
Molecular Formula Identification using High

Resolution Mass Spectrometry

Algorithms and Applications in
Metabolomics and Proteomics

Dissertation

zur Erlangung des akademischen Grades

doctor rerum naturalium (Dr. rer. nat.)

vorgelegt dem Rat der Fakultät für Mathematik und Informatik

der Friedrich-Schiller-Universität Jena

von Dipl.-Ing. Anton Pervukhin

geboren am 29. Juli 1982 in Tscheljabinsk

Gutachter:

1. Prof. Dr. Sebastian Böcker, Friedrich-Schiller-Universität Jena

2. Prof. Dr. Jens Stoye, Universität Bielefeld

Tag der öffentlichen Verteidigung: 8. Dezember 2009

Gedruckt auf alterungsbeständigem Papier nach DIN-ISO 9706

Zusammenfassung

Wir untersuchen mehrere theoretische und praktische Aspekte der Identifikation der
Summenformel von Biomolekülen mit Hilfe von hochauflösender Massenspektrometrie.

Durch die letzten Forschritte in der Instrumentation ist die Massenspektrometrie (MS)
zur einen der Schlüsseltechnologien für die Analyse von Biomolekülen in der Proteomik
und Metabolomik geworden. Sie misst die Massen der Moleküle in der Probe mit ho-
her Genauigkeit, und ist für die Messdatenerfassung im Hochdurchsatz gut geeignet.
Eine der Kernaufgaben in der MS-basierten Proteomik und Metabolomik ist die Iden-
tifikation der Moleküle in der Probe. In der Metabolomik unterliegen Metaboliten der
Strukturaufklärung, beginnend bei der Summenformel eines Moleküls, d.h. der An-
zahl der Atome jedes Elements. Dies ist der entscheidende Schritt in der Identifika-
tion eines unbekannten Metabolits, da die festgelegte Formel die Anzahl der möglichen
Molekülstrukturen auf eine viel kleinere Menge reduziert, die mit Methoden der automa-
tischen Strukturaufklärung weiter analysiert werden kann. Nach der Vorverarbeitung ist
die Ausgabe eines Massenspektrometers eine Liste von Peaks, die den Molekülmassen
und deren Intensitäten, d.h. der Anzahl der Moleküle mit einer bestimmten Masse,
entspricht. Im Prinzip können die Summenformel kleiner Moleküle nur mit präzisen
Massen identifiziert werden. Allerdings wurde festgestellt, dass aufgrund der hohen
Anzahl der chemisch legitimer Formeln in oberen Massenbereich eine exzellente Massen-
genaugkeit alleine für die Identifikation nicht genügt. Hochauflösende MS erlaubt die
Bestimmung der Molekülmassen und Intensitäten mit hervorragender Genauigkeit.

In dieser Arbeit entwickeln wir mehrere Algorithmen und Anwendungen, die diese
Information zur Identifikation der Summenformel der Biomolekülen anwenden. Im er-
sten Teil stellen wir einen Ansatz zur Bestimmung der Summenformel eines Metabolits
durch seine Masse und die natürliche Verteilung seiner Isotopen vor. Wir führen den
Begriff “Isotopenmuster” ein und zeigen die Methoden für dessen schnelle Berechnung.
Wir evaluieren unseren Algorithmus auf mehreren experimentellen Datensätzen und er-
reichen vielversprechende Ergebnisse mit geringem Fehleranteil für die Moleküle unter
1 000 Da für orthogonale Flugzeitmassenspektrometrie. Des Weiteren haben wir eine
Methode entwickelt, um die Aminosäuresequenz eines unbekanntes Proteins aus seiner
Summenformel sich herzuleiten. Wir formulieren das Problem als mehrdimensionales
Equality-Constrained-Integer-Knapsack-Problem, und präsentieren effiziente Methoden
der Maßreduktion, um alle Problemlösungen aufzuzählen.

