stochastic models of weighted strings.

2.1 Weighted Alphabets and Strings

We always assume Σ to be a finite alphabet. The following two definitions restate the
concept of weighted strings as used in [8].

Definition 2.1 (Weighted alphabet). Let Σ be a finite alphabet and let µ : Σ → Z

be a function assigning each character σ ∈ Σ its mass or weight µ(σ) :≡ µσ. The
pair (Σ, µ) is called a weighted alphabet with character mass function µ. We write
µmax := max{µ(σ) : σ ∈ Σ} and µmin := min{µ(σ) : σ ∈ Σ} for the largest and smallest
mass in (Σ, µ), respectively.

Remark. We use integer masses for several reasons: Real numbers of arbitrary precision
cannot be represented in a computer by standard data types anyway, so it makes sense
to restrict weights to numbers in Q with bounded denominator. By multiplying, these
can always be represented as integers. Also, in practice, mass values are only known
up to a certain accuracy. While we do not encounter them in real molecules, we do
allow negative weights, e.g., to be able to allow modifications that reduce the mass of a
molecule.

Definition 2.2 (Weighted string, mass sequence). In general, a weighted string is
a semi-infinite sequence (si, µi)i∈N over (Σ×Z)N. For a given weighted alphabet (Σ, µ),
the sequence (si, µ(si))i∈N is called a weighted string over (Σ, µ). We sometimes call the
sequence s = (si)i∈N the weighted string and the sequence (µi)i∈N the weight sequence,
mass sequence, or (deterministic) mass process of s. The character mass function is
also written with subscripts, i.e., µsi

:= µ(si). The case of finite (weighted) strings is
obtained by considering the length-` prefix of (s, µ) for some ` ∈ N.

Definition 2.3 (String mass). The character mass function is extended to finite strings
s` ∈ Σ` by setting

µ(s) :=
∑̀

i=1

µ(si).

This definition provides a homomorphism from the non-Abelian semigroup (Σ∗, ◦), where
◦ denotes concatenation, to the Abelian (semi-)group (Z, +).
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Char. A C D · · · Y

Mass (Da) 71.0788 103.1388 115.0886 · · · 163.1760

Table 1: Average isotopic molecular weights in Dalton of some amino acids.

Example 2.4 (Proteins). Proteins are strings over the alphabet of amino acids. There
are 20 different amino acids, each having a specific one letter code and a molecular weight,
usually given in Daltons (Da), with one Da approximately the mass of a proton. See
Table 1 for some molecular weights of amino acids. An extensive table can be found in
the appendix.

To obtain integers as character masses, we scale weights by a divisor ∆ = 10−k, k ∈ N

and round to the next integer. Using ∆ = 0.01, we get µA = round(71.0788/0.01) =
7108. This discretization of masses is not a problem in practice, as first molecular weights
are only known to some precision and second in the setting of mass spectrometry, masses
can only be measured up to some precision. Usually, a discretization factor ∆ = 0.1 or
∆ = 0.01 is sufficient.

2.2 Probabilistically Weighted Alphabets and Strings

In order to capture isotopic distributions and mass modifications of characters, we want
to allow multiple masses per character in an alphabet, where each mass is taken with
certain probability. As only the mass is probabilistic and no random model for the
sequences is (yet) assumed, we call such weighted alphabets probabilistically weighted
alphabets.

Definition 2.5 (Probabilistically weighted alphabet). Let Σ be a finite alphabet,
let (Ξ, P) be an appropriately constructed probability space, and let µ : Σ × Ξ → Z

be a probabilistic character mass function, assigning to each character σ ∈ Σ a random
variable µ(σ, ·) = µσ(·) : Ξ → Z, so P(µσ = m) denotes the probability that the mass of
character σ takes the value m. The pair (Σ, µ) is then called a probabilistically weighted
alphabet.

Again we denote by µmax, µmin the largest and smallest possible mass in (Σ, µ), with
µmax := max{m ∈ Z : ∃σ ∈ Σ s.t. P(µσ = m) > 0} and µmin := min{m ∈ Z : ∃σ ∈
Σ s.t. P(µσ = m) > 0}.

Note that it is sufficient to specify the distribution L(µσ) for each σ ∈ Σ and we
do not have to explicitly specify the probability space Ξ. Also, if L(µσ) is a Dirac
distribution for each σ ∈ Σ (in which case µσ takes on one value with probability 1),
the probabilistically weighted alphabet is the same as a weighted alphabet as we can
identify µσ with the mass mσ for which P(µσ = mσ) = 1.

Example 2.6 (Isotopes of amino acids). Each amino acid occurs in nature with
several masses due to the isotopic masses of the atoms building the amino acid. This fact
can be modeled by a probabilistically weighted alphabet, where µσ takes on the different
isotopic masses of the amino acid σ with probability of occurrence of the corresponding
isotopic composition in nature.
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Example 2.7 (Post-translational modifications). We can also model so-called post-
translational modifications (PTMs) of amino acids with probabilistically weighted alpha-
bets. PTMs are modifications such as phosphor or methyl groups which are attached to
certain amino acids after the amino acid sequence has been translated from the gene.
PTMs can occur at every amino acid or they can be specific to certain amino acids.
Thus, some amino acids of certain type may be modified, others may not be. Proba-
bilistically weighted alphabets can be useful if the frequency of a modification is known
or can be estimated for every amino acid. Note that this model can also be combined
easily with the above model of isotopic distributions.

Since we would like to consider strings of arbitrary length in what follows, we develop
our models from a semi-infinite string s ∈ ΣN and then use projections to finite length-`
prefixes as needed. We also write s` := s1:` for this prefix.

In order to define (probabilistically) weighted strings over a probabilistically weighted
alphabet, we first have a look at the sequence of masses associated to a fixed sequence of
characters; this is now a sequence of random variables, or a stochastic process. We as-
sume that the reader is familiar with the basics on stochastic processes, as described, e.g.,
in [5]. We assume that the masses of characters at different positions are conditionally
independent, given the characters.

Definition 2.8 (Mass process for fixed strings). Let (Σ, µ) be a probabilistically
weighted alphabet and let s ∈ ΣN be a fixed semi-infinite infinite string. Let the masses
be chosen independently for each character. Then the mass process (µi)i∈N is defined as
a stochastic process having index set N and taking values in Z, where L(µi) := L(µsi

),
and because of independence, the finite dimensional distributions of (µi)i∈I for finite
I ⊂ N are given by the products

L(µI) :=
⊗

i∈I

L(µi).

The double use of µ for both the probabilistic character mass functions (µσ) and the
mass process (µi) of a string should not cause confusion, but rather aid intuition. This
definition especially extends the mass sequence of Definition 2.2. It also contains the
case of finite strings by restricting I to a subset of {1, . . . , `}.

The mass µ(sI) ≡ µsI
associated to a fixed finite string is now also a random variable,

as it is the sum of the single random masses. Because of independence, its distribution
can be computed as the convolution of the single distributions.

Lemma 2.9 (String mass distribution). For finite I := {i1, i2, . . . , in} ⊂ N, let
sI := si1si2 . . . sin. The distribution of the string string mass of sI is given by

L(µ(sI)) = L(µi1) ? · · · ? L(µin).

This is the only reasonable way to consistently extend Definition 2.3: For a (non-
probabilistically) weighted alphabet, the distribution of the string mass is again a Dirac
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distribution, assigning probability 1 to the sum of character masses. It provides a semi-
group homomorphism Lµ(◦i si) = ?i Lµ(si) from (Σ∗, ◦) to the space of finite-support
distributions on Z with the convolution operation ?.

Example 2.10. Let Σ = {a, b} and (Σ, µ) be a probabilistically weighted alphabet with
character mass distributions P(µa = 1) = P(µa = 2) = 1

2 and P(µb = 1) = P(µb = 2) =
P(µb = 3) = 1

3 . Let s = ab and µs = µab its string mass. Then the distribution of µs is
given by

P(µs = m) =
∑

m1+m2=m

P(µa = m1, µb = m2) =
∑

m′∈Z

P(µa = m′, µb = m − m′).

and we obtain:
m 0 1 2 3 4 5 6

P(µs = m) 0 0 1
6

2
6

2
6

1
6 0

.

2.3 Random Weighted Strings

The above definitions did not assume a random model for a string over an alphabet. It is
thus not yet possible to capture character frequencies or character dependencies within
strings with these models. As a remedy, we first introduce a random string model and
then combine it with weighted strings to get a model for random weighted strings.

Definition 2.11 (Random string model). A random string over an alphabet Σ is a
stochastic process S with index set N taking values in Σ given by its finite dimensional
distributions

L(SI) = L(Si1 , . . . , Sin)

for all finite I = {i1, . . . , in} ⊂ N.

Example 2.12 (i.i.d. string model). The most simple model for a random string is
an i.i.d. string. The finite dimensional distributions L(SI) then reduce to the product
measure L(SI) =

⊗

i∈I L(Si). The probability of a string is the product of its characters’
probabilities.

We are now able to give a general random string model for weighted strings over both
deterministically and probabilistically weighted alphabets. In all cases, we assume that
the mass of a character in a string is independent of the mass of all other characters.

Definition 2.13 (Random weighted string). A random weighted string is a stochas-
tic process (S, µ) = ((S1, µ1), (S2, µ2), . . . ) with index set N, values in Σ × Z and finite
dimensional distributions

L((S, µ)I) = L(SI) ⊗ L(µI)

where S is a random string and µ is a mass process associated to S. We denote the
measure of this distribution by P.

Henceforth, we only discuss the i.i.d. model, in which we assume the characters to be
independent and identically distributed. Note however, that all above definitions also
capture arbitrary string models, the most prominent one being Markov sequences.
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Char. A C D · · · Y

Mass (Da) 71.0788 103.1388 115.0886 · · · 163.1760

Freq. (%) 7.85 1.54 5.31 · · · 3.06

Table 2: Average isotopic molecular weights and SwissProt frequencies of amino acids

Example 2.14 (Random proteins). As before, we model a peptide or a protein as a
string over the alphabet Σ of amino acids, and every letter in the string has a certain
mass dependent only on the character itself, but independent of all other characters
within the string, given by µσ. The character L ∈ Σ, say, at some given position within
the sequence may therefore have a different mass as the same character L later in the
sequence. A useful random peptide model would take the frequencies of amino acids from
a sequence database such as SwissProt [3] as character probabilities (see Table 2). The
isotopic character mass distributions can be computed from the isotopic distributions of
the atoms by convolution.

If the character probabilities P(C = σ) and the distributions L(µC | C = σ) are known
for every amino acid σ, we can use the identity P(C = σ, µC = m) = P(µC = m | C =
σ) · P(C = σ) to obtain the joint character-mass-distributions. From these, the mass
distribution of the whole string can be computed.