Im zweiten Teil entwickeln wir mehrere Anwendungen, die unsere algorithmischen
Ansätze implementieren und für die Analyse der MS-Daten kleiner Biomoleküle ange-
wandt werden können. Wir präsentieren Decomp, eine web-basierte Anwendung für
die Massenzerlegung über einen beliebigen Alphabet, und zeigen ihre Anwendbarkeit als
Teil eines Software-Werkzeuges CompNovo für die de-novo-Sequenzierung von Peptiden

iii

iv

durch Tandem-MS. Schließlich stellen wir die Java-basierte Software SIRIUS vor, die un-
sere Algorithmen zur Identifikation der Summenformel von Metaboliten implementiert,
und mit einer leicht bedienbaren graphischen Benutzeroberfläche kombiniert.

Acknowledgements

This work would not have been possible without the support of many people.

First of all, I would like to thank Prof. Dr. Sebastian Böcker, who has been a great
supervisor over these years, sharing lots of ideas, providing dozens of useful insights
into problems, dedicating much time for his students, and simply supporting them at
all levels. For me, working with Sebastian has been an incomparable and very valuable
experience. Also, I would like to thank Prof. Dr. Jens Stoye at Bielefeld University, who
has been for me an example of a brilliant organizer and supportive mentor. Working
with Jens in the group Genome Informatics in Bielefeld, I could particularly appreciate
the opportunity to study in a motivated and yet very friendly atmosphere, in which
things were getting managed as if by themselves.

I am grateful to the Deutsche Forschungsgemeinschaft (DFG), which has financed me
within the Computer Science Action Program (BO 1910/1).

I would like to express my gratitude to Dr. Michael Jung from the bj-diagnostik GmbH,
Gießen, for his kindness and immense support over the period of time before beginning
this PhD thesis.

I wish to acknowledge Dr. Dirk Evers, Silke Kölsch, and the whole International NRW
Graduate School in Bioinformatics and Genome Research, where I had an opportunity
to study during the first one and a half years at Bielefeld University.

I express many thanks to Dr. Hans-Michael Kaltenbach who has been a great office
mate in Bielefeld. I am also grateful to Dr. Zsuzsanna Lipták, who has been a great
co-author and, in some sense, an elder tutor for me in my first publications. I have been
learning from Zsuzsa how to write clear and well-formulated papers with grammatically
correct English. I thank Marcel Martin, Henner Sudek, and Matthias Steinrücken who
helped me a lot in getting acquainted with realities of studying at Bielefeld University.
I also wish to thank Heike Samuel for her kindness and support during my first days at
my first German university.

For the very useful and successful cooperation, I wish to acknowledge the following
scientists: Dr. Matthias Letzel at Bielefeld University, Dr. Steffen Neumann at Leibniz
Institute of Plant Biochemistry (IPB) Halle, and Andreas Bertsch at Tübingen Uni-
versity. I wish to thank Henning Mersch and Jan Krüger for their help with installing
Decomp at the Bielefeld University Bioinformatics Server (BiBiServ).

As during this PhD thesis, I had to change the location of my study, I would like to
thank Nicole Hinz, Frank Mäurer, and Anke Truß who helped me a lot to easily change
the university, and to continue research at Friedrich-Schiller-University Jena.

In particular, I would like to thank my office neighbor Thasso Griebel, who joined our
newly created group at Jena University. I feel myself lucky that he landed at my office,

v

vi

so that we could share a lot of ideas and have many useful discussions, in particular,
regarding the software design and development. Without his support in the initial stage
of creating SIRIUS, its release would have been much more complicated matter. I thank
Florian Rasche who came recently and could quickly adopt himself in our group, and
he is going to take over in the further development and maintenance of SIRIUS. I also
thank Martin Engler and Franzisca Hüfsky for their help with SIRIUS.

I wish to acknowledge Frank Mäurer for his help in correcting student assignments, and
Anke Truß and Quang Bao Anh Bui for being great coworkers in holding various exercises
and seminars for students. And special thanks to Kathrin Schwotka, our beautiful
secretary, for her kindness and patience in helping us to get done all administrative
duties that typically accompany the academic research.

I thank Malte Brinkmeyer, Thasso Griebel, Florian Rasche, and Anke Truß for proof-
reading parts of this thesis.

Finally, I would like to thank my parents, Gennady and Zareen, and my sister Vedanta,
who have accepted my long term leaves, and eventual move to Germany. I am deeply
grateful to them for their love and support, whenever being necessary.

Contents

1 Introduction 1

1.1 Structure of the Thesis . 2

2 Biological Background 5

2.1 Atoms and Molecules . 5
2.2 Proteomics . 8
2.3 Metabolomics . 11
2.4 Mass Spectrometry . 12

2.4.1 Instrumentation . 12
2.4.2 Experimental Workflow . 18

2.5 Mass Spectrometry Data Analysis . 21
2.5.1 Types of Mass Spectrometric Analysis 21
2.5.2 Computational Problems . 22
2.5.3 Protein Identification using Databases 24

3 Decomposition Algorithms 27

3.1 Integer Mass Decomposition . 27
3.1.1 Definitions and Problems . 27
3.1.2 Enumerating Integer Decompositions 29

3.2 Decomposing Real-valued Masses . 31
3.2.1 Approximating Number of Decompositions 33

4 Molecular Formula Identification of Metabolites 37

4.1 Isotope Patterns . 38
4.1.1 Isotope Species . 38
4.1.2 Isotopic Distributions . 39

4.2 Computing Isotope Patterns . 41
4.2.1 Folding Isotopic Distributions . 41
4.2.2 Folding Peak Masses . 42

4.3 Scoring Candidate Molecules . 44
4.3.1 Estimating Probabilities of Peak Masses 45
4.3.2 Estimating Probabilities of Peak Intensities 46

4.4 Experimental Results . 46
4.4.1 Identification Rates . 48

vii

viii Contents

5 Deriving Peptide Compositions 53
5.1 Peptide Molecular Formula Decomposition Problem 54

5.1.1 Related Problems and Solutions 55
5.1.2 Multi-dimensional Integer Knapsack 57

5.2 Generating Decomposition Matrices and a Mixed Matrix Approach 59
5.3 Experimental Results . 60

5.3.1 Selecting Good Decomposition Matrices 60
5.3.2 Comparison with Other Methods 61

5.4 Summary . 62
5.5 Best Six Matrix Pairs . 63

6 Application Tools and Cases 71
6.1 DECOMP . 71

6.1.1 Introduction . 71
6.1.2 Implementation and Use . 72

6.2 Application Case with CompNovo . 75
6.2.1 Existing Approaches for De Novo Peptide Sequencing by Tandem

MS . 77
6.2.2 Algorithm Overview . 79
6.2.3 Experimental Results . 82

6.3 Rdisop . 84
6.3.1 Introduction . 84
6.3.2 Implementation and Use . 85

7 SIRIUS 91
7.1 System Architecture . 92

7.1.1 Domain Objects . 92
7.1.2 Functional Logic Layer . 94
7.1.3 Presentation Layer . 96

7.2 Application Workflow . 98
7.2.1 Preparing Input Data . 98
7.2.2 Analysis Preparation and Parameter Input 99
7.2.3 Analyzing Algorithm Results . 101

7.3 Summary . 103

8 Conclusion 105

1 Introduction

The process of scientific discovery is, in effect,
a continual flight from wonder.

Albert Einstein (1879-1955)

All life on this planet basically depends on three types of molecules: DNA, RNA,
and proteins. In macroscopic terms, one could visualize a cell roughly analogous to the
university library, where DNA are the book shelves holding all information about how
the cell works, RNA are the librarians who transfer books, small pieces of this knowledge
to students representing proteins that perform the actual tasks of the cell. In fact, this is
rather an oversimplified view: There exist other types of molecules, such as metabolites
that play a crucial role in maintaining the cell’s structure as well as in the cell growth.