Lemma 2.15. Let (S, µ) be a random weighted string over (Σ, µ), and let S` := S1:`

be the finite length-` prefix. Assume that the character probabilities P(C = σ) and the
conditional mass distributions L(µσ) are known for every σ ∈ Σ. Then for s ∈ Σl and
m ∈ Z,

P(S` = s, µS` = m) = P(S` = s) · [?`
i=1 L(µsi

)](m),

where the convolution can be computed inductively in O(` · (µmax − µmin)
2) time using `

times the recurrence

P(µs1:`
= m) =

∑

m′

P(µs1
= m′) · P(µs2:`

= m − m′).

Under the i.i.d. string model, we can additionally use that P(S`) =
∏`

i=1 P(C = s1),
where C denotes a generic random character.

Proof. The proof is straightforward, using independence of characters and of masses for
different characters, and the fact that it is known that S` = s. For the convolution, we
condition on possible values of µs1

whose number is bounded by µmax − µmin.

3 Fragmentation of Random Weighted Strings

To identify a biomolecule such as a protein, the mass of the biomolecule itself is of
little value. In most mass spectrometry settings, the molecule is therefore cleaved into
fragments using a biochemical cleavage reaction. In the case of proteins, these so-called
proteases usually cleave right after the occurrence of a specific character. This reaction
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can be suppressed if the cleavage character is directly followed by a prohibition character.
To formalize this, we introduce the set of cleavage characters and the set of prohibition
characters, which together form a cleavage scheme. It is assumed that cleavage takes
place after the cleavage character, but some enzymes also cleave in front of the cleavage
character. If the prohibition also takes place before the cleavage, all statistics are valid
as we can just consider the reverse strings. Appendix C lists some common cases of
restriction enzymes. The resulting family of substrings is then called a fragmentation.

After formalizing the model (Section 3.1), we examine the length distribution of frag-
ments (Section 3.2), the distribution of their number (Section 3.3), and the joint length-
mass distribution (Section 3.4).

Our discussion first focuses on semi-infinite strings S ∈ ΣN to avoid complications with
boundary effects; the necessary adjustments for finite strings are made subsequently.
This is reflected in our notation as follows. Whenever we adjust a quantity, e.g., Li

for the length of the i-th fragment, to strings of finite length `, we denote the adjusted
random variable by the superscripted string length, e.g., L`

i . In this section, we write Γ̄
for the complement of a set Γ ⊂ Σ in Σ, i.e., Γ̄ := Σ \ Γ.

3.1 Fragmentation Models: Cleavage Schemes and Weighted HMMs

This report introduces the general weighted Hidden Markov Model (wHMM) framework
to carry out computations on statistics of proteins and their fragmentations. We start
by defining a cleavage scheme, which describes the activity of many peptide-cleaving
enzymes, and naturally leads to a wHMM model.

Definition 3.1 (Cleavage scheme (Γ, Π), Quantities γ, π). A cleavage scheme is
a pair (Γ, Π) of a set of cleavage characters Γ ⊂ Σ, and a set of prohibition characters
Π ⊂ Σ.

If the additional constraint Γ ∩ Π = ∅ (i.e., Γ ⊂ Π̄) holds, we speak of a standard
cleavage scheme.

Cleavage schemes with Π = ∅ are called simple.
Strings C = C1C2 ∈ Γ × Π̄ are called cleavage patterns as the cleavage reaction takes

place within them. For simple cleavage schemes, the cleavage patterns are of length 1,
as Π̄ = Σ in this case.

We set γ := P(Si ∈ Γ), π := P(Si ∈ Π). For further use, we note that for standard
schemes, P(Si ∈ Γ ∩ Π̄) = γ and that P(Si ∈ Γ̄ ∩ Π̄) = 1 − (γ + π).

The reason to introduce the special case of standard cleavage schemes is that many
existing enzymes follow this form, and computations simplify when compared to general
cleavage schemes, often allowing us to obtain closed expressions, whereas in the general
case, we cannot solve the recursions explicitly.

Example 3.2 (Trypsin). For the frequently used protease Trypsin, we have a cleavage
reaction after K or R, if not followed by P , thus Γ = {K, R} and Π = {P}; this
is a standard cleavage scheme. The possible cleavage patterns are of the form C ∈
{K, R} × (Σ\{P}). Using SwissProt frequencies, we obtain γ = 0.1125 and π = 0.0483.

9



Further examples of enzymes that match our definition of cleavage schemes, and also
some exceptions, can be found in Appendix C.

Applying a cleavage scheme on a string results in a fragmentation of this string in con-
secutive, non-overlapping substrings, the fragments. We make the following definitions.

Definition 3.3 (Cleavage points). Let S be a (random or fixed) semi-infinite string
over Σ. Each element of the series of indices T (S) = (Ti(S))i∈N with T0(S) = 0 and

Ti ≡ Ti(S) := min{k > Ti−1(S) : Sk ∈ Γ, Sk+1 ∈ Π̄}

is called a cleavage point of S. We define Ti(S) := +∞ if the minimum is taken over the
empty set. We write Ti short for Ti(S) if S is given from the context.

Definition 3.4 (Cleavage points and cleavage order for finite strings). For finite
length prefixes S`, we define

T `
i := min{Ti, `},

so that eventually all cleavage points lie directly behind the end of the prefix. We also
call

N ` := min{k : Tk = `}

the cleavage order of S`, as it gives the number of different parts of S` separated by
cleavage patterns.

Remark. For fixed semi-infinite strings, we may also set N ` := min{k : Tk = +∞}.
For fixed strings, the cleavage points and cleavage order are deterministic quantities; for
random strings, they are random variables.

Definition 3.5 (Fragments; fragmentation). For each i ≥ 1, the substring Fi :=
STi−1+1:Ti

is called the i-th fragment of S. If Ti−1 = Ti, the i-th fragment and the
following fragments are empty. We denote the length of fragment Fi by Li := Ti − Ti−1.
The family FS := (Fi)i≥1 is called the fragmentation of S.

For finite strings S`, we define F `
i , L`

i , and F `
S analogously in terms of T `

i .

Example 3.6 (Fragmentation of a string). Let Σ := {A,B, C}, Γ := {B}, Π := {A}
and let s = ABBACCBACBBB be a fixed finite string of length ` = 12. Then BB and
BC are the cleavage patterns and s is fragmented into F `

S = (AB,BACCBACB,B,B)
with cleavage order N ` = 4, cleavage points T `

1 = 2, T `
2 = 10, T `

3 = 11, T `
4 = 12, and

fragment lengths L`
1 = 2, L`

2 = 8, L`
3 = 1, L`

4 = 1. For i ≥ 5, we have T `
i = 12 and

Li = 0.

Remark. For semi-infinite strings, the sequence (Ti)i≥1 defines a renewal sequence with
delay T1 and interrenewal sequence (Li)i≥2, since Ti = Ti−1+Li for i ≥ 2. It is visualized
in Figure 1. The cleavage characters not followed by a prohibition character therefore
form a regenerative process. Note that the delay corresponds to the length of the first
fragment and that all following fragments are i.i.d. and have the same length distribution
L(L2).
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Figure 2: (a) Weighted HMM generating an initial fragment of a random i.i.d. string
under a standard cleavage scheme; (b) dito, for an inner fragment. States are
labeled with a number i and a character set A ⊂ Σ. A wHMM generates a
fragment as follows: Starting in the start state numbered 0, it picks a transition
according to the probability distribution of the state’s outgoing edges and then
emits a weighted character from the new state’s character set A according to
its conditional joint character-mass distribution.

For a simple cleavage scheme (Π = ∅), the renewal sequence can be seen as a non-
delayed sequence starting with index 0. In this case, the distribution of the first and
second fragment is the same, and the Ti are stopping times.

For finite strings, we have to deal with a stopped renewal sequence. Here, the length
distribution of fragment i depends on the remaining string length ` − Ti−1.

Weighted Hidden Markov Models (wHMMs). We are interested in several distri-
butional properties of the fragmentation of an i.i.d. random weighted string under a
standard cleavage scheme, e.g., the distribution L(Li) of fragment length, or the joint
length-mass distribution L((Li, µFi

)). To derive such properties, we introduce the frame-
work of weighted HMMs that generate protein fragment sequences together with their
mass process.

Definition 3.7 (Weighted HMM). A weighted Hidden Markov Model (wHMM) is a
6-tuple (N, Σ, P, p0, Q, F ) consisting of a finite set of states N , a finite output alphabet Σ,
a (sub-)stochastic state transition matrix P = (Pij)i,j∈N , a start distribution p0, a family

11



Q = (Qi)i∈N of output distributions of weighted characters Qi = (qi,(σ,m))(σ,m)∈Σ×Z, and
a set of final states F ⊂ N .

The semantics are as follows: The start state i is picked according to distribution
p0. A transition to a new state, being in state i, is made according to the probability
distribution in row i of P . For states i ∈ F , these distributions are defective (i.e.,
they sum to zero and not to one); the wHMM halts in these states. The sequence of
states taken through the wHMM thus forms a Markov chain with transition matrix
P . When state i is entered after a transition, a random weighted character (C, µ) is
output according to the joint character-mass distribution Qi. We assume that the output
characters of the final states do not belong to the fragment sequence (i.e., cleavage occurs
before entering F ), but we do allow masses to be added in these states to model certain
chemical groups at the end of a fragment.

The wHMMs in Figure 2 have a special property, which we do not exploit, but never-
theless note for future reference; they are unambiguous.

Definition 3.8 (Unambiguity). A wHMM is unambiguous if for any fixed finite string,
there is only one sequence of states that generates this string as output.

Lemma 3.9 (Characterization of unambiguity). A wHMM is unambiguous if and
only if the following property holds for every state i: Fix i, let J := {j : Pij > 0} and
Σj := {σ :

∑

m Qj,(σ,m) > 0} for j ∈ J . Then for all j ∈ J , we have |Σj | ≤ 1.

Proof. Necessity is obvious; sufficiency by induction on the length of the string, omitted.

Example 3.10. The wHMMs in Figure 2 are unambiguous, since from each state,
outgoing edges go only into states with disjoint character sets.

As we show in Section 3.4, it is straightforward to construct fragmentation wHMMs for
the i.i.d. string model and standard cleavage scheme. However, the framework of wHMMs
is much more general: We can construct wHMM models for more complicated cleavage
rules, or for Markovian string models, still using the same computational framework,
which we present in subsequent sections.

Combinatorial fragment description. While wHMMs provide a general framework, we
can make subsequent computations in the special case of standard cleavage schemes
more efficient by considering the following more combinatorial description of cleavage
fragments: All fragments Fi ∈ FS consist of an inner part with common structure
completed by different prefix parts for the first fragment and following fragments. For
finite strings, the last character in the last fragment is also of importance.

The inner part of a fragment consists of everything but the last and the first one or
two characters of the fragment. For this part, we can by definition of a fragment guar-
antee that there is no cleavage character not followed by a prohibition character because
otherwise the fragment would have been completed before. The fragment then consists
of this inner part followed by a cleavage character and preceded by a non-prohibition
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character in the case of inner fragments and preceded by an arbitrary character in the
case of the first fragment.

Lemma 3.11 (Structure of Fragments). 1. The common inner part of any frag-
ment is an element of the set

I l
ΓΠ ≡ I l := {s ∈ Σl : sl 6∈ Γ and for all i < l : si 6∈ Γ or (si ∈ Γ, si+1 ∈ Π)}

for some inner part length l.

2. The first fragment in the case of a semi-infinite string is described by

F1 ∈ IL1−1 × Γ.

In the case of a finite string we have

F `
1 ∈ IL1−1 × Γ if L1 < `,

F `
1 ∈ I`−1 × Σ if L1 ≥ `.

3. The following fragments must not start with a prohibition character, so we have
for i ≥ 2, noting that Γ ⊂ Π̄,

Fi ∈
[
(Π̄ \ Γ) × ILi−2 × Γ

]
∪
[
Γ × Π × ILi−3 × Γ

]
.

The same characterization holds for F `
i if Ti < `. Special care has to be taken for

Ti ≥ ` (i.e., T `
i = `):

F `
i ∈

[

(Π̄ \ Γ) × IL`

i
−2 × Σ

]

∪
[

Γ × Π × IL`

i
−3 × Σ

]

.

Proof. From the definition of fragments, we know that every cleavage character within
a fragment must immediately be followed by a prohibition character, otherwise the
fragment would have been finished before.

The first fragment may begin with any character. If the first fragment equals the whole
string, it is irrelevant whether the string would have been cut after the last character
of the string or not. If the first fragments ends somewhere within the string, its last
character must necessarily be a cleavage character.

The same argument is true for all subsequent fragments. Here, we also know that their
first character can not be a prohibition character as otherwise the previous fragment
would not have been completed. Nevertheless, Γ ⊆ Π̄ and so we have to distinguish
whether the fragment immediately starts with a cleavage character or not.

Connection to wHMM. The description of the internal part of fragments can also
easily be seen from the wHMM model in Figure 2: The set I l corresponds to all strings
of length l that are generated by the sub-graph with states 1,2,4 which is equivalent in
both wHMMs. Taking into account the remaining states to get the full fragment yields
exactly the combinatorial fragment characterizations.
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The previous lemma allows us to split computations concerning fragments into compu-
tations on the inner part, which is the same for all fragments and adjusting the prefixes
and suffixes. Computation on the inner parts is simple, as the set I l can be partitioned
into two subsets using only I l−2 and I l−1 which allows a recursive approach.

Lemma 3.12 (Recursive structure of I l). The inner parts of fragments I l can be
recursively written as

I l =
(

Γ × Π × I l−2
)

∪
(

Γ̄ × I l−1
)

,

where I1 = Γ̄ and I l = ∅ for l ≤ 0.

Proof. First note that Π ⊆ Γ̄ and so I2 = (Γ × Π) ∪ (Γ̄ × Γ̄) is indeed correct. Now for
l > 2, we can decompose I l into two disjoint sets I l = I l

Γ ∪ I l
Γ̄

by assuming s1 ∈ Γ and
s1 6∈ Γ, respectively:

I l
Γ = I l ∩ (Γ × Σl−1), I l

Γ̄ = I l ∩ (Γ̄ × Σl−1).

As Γ ∩ Π = ∅, we get

I l
Γ = {s ∈ Γ × Π × Σl−2 : sl 6∈ Γ and for all 2 < i < l : (si ∈ Γ, si+1 ∈ Π) or si 6∈ Γ},

and

I l
Γ̄ = {s ∈ Γ̄ × Σl−1 : sl 6∈ Γ and for all 1 < i < l : (si ∈ Γ, si+1 ∈ Π) or si 6∈ Γ},

which concludes the proof.

In the case of simple cleavage schemes, the fragment structure is less complex, and all
fragments have the same structure.

Corollary 3.13 (Fragment structure for simple schemes). For simple cleavage
schemes, the structure of the inner part of fragments reduces to

I l = Γ̄l,

and for semi-infinite strings we get the fragment structure

Fi ∈ Γ̄Li−1 × Γ.

For finite strings,

F `
i ∈ Γ̄Li−1 × Γ if Ti < `,

F `
i ∈ Γ̄L`

i
−1 × Σ if Ti = `.
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3.2 Fragment Length Distribution

Let (S, µ) be a semi-infinite i.i.d. random weighted string and let Fi be its i-th fragment
of length Li under cleavage scheme (Γ, Π). Since the first fragment has a different prefix
than the following ones, but all following ones are i.i.d., we define

u1[l] := P(L1 = l),

u+[l] := P(Li = l) for any i ≥ 2.

The case of finite strings is covered later in this section.
We compute the length distributions by following paths through the wHMMs in Fig-

ure 2. Since we are not interested in the weighted characters in the different states at
the moment, we can merge states which have the same set of outgoing edges, reducing
the wHMMs to 3 states only, and obtain closed formulas for the length distribution.

Theorem 3.14 (Fragment Length distribution). Given a wHMM (N, Σ, P, p0, Q, F )
for either an initial or a subsequent fragment, we have

u◦[l] =
∑

i∈F

[p0 · P l+1]i,

where ◦ ∈ {1, +} depending on whether an initial or subsequent fragment is considered.

Proof. Let pl
i denote the probability of being in state i after l steps, and define the row

vector pl := (pl
i)i∈N . Then classical Markov chain theory (the Chapman-Kolmogorov

equation) states that pl = p0 · P l. To achieve fragment length exactly l, we need to be
in a final state i ∈ F after l + 1 steps, which leads to the stated formula.

For the models in Figure 2, we can obtain closed formulas for u◦[l].

Lemma 3.15 (Closed Formula for u1).

u1[l] =
γ(1 − π)

α
(λl

1 − λl
2), where

α =
√

(1 − γ)2 + 4γπ,

λ1 = (1 − γ + α)/2,

λ2 = (1 − γ − α)/2.

Proof. Consider the wHMM in Figure 2a. From the point of view of outgoing transitions,
states 0, 1, and 4 are equivalent, so we merge them into state 1, thus obtaining a Markov
chain with the following transition matrix A = (Aij), where Aij is the conditional
probability of moving to state j, being in state i:

A =





1 − γ γ 0
π 0 1 − π
0 0 0



 .
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Let pl
i denote the probability of being in state i after l steps, and let pl := (pl

i)i=1,2,3.
Then because of the start state now being state 1, p0 = (1, 0, 0), and pn+1 = pl ·A, so pl =
p0 ·An. Since cleavage occurs before entering state 3, u1[l] = pl+1

3 = (p0 ·Al+1)3 = Al+1
1,3 .

We obtain an explicit representation of the powers of A by diagonalization: A = BΛB−1

with an invertible matrix B and a diagonal matrix Λ so Al = (BΛB−1)l = BΛlB−1.
Using the quantities α, λ1, λ2 as stated in the lemma, it is straightforward to verify that

A =






λ1

π
λ2

π
−(1−π)

π

1 1 (1−γ)(1−π)
πγ

0 0 1




 ·





λ1 0 0
0 λ2 0
0 0 0



 ·






π
α

−λ2

α
(1−π)λ2

2

γπα
−π
α

λ1

α
−(1−π)λ2

1

γπα

0 0 1




 .

The interested reader will find the following relationships helpful: λ1 + λ2 = 1 − γ,
λ1 − λ2 = α, λ1λ2 = −γπ, and λ2

i = (1 − γ)λi + γπ for i = 1, 2. From this, we obtain

Al =
1

α
·





λl+1
1 − λl+1

2 γ(λl
1 − λl

2) (1 − π)γ(λl−1
1 − λl−1

2 )

π(λl
1 − λl

2) γπ(λl−1
1 − λl−1

2 ) (1 − π)γπ(λl−2
1 − λl−2

2 )
0 0 0



 ,

completing the proof.

Lemma 3.16 (Closed Formula for u+). Using the same notation as in the previous
lemma,

u+[l] =
γ

α
·
[

(1 − π − γ)(λl−1
1 − λl−1

2 ) + γπ(λl−2
1 − λl−2

2 )
]

.

Proof. The proof is similar to the previous one, considering the wHMM in Figure 2b,
merging states 1, 4, and 5 into state 1, and removing state 0 by noting that p1 =
((1 − π − γ)/(1 − π), γ/(1 − π), 0). So

u+[l] = (p1 · Al)3 = (1 − π − γ)/(1 − π) · Al−1
1,3 + γ/(1 − π) · Al−1

2,3

=
γ

α
·
[

(1 − π − γ)(λl−1
1 − λl−1

2 ) + γπ(λl−2
1 − λl−2

2 )
]

,

giving the stated result.

Finite strings. We now give the necessary adjustments for finite strings and make the
following definitions.

u`
1[l] := P(L`

1 = l),

u`
+[l] := P(L`+k

i = l | Li−1 = k) for any i ≥ 2 and any k ∈ N.

The second definition is in fact independent of i and k, and simply defines the conditional
distribution of Li given that there are ` characters left in the string.

Lemma 3.17. For ◦ ∈ {1, +}, we have u`
◦[l] = u◦[l] if l < `, and

u`
◦[`] =

∞∑

l′=`

u◦[l
′] = 1 −

`−1∑

l′=1

u◦[l
′].
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Proof. If l < `, the boundary condition is irrelevant and we have u`
◦[l] = u◦[l]. For l = `,

we have u`
1[`] = P(L`

1 = `) = P(L1 ≥ `) =
∑∞

l′=` u1[l
′] = 1−P(L1 < `) = 1−

∑`−1
l′=1 u1[l

′],
and a similar argument for u`

+.

Lemma 3.18 (Exact values for u`
1 and u`

+). Using the same notation as in Lemma 3.15,

u`
1[`] =

γ(1 − π)

α
·

(
λ`

1

1 − λ1
−

λ`
2

1 − λ2

)

,

u`
+[`] = 1 −

γ

α
·

[

(1 − π − γ) ·

(

λ`−1
1

1 − λ1
−

λ`−1
2

1 − λ2

)

+ γπ ·

(

λ`−2
1

1 − λ1
−

λ`−2
2

1 − λ2

)]

.

Proof. The proof is straightforward by combining Lemmas 3.15 and 3.16 with Lemma 3.17,
and computing the geometric series.