The sequencing of numerous genomes1 in the last two decades has stimulated im-
pressive advances in the biological sciences, but emphasized our limited understanding
about the “building blocks” of biological systems. The post-genomic era has progressed
by shifting the focus of bioinformatics research from structural towards functional ge-
nomics: attention has grown to products of the later steps of protein expression and gen-
eral functioning of the cell. For a better understanding of the biochemical and biological
mechanisms in complex systems, it is necessary to comprehend an organism’s response
to a conditional perturbation at the transcriptome, proteome and metabolome levels.
The respective areas are referred to as transcriptomics, proteomics, and metabolomics,
while the eventual goal of interpretation of the whole system with its complexities is
referred to as systems biology.

Mass spectrometry has been one of the workhorse analytical tools over the last quar-
ter century. Mass spectrometers are extensively used by pharmaceutical companies to
analyze small and thermostable compounds for drug research. With rapid advances in
instrumentation and capability to perform high-throughput analysis, mass spectrometry
has advanced by leaps and bounds and become a central analytical technique for protein
and metabolite research and for the study of biomolecules in general.

One of the key challenges in mass spectrometry-based proteomics and metabolomics
is to establish the identity of sample molecules. In metabolomics each individual com-
pound (metabolite) needs to undergo structural elucidation, starting from the elemental
composition or molecular formula, i.e., the number of atoms of each element. This is
an essential step in identifying a metabolite, since a fixed formula reduces the number
of possible molecular structures to a much smaller set that can be further examined for
automatic structure elucidation of molecules. After preprocessing, the output of a mass

1http://www.genomenewsnetwork.org

1

http://www.genomenewsnetwork.org

2 1. Introduction

spectrometer is a list of peaks which corresponds to the masses of the sample molecules
and their abundances, i.e., the amount of sample compounds with a certain mass. In
principle, molecular formulas of small molecules can be identified using only accurate
masses. However, due to many chemically possible formulas in higher mass regions, it
has become evident that excellent mass accuracy alone is insufficient for the identification
purposes.

High resolution mass spectrometry allows us to determine the isotope pattern of sam-
ple molecules with outstanding accuracy. In this work, we develop several algorithms
that extensively make use of this information for the identification of the molecular for-
mula of sample molecules. To achieve this, we use and extend recently developed efficient
techniques for decomposition of integer and real-valued masses. We present a web-based
tool DECOMP for solving integer and real-valued mass decomposition problems over
any arbitrary alphabet including several common “bioalphabets”, such as amino acids,
nucleotides, and chemical elements most frequently occurring in nature. We demonstrate
the applicability of our decomposition approach for de novo sequencing of peptides using
tandem mass spectra. Moreover, we present a novel algorithm to go one step further and
use the information about the molecular formula to derive the amino acid sequence of
an unknown peptide. To generate all amino acid sequences from a peptide’s molecular
formula, our method efficiently solves a joint decomposition of a set of queries on the
number of elements that each amino acid consists of. The performance of our approach
has been evaluated on both simulated and real proteomics data. Furthermore, we intro-
duce Rdisop, a new R package for de novo identification of molecular formulas solely from
masses and isotope patterns measured by high resolution mass spectrometers. Finally,
we present the java-based software application, called SIRIUS, that implements all of
our algorithms for identification of the molecular formula of metabolites, and combines
them with an easy-to-use graphical user interface.

Parts of this dissertation thesis have been published in advance [15, 17, 16, 20], and
one further paper is accepted for publication [12]. Decomp is freely accessible at the
Bielefeld University Bioinformatics Server2 (BiBiServ). Rdisop is distributed as a part
of the Bioconductor project, and is publicly accessible at the project website3. SIRIUS
is publicly available for download at the project website4, and is distributed for various
operating systems including Unix/Linux, Windows and Mac OS.