Corollary 3.19 (Simple cleavage schemes). For simple cleavage schemes, where
Π = ∅,

u1[l] = u+[l] = (1 − γ)l−1 · γ,

u`
1[`] = u`

+[`] = (1 − γ)`,

i.e., we obtain a (truncated) geometric distribution.

Combinatorial derivation. We can also derive recursions from Lemmas 3.11 and 3.12,
first obtaining the inner parts of fragments.

Lemma 3.20 (Structure of inner parts). Let u′[l] := P(X ∈ I l) for X ∈ Σl be the
probability that a random i.i.d. string of length l is an inner part of a fragment. This
probability can be computed recursively by

u′[l] = γπ · u′[l − 2] + (1 − γ) · u′[l − 1]

with the starting conditions u′[0] = 1 and u′[1] = 1 − γ. It is understood that u′[l] = 0
whenever l < 0.

Proof. The lemma follows as a direct consequence of Lemma 3.12 and the i.i.d. assump-
tion on S.

Using the length distribution of internal parts, we can derive the length distribution
of complete fragments by using the appropriate prefix/suffix corrections.

Lemma 3.21 (Computations). The length distribution of complete fragments is given
by

u1[l] = u′[l − 1] · γ(1 − π)

u+[l] =
(1 − γ − π)

1 − π
· u′[l − 2] · γ(1 − π) +

γπ

1 − π
· u′[l − 3] · γ(1 − π)

u`
1[`] = u′[`] + u′[` − 1] · γ

u`
+[`] =

(1 − γ − π)

1 − π
· u′[` − 2] +

γπ

1 − π
· u′[l − 3]
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Figure 3: Exact distribution u1[l] (line) and its empirical counterpart of the SwissProt
database (crosses) using Trypsin digestion.

Proof. Simply by multiplying the appropriate prefix and suffix probabilities to the u′[l]
formulas. Note that we have to take conditional probabilities for the u+[l], u`

+[l] tables
because we already know that the first characters cannot be a prohibition character
simply by the fact the fragment starts there and has a predecessor fragment.

Lemma 3.22 (Recurrence for u+). The length u+[l] of the second and following
fragments in a random weighted string can recursively be computed as

u+[l] = (1 − γ) · u+[l − 1] + γπ · u+[l − 2]

with u+[1] = γ.

Proof. Let δ := (1 − γ − π). Then

u+[l] = δγ · u′[l − 2] + γ2πu′[l − 3].

Using the recurrence equation for u′[l] of Lemma 3.20 for both occurrences of u′, we
get

u+[l] = δγ
(
γπ · u′[l − 4] + (1 − γ) · u′[l − 3]

)
+ γ2π

(
γπ · u′[l − 5] + (1 − γ) · u′[l − 4]

)
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Rearranging terms yields

u+[l] = (1 − γ) ·
(
δγu′[l − 3] + γ2πu′[l − 4]

)
+ γπ ·

(
δγu′[l − 4] + γ2πu′[l − 5]

)

which we identify as the stated result.

Connection to wHMM. These combinatorial formulas exactly restate the formulas
found by the wHMM approach. By comparing coefficients, we can identify

u′[l] ≡
λl+1

1 − λl+1
2

α

from which the rest follows immediately.

Results Using the Trypsin cleavage scheme, we computed the length distribution L(L1)
of the first fragment and compared it to the empirical distribution derived from the
SwissProt database. As can be seen in Figure 3, the model is in very good agreement to
the data. The length distributions of further fragments show similar behavior and are
not shown here.

3.3 Number of Fragments

From the distributions for the fragment length we are now able to give the exact dis-
tribution for N `, the number of fragments in a string of length `. As we have already
seen, the cleavage points form a renewal sequence on the semi-infinite random weighted
string S; therefore results from renewal theory apply. Establishing a connection between
L(N `), which is a quantity of the finite string and the cleavage point distributions L(Tk)
allows us to use these results to get the exact distribution of the cleavage points and the
number of fragments.

Lemma 3.23 (Relationship of N ` and Tk). The cleavage order N ` of a random
string of length ` is related to the location of cleavage points by

P(N ` ≤ k) = P(Tk ≥ `).

Proof. If the k-th cleave point Tk lies at ` or beyond, the number of fragments up to
position ` is at most k, and vice versa.

To compute L(Tk) we make use of the renewal equation, in particular the fact that
Tk =

∑k
i=1 Li and that the Li are i.i.d.

Lemma 3.24 (Distribution of cleavage points). The distribution of cleavage points
is given by

L(Tk) = L(L1) ?L(L2)
?(k−1) = L(Tk−1) ? L(Lk).

Therefore

P(N ` ≤ k) = P(Tk ≥ l) =
∞∑

i=`

P(Tk = i) = 1 −
l−1∑

i=0

P(Tk = i).

Note that this formula also restates the earlier result L(T1) = L(L1).
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Proof. As already mentioned, we are using the i.i.d. property of the Li and the fact that
Tk =

∑k
i=1 Li = Tk−1 + Lk, which also holds for k = 1, since T0 = 0 by definition.

Recall that the distribution of L1 is given by the vector u1[·] and the distribution of Li

for i ≥ 2 is given by u+[·] in Section 3.2.

Results Again, we compared our exact distribution to the empirical SwissProt distribu-
tion. Figure 4 shows this comparison together with the often used normal approximation
of the cleavage order. Our exact distribution slightly underestimates the tail probabilities
but nevertheless agrees much better to the empirical data than the normal approxima-
tion. This is also reflected in the comparison of the first two moments: Expected value
and standard deviation for the exact distribution are 22.0 ± 6.07, and for the empirical
distribution 25.1 ± 7.86.
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Figure 4: Pooled number of fragments in a protein of length ` ∈ {200 . . . 215} with a total
of 7050 proteins, using SwissProt frequencies and Trypsin digestion. Points:
Empirical distribution derived from SwissProt, Solid line: exact theoretical
distribution, Dotted line: normal approximation, both for ` = 207
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3.4 Length-Mass Distributions

We now examine the joint distribution of length and mass of fragments of semi-infinite
random weighted i.i.d. strings (S, µ) under a standard cleavage scheme (Γ, Π). As in
previous sections, the required adjustments for finite strings will be made subsequently.

Let us define

f1[l,m] := P(L1 = l, µF1
= m),

f+[l,m] := P(Li = l, µFi
= m) for any i ≥ 2.

The definition of f+ is independent of i because all fragments of S except the first are
i.i.d.

The distribution can be computed efficiently using the wHMM framework in Figure 2.
We first note that, for each state i of the wHMM, we obtain the mass probability
distribution function gi of the character set associated to that state as a mixture of the
characters’ mass distributions, as stated in the following lemma.

Lemma 3.25 (Mass added in state i). Let C denote a random character from Σ
according to the specified i.i.d. string model. Let Ai be the character set associated to
state i in a wHMM as in Figure 2, and let gi[m] be the probability that a character
generated in state i has mass m. Then

gi[m] =
1

P(C ∈ Ai)
·
∑

c∈Ai

P(C = c) · P(µc = m).

In other words, the mass distribution in state i is a mixture of the |Ai| mass distributions
L(µc) with mixture coefficients P(C = c)/P(C ∈ Ai) for c ∈ Ai.

Proof. Given that we are in state i, the probability of generating mass m is the condi-
tional marginal

gi[m] = P(µC = m | C ∈ Ai)

=
∑

c∈Σ

P(C = c, µc = m | C ∈ Ai)

=
∑

c∈Σ

P(C = c | C ∈ Ai)P(µc = m)

=
∑

c∈Ai

P(C = c)/P(C ∈ Ai)P(µc = m),

as claimed.

Remark. For the wHMM in Figure 2, we have a Dirac distribution at mass zero for
the start state 0 and state 3, because the start state does not contribute any mass and
cleavage occurs before state 3.

However, if we want to model additional chemical groups that are attached before and
after each fragment, we can use these states to model arbitrary mass distributions for
these groups.
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Theorem 3.26 (Computation of f1). Consider the wHMM (N, Σ, P, p0, Q, F ) in Fig-
ure 2a with state set N = {0, . . . , 4}, n := |N | = 5 and transition matrix P .

We write the gi := (gi[m])m as column vectors of the same length (padded by zeros if
necessary) and set G := (g1| . . . |gn).

Let hl
i[m] be the probability that, after l steps, we are in state i and the cumulative

mass of the fragment generated so far is m. Let us set hl
i := (hl

i[m])m as column vectors
and defining a matrix H l := (hl

1| . . . |h
l
n).

We initially (l = 0) have

h0
0 = g0,

h0
i = 0 for any state i 6= 0,

and for step l ≥ 1,
H l = (H l−1 · P ) ? G,

where we define convolution in a column-by-column manner (note that the convolution
refers to general vectors, not probability distributions):

X ? G ≡ (x1| . . . |xn) ? (g1| . . . |gn) := (x1 ? g1| . . . |xn ? gn).

Using P from Figure 2, this means in detail that

hl
0 = 0,

hl
1 = (1 − γ) · (hl−1

0 + hl−1
1 + hl−1

4 ) ? g1,

hl
2 = γ · (hl−1

0 + hl−1
1 + hl−1

4 ) ? g2,

hl
3 = (1 − π) · hl−1

2 ? g3,

hl
4 = π · hl−1

2 ? g4.

Finally,
f1[l,m] = hl+1

3 [m].

Proof. The initial conditions are obvious (cf. also the above remark). To compute hl
i[m]

for l ≥ 1, consider the possible states k in step l− 1, their transition probabilities Pki to
state i and the possible masses m′ accumulated in step l − 1. We obtain

hl
i[m] =

∑

m′

∑

k

P(in state k after l − 1 steps, transition to i, mass added is m′)

=
∑

m′

(
∑

k

Pki · hl−1
k [m − m′]

)

· gi[m
′] = [(H l−1 · P ) ? G]m,i;

thus H l = (H l−1 · P ) ? G as claimed.
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Theorem 3.27 (Computation of f+). Using the same notation as in the previous
lemma, but for the wHMM in Figure 2b with states N = {0, . . . , 5}, we have in detail

h0
0 = g0,

h0
i = 0 for i 6= 0,

and for step l ≥ 1,

hl
0 = 0, (1)

hl
1 = (1 − γ) · (hl−1

1 + hl−1
4 + hl−1

5 ) ? g1, (2)

hl
2 = γ · [1/(1 − π) · hl−1

0 + hl−1
1 + hl−1

4 + hl−1
5 ] ? g2, (3)

hl
3 = (1 − π) · hl−1

2 ? g3, (4)

hl
4 = π · hl−1

2 ? g4. (5)

hl
5 = (1 − π − γ)/(1 − π) · hl−1

0 ? g5. (6)

Finally,
f+[l,m] = hl+1

3 [m].

Proof. Similar to the proof of the previous lemma.