1.1 Structure of the Thesis

This thesis consists of eight chapters. In Chapter 2, an introduction into the basic terms
and principles in computational molecular biology, in particular, the emerging fields
of proteomics and metabolomics, is given. We introduce mass spectrometry (MS) and
its biotechnological aspects, and outline the computational problems that arise in its
context.

2http://bibiserv.techfak.uni-bielefeld.de/decomp/
3http://www.bioconductor.org/packages/2.4/bioc/html/Rdisop.html
4http://bio.informatik.uni-jena.de/sirius/

http://bibiserv.techfak.uni-bielefeld.de/decomp/
http://www.bioconductor.org/packages/2.4/bioc/html/Rdisop.html
http://bio.informatik.uni-jena.de/sirius/

1.1 Structure of the Thesis 3

The thesis is organized as follows: The first part (Chapters 3–5) is devoted to the
theoretical concepts of our research. In Chapter 3, we start by a brief detour to existing
approaches for decomposing integer masses, a question that is frequently encountered in
the MS data analysis. We define the relevant problems and introduce available computa-
tional solutions, which are further used as a basis in all our algorithms and applications.
We also show how to extend the integer decomposition techniques for the analysis of
real-valued MS data.

Chapter 4 presents a new approach for de novo identification of molecular formulas of
metabolites, which uses the mass decomposition techniques, and incorporates further in-
formation, such as isotopic abundance data. We introduce an isotope pattern and related
notions, and present methods for the fast simulation of isotope patterns, which is im-
portant for the analysis of larger molecules where the search space increases rapidly. We
evaluate our approach on several experimental datasets using different MS techniques,
and obtain very promising results with only a tiny proportion of false identifications for
molecules below 1 000 Da for orthogonal time-of-flight mass spectrometry.

In Chapter 5, we present a new algorithm that employs the molecular formula in-
formation to efficiently infer the amino acid composition of an unknown peptide. We
formulate the problem as a joint set of decomposition queries based on the number of
elements that each amino acid consists of, and present a dimension reduction technique
to reduce a multi-dimensional problem to a one-dimensional instance. We also provide
an experimental evaluation of the algorithm performance, both on simulated data and
peptides from experimental mass spectra.

The second part (Chapters 6 and 7) is devoted to the practical aspects of our work.
In Chapter 6, we present several application tools that implement our algorithmic ap-
proaches, and can be utilized for the MS data analysis of small sample molecules. We
present Decomp, a web-based application to find decompositions of a given mass over
any arbitrary alphabet. Being designed to solve integer and real-valued mass decompo-
sition problems, Decomp is well suited both for the interpretation of MS data and for
solving instances of Money Changing Problem. We then demonstrate its applicability as
an essential part of another algorithm, called CompNovo, for de novo peptide sequenc-
ing using tandem mass spectrometry. We also present Rdisop, a new R package for the
analysis of small sample molecules using an accurate isotope pattern information.

In Chapter 7, we present the java-based software SIRIUS with the implementation of
all our algorithms for de novo identification of molecular formula of metabolites using
high resolution MS data. We describe the architecture and provide some technical details
on implementations and employed technologies. Well-defined structure and management
system of our software allow a simple integration of new computation and visualization
functionalities to the application. We further describe a basic application workflow and
outline the cornerstones of the data and analysis preparation. We discuss a set of SIRIUS
features for the interpretation of the computational results including visualization, data
export, and searching for molecular formulas in biological databases.

Chapter 8 concludes the thesis by recalling the main results and presenting an out-
look on further applications of the molecular formula analysis for the identification of
unknown sample molecules.

2 Biological Background

We start by providing some basic physical and chemical background, which we further
use throughout this work. Since the motivation of our work as well as its applications
and results have their origin in proteomics and metabolomics, this chapter will give an
overview of the central terms and principles of these two emerging fields of scientific
research. Main focus of our work also lies in the context of mass spectrometry, thus we
will briefly describe the basics of mass spectrometry, and outline the computational chal-
lenges that appear in its context. This chapter cannot be a self-contained introduction
to mass spectrometry or to the fields of proteomics and metabolomics, and for further
information, the interested reader might have a look at any of the relevant textbooks,
e.g., [57, 34,125].

2.1 Atoms and Molecules

Atoms and Isotopes. The word “atom” comes from the Greek word átomos, which
means uncuttable: Atoms are basic units of matter that cannot be decomposed chem-
ically. Atoms consist of a central nucleus surrounded by negatively charged electrons.
The atomic nucleus is made up from positively charged protons and neutrons which have
no charge. Atoms contain the same number of protons and electrons, and thus have no
charge; if this charge is broken, the resulting particle is called an ion.

Atoms are classified according to the number of protons and neutrons in their nucleus.
The total number of protons and neutrons is called the nominal mass, or the nucleon
number of an atom. The number of protons is referred to as the atomic number and
determines the chemical element of an atom. Atoms with equal atomic numbers share
the same chemical behavior and cannot be distinguished chemically. The elements most
abundant in living beings are hydrogen (symbol H) with atomic number 1, carbon (C,
atomic number 6), nitrogen (N, 7), oxygen (O, 8), and to lesser extent, phosphor (P, 15),
and sulfur (S, 16). Throughout this work, we will refer to this set as CHNOPS.

Unlike the fixed number of protons, the number of neutrons of an element can vary:
Atoms with equal number of protons and electrons but different number of neutrons
define the isotopes of an element. For example, carbon has two isotopes that occur
in nature, 12C and 13C (the preceding superscript denotes the nucleon number): 12C is
comprised of six protons, six electrons, and six neutrons, whereas 13C carries six protons,
six electrons, and seven neutrons.1 The lightest isotope, such as 1H or 12C, is also called
monoisotopic. Note that the term “monoisotopic” is sometimes referred to as the most

1In fact, carbon has the third radioactive isotope 14C. Radioactive isotopes are usually ignored in mass
spectrometric analysis.

5

6 2. Biological Background

element (symbol) isotope abundance % mass (Da) av. mass (Da)

hydrogen (H) 1H 99.985 1.007825
2H 0.015 2.014102 1.007976

carbon (C) 12C 98.890 12.0
13C 1.110 13.003355 12.011137

nitrogen (N) 14N 99.634 14.003074
15N 0.366 15.001090 14.006727

oxygen (O) 16O 99.762 15.994915
17O 0.038 16.999131
18O 0.200 17.999160 15.999305

phosphor (P) 31P 100 30.973762 30.973762
sulfur (S) 32S 95.020 31.972071

33S 0.750 32.971459
34S 4.210 33.967867
36S 0.020 35.967081 32.064388

proton (p+, 1H+) 1.00728 Da, neutron (n) 1.008665 Da, electron (e –) 0.00054 Da

Table 2.1: Natural isotopic distribution: Relative abundance of isotopes and their masses
in Dalton.

abundant isotope, but in this work we use this term to refer to the isotope with the
smallest mass. Isotopes of each element are found in nature with certain abundance:
For example, the relative abundance of the monoisotopic carbon isotope 12C is 98.89 %,
whereas the isotope 13C has the relative abundance of 1.11 %. For abundances of other
isotopes most commonly occurring in nature, see Table 2.1.