Remark. Note that we can remove states 0 and 5 from the wHMM (they are used at
most once) by specifying a more complicated initial condition after step 2 in this case.
However, the wHMM construction is general and can be applied to more complicated
string and cleavage models.

Finite Strings. We use the following notation (cf. Section 3.2):

f `
1[l,m] := P(L`

1 = l, µF `
1

= m),

f `
+[l,m] := P(L`+k

i = l, µF `+k

i

= m | Ti−1 = k) for any i ≥ 2 and any k ∈ N.

The second definition is in fact independent of i ≥ 2 and k, and defines the conditional
joint distribution of (Li, µFi

) given that there are ` characters left in the string.

Lemma 3.28 (Computation of f `). For ◦ ∈ {1, +} and l < `, we have f `
◦[l,m] =

f◦[l,m] for all masses m, and for length `, using the notation of Lemma 3.26,

f `
◦[`,m] =

∑

i 6∈F

h`
i [m].

Proof. For l < `, there is no difference to the semi-infinite string. The fragment ends
after position ` irrespective of the current state; therefore summing h`

i [m] over all non-
final states i leads to the desired marginal.
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Remark (Length distribution as marginal). For ◦ ∈ {1, +}, we obtain the length distri-
bution u◦ as a marginal of f◦:

u◦[l] =
∑

m∈Z

f◦[l,m].

To conclude this derivation, we state the obvious fact that we can now also compute
the probability that a fragment has length l and not mass m.

Definition 3.29 (Mass avoidance probabilities). For ◦ ∈ {1, +}, define

f̄1[l,m] := P(L1 = l, µF1
6= m),

f̄+[l,m] := P(Li = l, µFi
6= m) for any i ≥ 2,

and similarly define f̄ `
◦, ◦ ∈ {1, +}, for fragments whose length is bounded by `.

Lemma 3.30. For ◦ ∈ {1, +},

f̄◦[l,m] = u◦[l] − f◦[l, m],

and similarly for f̄ `
◦[`,m].

Proof. We have f̄◦[l, m] =
∑

m′ 6=m f◦[l,m
′] =

(∑

m′∈Z
f◦[l, m

′]
)
− f◦[l,m] = u◦[l] −

f◦[l,m].

Combinatorial derivation. While the wHMM framework is easily generalizable, we can
again give a more combinatorial derivation for the special case of standard cleavage
schemes that is somewhat more efficient. It is based on the structural Lemma 3.12.

As before, we start by examining the distribution for the inner part of fragments. The
resulting recurrence is mainly the same as the one for the length distribution u′[l], the
major difference being the explicit summation over the character and character mass
distributions.

Lemma 3.31 (Joint length-mass distribution for inner parts). Let I l be defined
as above and let (Sl, µ) be the length-l prefix of a random weighted string. We define

f ′[l,m] := P(Sl ∈ I l, µSl = m).

These quantities can be efficiently computed in time O(|Σ||Π|(µmax − µmin)) using the
initial conditions f ′[0, 0] = 1 and the recurrence relation

f ′[l,m] =
∑

σ∈Γ

∑

σ′∈Π

∑

m′∈N

f ′[l − 2,m − m′] · P(σσ′) · P(µσσ′ = m′)

+
∑

σ 6∈Γ

∑

m′∈N

f ′[l − 1,m − m′] · P(σ) · P(µσ = m′),

where f ′[l,m] = 0 whenever l < 0 or m < 0.
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We see that f ′[l,m] can be written as a sum of two convolutions of the first resp. first
two characters of Sl and the remaining suffixes. The convolution is carried out over the
mass only.

Proof. In this proof, we combine the results of Lemmas 3.12 and 2.15. We fix l and write
X instead of Sl for brevity.

P(X ∈ I l, µX = m)

= P(X ∈ I l, µX = m,X1 ∈ Γ, X2 ∈ Π) + P(X ∈ I l, µX = m,X1 6∈ Γ)

=
∑

σ∈Γ

∑

σ′∈Π

P(X ∈ I l, µX = m,X1 = σ,X2 = σ′)

+
∑

σ 6∈Γ

P(X ∈ I l, µX = m,X1 = σ)

=
∑

σ∈Γ

∑

σ′∈Π

P(X3:l ∈ I l−2, µX3:l
+ µX1:2

= m, X1X2 = σσ′)

+
∑

σ 6∈Γ

P(X2:l ∈ I l−1, µX2:l
+ µX1

= m, X1 = σ)

Conditioning on X1, X2 now yields

=
∑

σ∈Γ

∑

σ′∈Π

P(X3:l ∈ I l−2, µX3:l
+ µX1:2

= m |X1X2 = σσ′) · P(X1X2 = σσ′)

+
∑

σ 6∈Γ

P(X2:l ∈ I l−1, µX2:l
+ µX1

= m |X1 = σ) · P(X1 = σ)

=
∑

σ∈Γ

∑

σ′∈Π

P(X3:l ∈ I l−2, µX3:l
= m − µσσ′) · P(X1X2 = σσ′)

+
∑

σ 6∈Γ

P(X2:l ∈ I l−1, µX2:l
= m − µσ) · P(X1 = σ)

=
∑

σ∈Γ

∑

σ′∈Π

f ′[l − 2,m − µσσ′ ] · P(X1X2 = σσ′)

+
∑

σ 6∈Γ

f ′[l − 1, µσ] · P(X1 = σ)

The time complexity of the first sum is bounded by |Γ||Π| and of the second sum by
|Γ̄|. Both are bounded by |Σ||Π|. Summing over all possible values of µσ and µσ + µσ′ ,
respectively in the sums gives another factor of (µmax−µmin) and concludes the proof.

Extending Lemma 3.31 to whole fragments using Lemma 3.11, we finally get the
length-mass distributions of fragments of S. As before, we first look at the first fragment.

Lemma 3.32 (Joint length-mass distribution of the first fragment). Consider
f1[l,m] = P(L1 = l, µF1

= m), the joint length-mass distribution of the first fragment. It

25



can be computed recursively in time O(|Γ|(µmax − µmin)) from f ′[l,m] by adjusting the
suffix:

f1[l,m] =
∑

σ∈Γ

∑

m′∈N

f ′[l − 1,m − m′] · P(σ) · P(µσ = m′).

For finite strings, we get

f `
1[`,m] = f ′[|S|,m] +

∑

σ∈Γ

∑

m′∈N

f ′[` − 1,m − m′] · P(σ) · P(µσ = m′).

Proof. The proof is similar to that of Lemma 3.31 and is therefore omitted. As before,
the summation over the masses is in fact a finite sum.

The distributions for the following fragments are again i.i.d. for infinite strings S and
have to be conditioned on the remaining length of S for finite strings.

Lemma 3.33 (Joint length-mass distribution for following fragment). The dis-
tribution for the fragments f+[l, m] = P(Li = l, µFi

= m) for any i ≥ 2 can now
be given using f ′[l,m] and adjusting the prefix and suffix part for the fragment. Let
i ≥ 2 with l < |S| − Ti−1. Then f+[l,m] can recursively be computed from f ′[l,m] in
O(|Γ̄ ∩ Π̄||Γ||Π|(µmax − µmin)):

f+[l,m] =
∑

σ∈Γ̄∩Π̄

∑

σ′∈Γ

∑

m′∈N

f ′[l − 2,m − m′] · P(σσ′) · P(µσσ′ = m′)

+
∑

σ∈Γ

∑

σ′∈Π

∑

σ′′∈Γ

∑

m′∈N

f ′[l − 3,m − m′] · P(σσ′σ′′) · P(µσσ′σ′′ = m′)

For finite strings,

f `
i [`,m] =
∑

σ∈Γ̄∩Π̄

∑

m′∈N

f ′
[
|S| − Ti−1 − 1,m − m′

]
· P(σ) · P(µσ = m′)

+
∑

σ∈Γ

∑

σ′∈Π

∑

m′∈N

f ′
[
|S| − Ti−1 − 2,m − m′

]
· P(σσ′) · P(µσσ′ = m′).

Proof. The proof is similar to that of Lemma 3.31 and is therefore omitted.

Corollary 3.34 (Joint length-mass distribution for simple schemes). For simple
cleavage schemes,

f ′[l,m] =
∑

σ/∈Γ

f ′[l − 1,m − µσ] · P(C = σ),

i.e., f ′[l,m] is just the l-time convolution of the mass distribution of non-cleavage char-
acters. Further,

f1[l,m] = f+[l,m] =
∑

σ∈Γ

f ′[l − 1,m − µσ] · P(C = σ),

f `
1[`,m] = f `

+[`,m] = f ′[l − 1,m] +
∑

σ∈Γ

f ′[l − 1,m − µσ] · P(C = σ).
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Figure 5: f [l, m] for l = 15 (left) and l = 115 (right), precision ∆ = 0.1, tryptic digestion.

Results. Using the SwissProt database amino acid frequencies and the cleavage scheme
of Trypsin, we obtain the first fragment’s joint length-mass distribution f1 shown in
Figure 5 for length l = 15 (left) and l = 115 (right). We would like to stress that in
each figure, only one graph is shown. It can be seen that combinatorial effects cannot
be neglected and a normal approximation seems not to be accurate even for greater
fragment lengths. The distribution for the following fragments looks similar and is not
shown here.

3.5 Fragment Mass Distribution

In Section 3.4, we derived the joint length-mass distributions for fragments and re-derived
their length distribution by taking the marginal. In the same way we can derive the
distribution of fragment masses regardless of their length by taking the other marginal.
Let us denote these marginal distributions by re-using f in a straightforward way:

f1[m] := P(µF1
= m),

f+[m] := P(µFi
= m) for any i ≥ 2

Proposition 3.35 (Fragment mass distribution). The distribution of fragment
masses is given by

f◦[m] =
∑

l∈N

f◦[l,m].

Note that although the sum runs over the whole set of natural numbers, all but finitely
many entries of f◦[l, m] will be zero. See Proposition 5.4 for m-dependent bounds B−(m)
and B+(m) on l such that f◦[l,m] = 0 for all l < B−(m) and all l > B+(m).

4 Occurrence of Masses in Random Weighted Strings

One of the goals of this report is to develop a data independent method to compute
the significance of a protein identification by peptide mass fingerprints. To compute
the significance, it is often necessary to know how likely it is to see a certain mass in a
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fingerprint. This results in the question of how likely it is that a weighted string (S`, µ)
of given length ` has a fragmentation F `

S under a cleavage scheme (Γ, Π) that contains
at least one fragment of some mass m.

We define the number of fragments of mass m in a finite random weighted string ` as

N `(m) :=
∣
∣
∣{F ∈ F `

S : µF = m}
∣
∣
∣

Clearly, 0 ≤ N `(m) ≤ N ` and
∑

m∈Z
N `(m) = N `.

We call the probability
p[`,m] := P(N `(m) ≥ 1)

of a string S` having at least one fragment of mass m the mass occurrence probability of
mass m.

Computing p[`,m] can be done using the probability of the complementary event
{N `(m) = 0} that no fragment of mass m occurs in the fragmentation of S`. We can
express the occurrence probability in terms of the fragment mass distributions by

p̄[`,m] := P(N `(m) = 0) = P(µ(F `
1) 6= m, . . . , µ(F `

N`) 6= m)

We also define p̄+[l,m] as the probability that a string of length l that looks like a
suffix of S` and structurally starts with a “following” fragment, does not have a fragment
of mass m. p̄+ is different from p̄ as the fragment length-mass distributions for the first
and the “following” fragments differ.

Lemma 4.1 (Mass occurrence). Let (S`, µS) be a finite random weighted string of
length ` cleaved with the cleavage scheme (Γ, Π) and let again F `

S be the resulting frag-
mentation. The probability that S` does not contain a fragment of mass m can then be
computed as a convolution over string length using the recurrence

p̄[`,m] =
∑̀

l=1

p̄+[` − l,m] · f̄ `
1[l,m]

This recurrence using f̄ `
1[l,m] can be written in terms of f̄ ′[l,m] by

p̄[`,m] = f̄ ′[`,m] +
∑̀

l=1

p̄+[` − l, m]
∑

σ∈Γ

∑

m′∈N

f ′[l − 1,m − m′] · P(σ) · P(µσ = m′)

Proof. The main observation for the proof is that although the fragment masses are not
independent, as we deal with finite string length, the mass of the first fragment becomes
independent of the remaining fragments’ masses if L1 is known. Note that for L1 = 0,
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the product is zero.

P(µ(F `
1) 6= m, . . . , µ(F `

N`) 6= m)

=
∑̀

l=1

P(µ(F `
1) 6= m, . . . , µ(F `

N`) 6= m,L1 = l)

=
∑̀

l=1

P(µ(F `
1) 6= m, . . . , µ(F `

N`) 6= m |L1 = l) · P(L1 = l)

=
∑̀

l=1

P(µ(F `
2) 6= m, . . . , µ(F `

N`) 6= m |L1 = l) · P(L1 = l, µ(F `
1 6= m))

=
∑̀

l=1

p̄+[` − l,m] · f̄ `
1[l,m]

The second formulation using only f̄ ′[l,m] follows directly from Lemma 3.32.

To compute the mass occurrence probability in suffices, the same kind of argument
applies. Care has to be taken to consider the boundary effects in the f̄ ′[l,m] formulation.

Lemma 4.2 (Mass occurrence in suffices). Let (S`, µS) be a finite random weighted
string of length ` cleaved with the cleavage scheme (Γ, Π) and let again F `

S be the resulting
fragmentation. As the length-mass distribution for fragments F `

k , k ≥ 2, have the same
distribution, we can just write L for the length of any suffix starting from Tk + 1, k ≥ 2.

p̄+[L,m] =

L∑

l=1

p̄+[L − l,m] · f̄L
+[l,m]

This recurrence using f̄+[l,m] is equivalent to the following recurrence using only f̄ ′[l,m].
(Summation over the character mass distributions will be omitted for better readability.)

p̄+[L,m] =
∑

σ∈Π̄∩Γ̄

f̄ ′[L − 1,m − µσ] · P(σ) (7)

+
∑

σ∈Γ

∑

σ′∈Π

f̄ ′[L − 2,m − µσσ′ ] · P(σσ′) (8)

+
L∑

l=2

p̄+[L − l,m]
∑

σ∈Π̄∩Γ̄

∑

σ′∈Γ

f̄ ′[l − 2,m − µσσ′ ] · P(σσ′) (9)

+

L∑

l=2

p̄+[L − l, m]
∑

σ∈Γ

∑

σ′∈Π

∑

σ′′∈Γ

f̄ ′[l − 3,m − µσσ′σ′′ ] · P(σσ′σ′′) (10)

+ p̄+[L − 1,m]
∑

σ∈Γ

�

{µσ 6=m} · P(σ) (11)
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Proof. The proof for the first part is mainly the same as for Lemma 4.1 and is ommited.
For the formulation in terms of f̄ ′[l, m], the same argument holds, as we can just

replace f̄L
+[l, m] by it with appropriate correction terms which results in the terms (9)

and (10). Care has to be taken for the case that the suffix has only one fragment, namely
itself. For this case, the fragment does not have to end on a cleavage character but it
might. Ending on a cleavage character it covered by (11) whereas (7) and (8) imply that
the fragment does not end on a cleavage character. Then, we again have to distinguish
wether the fragment starts with a cleavage character or not to guarantee that it is not
ended before reaching length L.

As before, we get a much simpler recurrence if we only allow simple cleavage schemes.

Lemma 4.3 (Mass occurrence with simple schemes). For simple cleavage schemes,
we have p[`,m] = p+[`,m] and the recurrence simplifies to

p̄[`,m] =
∑

σ 6∈Γ

∑

m′∈Z

f̄ ′[` − 1,m − m′] · P(σ) · P(µσ = m′)

+
∑̀

l=1

p̄[` − l,m]
∑

σ∈Γ

∑

m′∈Z

f̄ ′[l − 1,m − m′] · P(σ) · P(µσ = m′)

Proof. Using Lemma 4.1 and using the fact that Π = ∅ immediately gives the stated
result.
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Figure 6: p[`, m] for ` = 300, precision ∆ = 0.1, tryptic digestion.

Results Comparing the occurrence probability for Trypsin digestion with the empirical
SwissProt counterpart again shows a reasonable agreement as seen in Figure 6 (left).
The combinatorial effects encountered in the fragment length-mass distributions are still
present, as Figure 6 (right) shows. It is again a plot of one function. The two most
prominent probabilities of about ≈ 0.8 are given to the masses of the cleavage characters
K and R. High probabilities (> 0.2) are also given to certain two-character fragments
in the range of 100 . . . 300 Daltons.
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5 Efficient implementation

For practical purposes, we would like to have the distributions and probabilities of the
previous sections available in memory to allow a constant time access. This is even
more important if we want to read each value several times. In this section, we address
these issues and demonstrate how the combinatorial derivations can be used to develop
efficient dynamic programming algorithms to compute the entities in question.

We encounter two major problems: First, if we compute the occurrence probabilities
p[`,m] naively, we need to keep two tables, namely f̄ [l,m] and p̄[`,m] in memory, both
of size `max · mmax. Second, such a naive implementation will take up to several hours
to compute these tables for realistic problem sizes.

Example 5.1 (Memory consumption). As a first demonstration on how large these
tables can actually get, we consider a typical peptide mass fingerprint setting using a
protein database. We would like to compute the occurrence probability table p[`,m]
and keep it in memory for fast lookup. Protein databases typically contain proteins
of length 200 to 10.000 characters. Thus, we need `max = 10, 000 rows. In a PMF
setting using MALDI-TOF instruments, the maximal measured mass used is about 3.000
Da. Given an instrument accuracy of about ∆ = 0.1 Da, thus one decimal, we need
mmax = 3, 000/0.1 = 30, 000 columns. Assuming double precision for each entry (8
bytes each), a total memory of 30, 000 · 10, 000 · 8 = 24 · 109 bytes (about 2.24 GB) is
required. For the computation, the same table size is needed temporarily for the f̄ [l,m]
table. Thus, to compute the occurrence probability table in this setting, we need about
4.5 GB of main memory, which is currently out of question for desktop computers.

We start this section with the observation that we can find an upper bound for the
maximal length of a string of given mass in Section 5.1. Exceeding this bound in com-
putation means that most of our quantities become independent of mass.

We then address the problem of memory consumption in Section 5.2, where we show
that only a very small part of f̄ [l,m] is needed at a time which can be computed as
needed without increase of computation time, and Section 5.3, where we demonstrate
how to compress and interpolate the occurrence probability table.

In Sections 5.4 and 5.5 we further explore the combinatorial structure of the recur-
rences for p, p+ for the case of simple and general cleavage schemes, respectively, and
show how these tables can be computed in time linear in mass and length using dynamic
programming by exploiting this structure.

5.1 Length Bounds for Decompositions

The following definition of decomposability is taken from [7].

Definition 5.2 (Decomposition, decomposable). A mass m is called decomposable
over a (random) weighted alphabet (Σ, µ) if there exist at least one weighted string s
over (Σ, µ) such that

m =

|s|
∑

i=1

µ(si).
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Every such string is then called a decomposition of m. The length of a decomposition is
simply the length of the corresponding string.

Example 5.3. Given the weighted alphabet Σ = {A,B} with µ(A) = 2, µ(B) = 4, the
mass m = 8 is decomposable. Some possible decompositions are s = AAAA, s′ = AAB
and s′′ = BB, of length 4, length 3 and length 2, respectively. Thus, the same mass
may have decompositions of different length. The mass m′ = 13 is an example of a
non-decomposable mass, as is every other odd integer.

To decide whether a mass is decomposable over a given weighted alphabet and to find
one or all decompositions is not a trivial task; see e.g. [7] for an extensive treatment. It is
however quite easy to give upper and lower bounds for the length of the decompositions
of a mass m.

Proposition 5.4 (Length bounds for decompositions). Given a weighted alphabet
(Σ, µ) and a mass m, a decomposition of m over Σ has at most length

l′ ≡ l`max(m) := min

{

`,

⌈
m

µmin

⌉}

,

where the ` subscript means that the decomposition must have at most ` characters and
we use the l′ notation for readability if mass and length are given from the context.
Similarly, the length of a decomposition is lower bounded by

l`min(m) := min

{

`,

⌈
m

µmax

⌉}

,

given that m is decomposable.

As noted, the lower bound is only valid if the mass m is decomposable. For im-
plementations of the f/f ′ tables, we can nevertheless start at index l`min(m) for both
decomposable and non-decomposable masses, as in the latter case, all entries of these
tables are zero (or one) anyway.

Clearly, the upper bound is not tight, as the following example shows.

Example 5.5. For the weighted alphabet Σ = {A,B} with µ(A) = 2, µ(B) = 4 of the
previous example and mass m = 13, we have the upper bound l100

max(13) = 7. Neverthe-
less, there simply is no decomposition of m = 13 over Σ of whatever length.

5.2 Memory Efficient Computation of f̄ ′

The table f ′[l,m] holds the probabilities that the internal part of a fragment has length
l and mass m. We note that to compute the occurrence probability tables p and p+, we
only need the mass avoidance probabilities f̄ ′[l,m] = u′[l] − f ′[l,m]. All these primed
quantities are independent of the position of the fragment in the string.
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Mass independence of f̄ ′. We now observe that for any mass m and any string length
`, we have that f ′[l,m] = 0 for l > l`max(m), which means that there are no fragments
of mass m and length l in this string simply because m is not decomposable with more
than l`max(m) characters. So, the entries in the f̄ ′[l,m] table become independent of m
and we have that f̄ ′[l, m] = u′[l] for l > l`max(m).

As we have to compute u′[l] anyway, we can store it right away in O(`max) memory, and
only need to store the first l`max

max (mmax) rows of f̄ ′[l,m]. For the setting described above,
with µmin ≈ 500 (scaled by ∆ = 0.1) and mmax = 30, 000, we would get l`max

max (mmax) ≈ 60
(for `max ≥ 60).

Using this simple observation allows us to store all necessary information of the f̄ ′[l,m]
table in 30, 000 · 60 = 1.800.000 instead of 30, 000 · 10, 000 = 3 · 108 entries, meaning
about 13 MB instead of 2,300 MB memory consumption.

Block-wise computation of f̄ ′. If we are only interested in the occurrence probability
tables and thus only need f̄ ′[l,m] temporarily, a further reduction of the memory require-
ment is possible by looking at the recurrence equation for the occurrence probabilities
p̄, p̄+. To compute their respective value, only the last 3 µmax columns of f̄ ′[l,m] are
needed. The same holds for the recurrence of f̄ ′[l,m], so we can compute the successive
columns of f̄ ′ by looking at the 3 µmax precessing columns.

To compute p̄, p̄+ we thus only need to keep at most 3 µmax columns of f̄ ′ in memory
and can even compute the next column from them. Accessing the columns of f̄ ′ by
taking the modulo, exactly the same computation time is needed as if we computed the
whole table f̄ ′ and going from there, computing p̄, p̄+.

In total, we only need to allocate a memory block of size 3 · µmax · l`max
max (mmax) for

considering strings of length ≤ `max. For our PMF example, this means for ∆ = 0.1,
the amino acid alphabet with µmax ≈ 2, 500, µmin ≈ 500 and mmax = 30, 000 a value of

l10,000
max (mmax) ≈

⌈
30,000
500

⌉

= 60. Using double precision with 8 bytes per table entry, we

need a total of 3.43 MB to keep the necessary parts of f̄ ′[l,m] in memory.

5.3 Compression and Interpolation of p

As we do not know in which order the elements of p are accessed and as we usually want
to use these probabilities many times in constant time, we have to keep the whole table
in memory.

We first note that for both p̄ and p̄+, computation of columns can be performed
independently as only the previous values in the same column m are needed. We can
compute p̄[`,m] for some m up to ` = `max and then immediately store p[`,m] = 1 −
p̄[`,m] for ` = 1 . . . `max. This means that after completing column m of p̄+, we can
immediately compute the corresponding column of p and store it in-place as we will not
need this column of p̄+ again. We therefore do not have to keep both the full p and p̄+

in memory but only p (as we want to access its values later on) and one column of p̄.
Another advantage of this procedure is that to compute the m-th column of p, exactly
the same columns of f̄ ′ are needed as for the computation of the m-th column of p̄.
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Thus, we do not have to recompute any part of f̄ ′ later on.
As seen in this and the previous section, the only main problem concerning memory

requirements is that we want every element of p in the main memory. Clearly, this
problem can not be solved by trickier computation. Our only possibility to reduce the
size of p is therefore compression. Two major observations turn out to be helpful.

Non-decomposable masses. First, we expect some masses not to be decomposable,
meaning that every entry in the corresponding column of p is just 0. We may not want
to store these useless columns. Unfortunately, the number of such columns is negligible
and we would need an additional data structure to keep track of column indexing. We
also would have to test every column if the corresponding mass is decomposable. This
can be done in constant time during computation by setting a flag whenever a non-zero
entry is produced for the first time in a column. We nevertheless do not follow this
compression procedure as a first very rough estimate shows far less than 1000 complete
zero columns for a maximal mass of 30, 000 (using ∆ = 0.1). This means that we would
have to keep more than 97% of the columns anyway. However, this low rate of non-
decomposable columns may just by a side effect of floating point numerics and has to
be studied further. Usually, we would expect nearly every mass above 1,500 Da to be
decomposable whereas between 15 and 30 % of the masses below 1,500 Da would be
expected to not be decomposable which would lead to a much better compressibility of
p in the range of 1-1,500 Daltons.

Smooth dependence of p on `. Another possibility to compress the table comes from
the following observation: Although the values of the row entries seem not to have a
regularity that can be exploited (see Figure 6), we can nevertheless expect the column
entries to have a more smooth behavior. If the corresponding mass is not decomposable,
every entry would be zero anyway. If it is decomposable, however, we can expect that
from a certain string length on, the probability to see a fragment of such mass increases
continously with the string length. This argument can be supported by the following
considerations: If the mass m is decomposable as a fragment, meaning there is at least
one decomposition of m that has a valid fragment structure (ending on a cleavage char-
acter and eventually starting with a non-prohibition character), the probability to see
such a fragment in a string is greater than zero from some string length on. (The string
must be at least as long as the decomposition.) If the string gets longer, its number of
fragments increases and therefore also the chance that a fragment of mass m appears.
The occurrence probability is increasing until it reaches its limit of 1 for infinitely long
strings.

Interpolation of rows. To exploit this observation, the following procedure can be
used to compress the table: We store the first K entries in the m-th column to avoid
combinatorial effects and from then on store only every Ω-th entry. We call Ω the
compression factor of p. We nevertheless have to compute every intermediate entry
during computation of p in order to avoid accumulation of approximation errors. If an
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intermediate value is accessed afterwards, it can easily be computed in constant time
using a linear interpolation between the two nearest entries. In practice, a compression
factor about 20-25 starting from K = 100 did not result in any noticeable interpolation
error compared to the exact values.

5.4 Computation of Simple Cleavage Models

We start with the efficient computation in the case of simple cleavage models, as the main
ideas are the same, but the results are much easier to understand than the results for
standard schemes. We first stress again, that for l > l′ = min{`, d m

µmin
e}+ 1, the entries

in the fragment table f̄ ′[l,m] become independent of m (and thus independent can be
computed without summing over the character mass distribution), as f̄ [l,m] = u′[l] in
this case. Note that we have to add 1 to the original definition of l′ to capture the fact that
we look back in the f̄ ′[l, m] table. Furthermore, as the inner sum is independent of `, the
entries f̄+[l,m] can be precomputed from f̄ ′[l,m]. The memory efficient implementation
of 5.2 is thus still possible.

We now state the main result.

Lemma 5.6 (Efficient computation complexity (simple case)). For simple cleav-
age schemes, a maximal sequence length `max and a maximal occurrence mass mmax,
the table of fragment occurrence probabilities p[`,m], 1 ≤ ` ≤ `max, 1 ≤ m ≤ mmax, can
be computed from f̄ ′ in time O (`max l′ mmax (µmax − µmin)) for probabilistically weighted
alphabets and in time O (`max l′ mmax) for weighted alphabets with constant character
weights. As µmax is a (small) constant, computation can be done in time linear in
maximal sequence length, maximal mass considered and quadratic in required precision.

Proof. We first observe that although l′ is a function of `, it is constant once ` > d m
µmin

e,

which is independent of `. We will write f̄ for both f̄1, f̄+ as they coincide for simple
cleavage schemes and similarly write u[l] for both u1[l], u+[l]. We will now fix a mass m
and also omit summing over the mass distributions

The main observation is that the value of p̄[`+1,m] (if we lengthen the string by one)
can be split into a part involving fragment lengths l ≤ l′ computable in time O(l′) and
a part involving fragment lengths l > l′ that has already been computed in the previous
step.
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p̄[` + 1,m] = f̄ [` + 1,m] +
`+1∑

l=1

p̄[` − l,m] · f̄ [l,m]

= f̄ [` + 1,m] +
l′∑

l=1

p̄[` + 1 − l,m] · f̄ [l,m]

︸ ︷︷ ︸

=: α[`+1,m]

+
`+1∑

l=l′+1

p̄[` + 1 − l,m] · f̄ [l,m]

︸ ︷︷ ︸

=: β[`+1,m]

Clearly, we have to compute α[` + 1,m] anyway as it depends on f̄ [l,m] for l < l′. In
the last sum, f̄ [l,m] = u[l] is independent of m and we immediately get the following
relationship between successive rows of f̄ [l,m] for l > l′: f̄ [l + 1,m] = u[l + 1] =
u[l] · (1 − γ) = f̄ [l,m] · (1 − γ). Using the index shift l → l + 1 in the last sum, we get

p̄[` + 1,m] = α[` + 1,m] +
∑̀

l=l′

p̄[` − l, m] · f̄ [l + 1,m]

= α[` + 1,m] + (1 − γ) ·
∑̀

l=l′

p̄[` − l,m] · u[l]

= α[` + 1,m] + (1 − γ) · p̄[` − l′,m] · u[l′] + (1 − γ) · β[`,m]

Computing α[L+1,m] takes O(l′ (µmax−µmin)) time. The second term can be computed
in time O(µmax − µmin) and the third in O(1) if we stored β[`,m] in the previous step
computing p̄[`,m] or in time O(l′ (µmax −µmin)) if it has to be recomputed from p̄[`,m].
Thus, the next row entry of p̄[`,m] can be computed in time O(l′ (µmax − µmin)) where
l′ is constant from some small value of `. The dependence on µmax comes from the fact
that we have to sum over the whole mass distribution of the characters starting from
µmin. The whole p table can thus be computed in time O (`max l′ mmax (µmax − µmin))
instead of O

(
`2
max mmax (µmax − µmin)

)
using the naive implementation.

5.5 Standard Cleavage Models

Again, we can use the memory efficient implementation of f̄ ′[l,m]. Again computing
values in column m of p̄[`,m] does only depend on values in the same column. We will
use the recurrence equation from Lemma 4.2 for p̄+[`,m].

Lemma 5.7 (Efficient computation complexity (general standard case)). For
general standard cleavage schemes, the table of fragment occurrence probabilities p[`,m],
1 ≤ ` ≤ `max, 1 ≤ m ≤ mmax, can be computed in time O (`max l′ mmax (µmax − µmin)).
For weighted alphabets with constant character masses, the (µmax−µmin) factor is again
constant.
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Proof. We will again omit the summation over the mass distribution and concentrate on
a fixed mass m. We first observe that the first, second and last summand in the equation
of Lemma 4.2 can be computed in a simple preprocessing step. We will denote them by
α′[`,m]. The recurrence can then be written as

p̄+[`,m] = α′[`,m]

+
∑̀

l=2

p̄+[` − l,m]
∑

σ∈Π̄∩Γ̄

∑

σ′∈Γ

f̄ ′[l − 2,m − µσσ′ ] · P(σσ′)

︸ ︷︷ ︸

=: β1[l,m]

+
∑̀

l=2

p̄+[` − l,m]
∑

σ∈Γ

∑

σ′∈Π

∑

σ′′∈Γ

f̄ ′[l − 3,m − µσσ′σ′′ ] · P(σσ′σ′′)

︸ ︷︷ ︸

=: β2[l,m]

We note that this is the same as

p̄+[`,m] = α′[`,m] +
∑̀

l=2

p̄+[` − l,m] · f̄+[l,m]

since f̄+[l,m] = β1[l,m] + β2[l, m] by Lemma 3.33. Now we can again split the sum into
a part up to and a part starting from l′. A little care has to be taken that we have
to take the original definition of l′ plus 3 because of the lookback in the f̄ ′ table. To
simplify notations, we will nevertheless denote this value by l′.

Now, for l > l′ we have that f̄+[l,m] = u+[l], leading to

p̄+[`,m] = α[`,m]′ +

l′∑

l=2

p̄+[` − l,m] · f̄+[l,m]

︸ ︷︷ ︸

α[`,m]

+
∑̀

l=l′+1

p̄+[` − l,m] · u+[l]

︸ ︷︷ ︸

β[`,m]

As α[`,m] depends on f̄+[l, m], we have to compute it anyway. This can again be done
in time O(l′ (µmax − µmin)) which becomes independent of the string length ` once this
is large enough.

For the last sum, we can again try to exploit the recurrence equation for u+[l] from
Lemma 3.22.

We take at look at the two immediate successors of p̄+[`,m] for ` > l′:

p̄+[` + 1,m] = α[` + 1,m] +
`+1∑

l=l′+1

p̄+[` + 1 − l,m] · u+[l]

and

p̄+[` + 2,m] = α[` + 2,m] +

`+2∑

l=l′+1

p̄+[` + 2 − l,m] · u+[l]
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We can now use the recurrence equation for u+[l] for l > l′ and get

p̄+[`,m] = α[`,m] +
∑̀

l=l′+1

p̄[` − l,m] · ((1 − γ) · u+[l − 1] + γπ · u+[l − 2]) .

Splitting the sum and performing the index shifts l → l + 1 and l → l + 2, respectively,
on the summation index, we get

p̄+[`,m] = α[`,m] + (1 − γ) ·
`+1∑

l=l′

p̄[` + 1 − l,m] · u+[l] + γπ ·
`+2∑

l=l′−1

p̄[` + 2 − l,m] · u+[l].

By extracting the l′, l′ − 1 terms and finally end up with

p̄+[` + 2,m] = α[` + 2,m]

+ (1 − γ) ·
(
p̄[` + 1 − l′] · u+[l′] + β[` + 1,m]

)

+ γπ ·
(
p̄[` − l′ − 1,m] · u+[l′ − 1] + p̄[` − l′,m]u+[l′] + β[`,m]

)
.

Note that the last line actually defines a recurrence equation of second order for the
sequence (β[L,m])L>l′+2. Not surprisingly, this recurrence is simply the recurrence for
u+[l] with some additional correction terms. As in the case of simple cleavage schemes,
we can compute α[`+2,m] in time O(l′ (µmax−µmin)) and the rest in time O(µmax−µmin)
given we stored β[` + 1,m] and β[`,m] in the two previous steps. As we only need them
for the ` + 2-step, they can afterwards be overwritten, so we only need constant extra
memory.

6 Conclusion

We presented a rigorous mathematical model for weighted strings and their random
models. We modelled the fragmentation of such strings using restriction type cleavage
reactions which gives us a model for biochemical digestion of proteins. This model is
particularly applicable to mass spectrometry of proteins and peptides.

We presented weighted HMMs, a general computational framework for length and
mass statistics of random weighted strings and their fragments. Our main results for
wHMMs are Theorems 3.26 and 3.27. We showed in detail how the distributions of
these statistics can be derived from the model for the case of i.i.d. strings and standard
cleavage schemes. The model is readily extendable to Markov sequences and general
cleavage schemes. Mass modifications of the sequence termini can easily be modeled,
and it is also possible to introduce probabilistically missed cleavage sites.

We also derived the same statistics by combinatorical means which in turn led us to
recurrence equation for these statistics. Using these recurrences, we were able to develop
efficient algorithms to compute the statistics and showed in detail the main ideas of these
algorithms. To make these algorithms work on standard desktop machines, we presented
several observations and methods to significantly reduce the memory requirements for
both computation and usage of the statistics.
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Amino acid Monoisotopic Average Frequency (%)

A 71.03711 71.0788 7.85
C 103.00919 103.1388 1.54
D 115.02694 115.0886 5.31
E 129.04259 129.1155 6.61
F 147.06841 147.1766 4.00
G 57.02146 57.0520 6.95
H 137.05891 137.1412 2.27
I 113.08406 113.1595 5.92
K 128.09496 128.1742 5.92
L 113.08406 113.1595 9.63
M 131.04049 131.1925 2.38
N 114.04293 114.1039 4.18
P 97.05276 97.1167 4.83
Q 128.05858 128.1308 3.94
R 156.10111 156.1876 5.33
S 87.03203 87.0782 6.85
T 101.04768 101.1051 5.45
V 99.06841 99.1326 6.73
W 186.07931 186.2133 1.15
Y 163.06333 163.1760 3.06

Table 3: Amino acid masses and frequencies

We implemented these efficient algorithms and compared the statistics of our model
to their empirical counterparts by an in-silico digest of the current SwissProt protein
sequence database, release 48. A good agreement was observed, showing that our model
correctly represents main features of protein fragmentation.

We expect that wHMMs will prove their usefulness for further probability compu-
tations in mass spectrometry and assume that they will become a standard tool for
significance computations for peptide mass fingerprinting.
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A Amino Acid Weights and Frequencies

Table 3 shows amino acids with their monoisotopic and average masses in Daltons and
their occurrence frequencies in the SwissProt database resource (October 2005).
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B Isotopic Distributions of Amino Acids

The following tables give the isotopic distribution of the twenty amino acids with masses
given in Dalton (Da). Due to floating point computations, all entries having probability
smaller than 10−15 have been discarded.

A C D E

Mass Prob. Mass Prob. Mass Prob. Mass Prob.

71 0.9605 103 0.9126 115 0.9453 129 0.9345
72 0.0369 104 0.0423 116 0.0477 130 0.0579
73 0.0024 105 0.0430 117 0.0066 131 0.0071
74 7.6616e-05 106 0.0018 118 0.0002 132 0.0003
75 1.0286e-06 107 0.0001 119 1.7107e-05 133 2.0289e-05
76 6.1448e-09 108 3.7288e-06 120 6.2278e-07 134 8.1159e-07
77 1.4274e-11 109 5.8690e-08 121 1.9031e-08 135 2.5967e-08
78 110 4.6455e-10 122 4.8466e-10 136 6.9806e-10
79 111 1.8300e-12 123 7.8264e-12 137 1.3323e-11
80 112 124 7.0868e-14 138 1.6084e-13

F G H I

Mass Prob. Mass Prob. Mass Prob. Mass Prob.

147 0.8977 57 0.9715 137 0.9218 113 0.9280
148 0.0955 58 0.0261 138 0.0735 114 0.0677
149 0.0063 59 0.0021 139 0.0044 115 0.0039
150 0.0003 60 5.2382e-05 140 0.0001 116 0.0001
151 1.1490e-05 61 4.2949e-07 141 5.7429e-06 117 4.5843e-06
152 2.8656e-07 62 1.0877e-09 142 1.0656e-07 118 7.4777e-08
153 4.9956e-09 63 4.3335e-13 143 1.2965e-09 119 7.5925e-10
154 6.1456e-11 144 1.0490e-11 120 4.7716e-12
155 5.3446e-13 145 5.6659e-14 121 1.8215e-14

K L M N

Mass Prob. Mass Prob. Mass Prob. Mass Prob.

128 0.9245 113 0.9280 131 0.8919 114 0.9439
129 0.0710 114 0.0677 132 0.0619 115 0.0508
130 0.0042 115 0.0039 133 0.0431 116 0.0049
131 0.0001 116 0.0001 134 0.0027 117 0.0002
132 5.2244e-06 117 4.5843e-06 135 0.0001 118 8.2942e-06
133 9.2048e-08 118 7.4777e-08 136 6.4221e-06 119 2.5212e-07
134 1.0437e-09 119 7.5925e-10 137 1.5678e-07 120 4.6671e-09
135 7.6866e-12 120 4.7716e-12 138 2.2935e-09 121 4.9743e-11
136 3.6910e-14 121 1.8215e-14 139 2.0549e-11 122 3.0047e-13

140 1.1251e-13
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P Q R S

Mass Prob. Mass Prob. Mass Prob. Mass Prob.

97 0.9390 128 0.9332 156 0.9177 87 0.9582
98 0.0574 129 0.0610 157 0.0772 88 0.0372
99 0.0033 130 0.0054 158 0.0047 89 0.0043
100 0.0001 131 0.0002 159 0.0002 90 0.0001
101 3.0288e-06 132 1.0671e-05 160 6.6036e-06 91 5.9524e-06
102 3.8920e-08 133 3.4447e-07 161 1.3197e-07 92 1.5975e-07
103 2.8699e-10 134 7.5143e-09 162 1.7773e-09 93 2.0739e-09
104 1.1622e-12 135 1.0319e-10 163 1.6475e-11 94 1.2303e-11

136 8.7952e-13 164 1.0673e-13 95 2.8691e-14

T V W Y

Mass Prob. Mass Prob. Mass Prob. Mass Prob.

101 0.9473 99 0.9387 186 0.8745 163 0.8956
102 0.0477 100 0.0577 187 0.1160 164 0.0956
103 0.0047 101 0.0033 188 0.0088 165 0.0081
104 0.0001 102 0.0001 189 0.0004 166 0.0005
105 7.6228e-06 103 3.0682e-06 190 2.0753e-05 167 2.4322e-05
106 2.2625e-07 104 3.9820e-08 191 6.4260e-07 168 9.3068e-07
107 3.8904e-09 105 2.9865e-10 192 1.4733e-08 169 2.8074e-08
108 3.6329e-11 106 1.2488e-12 193 2.5257e-10 170 6.3634e-10
109 1.7559e-13 194 3.2661e-12 171 1.0547e-11

195 3.2176e-14 172 1.2671e-13

C Restriction Enzymes

Table 4 shows some known restriction enzymes and their cleavage site patterns. Cleavage
occurs after the cleavage character, but not before the prohibition character (unless
stated otherwise). The last column of the table indicates whether the enzyme’s behavior
is captured by our model.
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Enzyme Cleaves after except before covered?
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