Masses of atoms are measured in Dalton (Da), or equivalently in unified atomic weight
units (u). According to International Union of Pure and Applied Chemistry (IUPAC),
one Dalton is defined as 1/12 of the mass of one atom of the 12C isotope. In fact, due
to the mass contained in the binding energy of the atom’s nucleus, an atom with n
protons and neutrons has a mass, which roughly, but not exactly, equals to n Da. This
illustrates the mass defect, the difference between the atom’s nominal mass and the sum
of masses of the constituting protons, neutrons, and electrons. For example, the total
mass of 6 protons, 6 neutrons, and 6 electrons is equal to 12.09596 Da, while the 12C
isotope has a mass of exactly 12.0 Da, a difference of about 0.8 %. The average mass of
an element is the expected mass computed with respect to the relative abundances of
isotopes. For example, the average mass of carbon is 0.98890 times the mass of 12C plus
0.01110 times the mass of 13C. For the masses of elements listed above, see Table 2.1,
while the detailed list of all chemical elements can be found in [4].

Molecules. A molecule is a stable group of two or more atoms joined together by
chemical bonds of shared pairs of electrons. A molecular formula indicates the exact

2.1 Atoms and Molecules 7

number of atoms that compose a molecule. Compared to the chemical formula that may
provide information about the structure and types of chemical bonds, the molecular
formula only reflects the amount of atoms in the molecule. For example, the chemical
formula of the amino acid alanine CH3CH(NH2)COOH implies a chain of three carbon
atoms, with an α-carbon (see Section 2.2) surrounded by an amino group (NH2), a
carboxyl group (COOH), and a methyl group (CH3), whereas the molecular formula
C3H7NO2 tells us only that the molecule contains 3 carbons, 7 hydrogens, 1 nitrogen,
and 2 oxygens. Molecules can have different amount of protons and electrons, thus being
positively or negatively charged. Molecules that pick up a net electric charge are called
ions, or in the context of mass spectrometry, they are often referred to as molecular ion
adducts.

Chemical Bonding Rules. Atoms in the molecule are held together by the chemical
bonds formed through the pairs of electrons that atoms can share with their neighbours.
The number of chemical bonds formed by atoms is often referred to as the valence of
an element. For example, in natural compounds carbon has valence 4, oxygen 2, and
hydrogen 1. However, for many elements, the valence varies depending on the molecule
to which this element belongs. For example, phosphor sometimes forms 5 chemical bonds
and sometimes only 3. For the physical existence of a molecule as a set of interconnected
elements, certain chemical rules, such as a valence balance and unsaturation, must hold.
In its stable state, the molecule is an electrically neutral entity with the same number
of protons and electrons. Therefore, the valence states of all its constituting atoms must
be balanced. For example, if one atom would have valence +1, meaning it lacks one
electron, and another atom would have valence −1, meaning it possesses an additional
electron, then a bond between these two atoms would be formed to complement their
unbalanced valence states.

Another prerequisite of the legitimate compound is the number and types of bonds
that must be present. A molecule only containing single bonds is called saturated, while
the presence of multiple bonds is known as unsaturation. The degree of unsaturation
(DU) [96] formula, also known as rings-plus-double-bonds equivalent (RDBE) [114], helps
to determine the number of different types of bonds in the compound, and therefore can
be used for validation of molecular formulas.

In 1951, Senior [107] proposed a graph-theoretical concept to unify the aspects of
valence balance and unsaturation. Senior’s theorem outlines the three prerequisites for
the existence of a molecular graph:

1. The sum of valences or the total number of atoms having odd valences is even;

2. The sum of valences is greater than or equal to twice the maximum valence;

3. The sum of valences is greater than or equal to twice the number of atoms minus
one.

The first condition corresponds to the valence balance, whereas the third condition
accounts for connectivity of a molecular graph requiring the number of independent

8 2. Biological Background

cycles in the graph to be nonnegative. The second prerequisite ensures the non-existence
of small molecules such as CH2.

There exist other chemical criteria, such as a nitrogen rule, or a Lewis octet rule, but
they are either rarely used for mass spectrometric analysis, or can be seen as a subset
of Senior’s conditions.

2.2 Proteomics

The word “proteome” was coined in 1994 to denote the total amount of PROTEins
expressed by a genOME, cell, tissue or organism [91]. More specifically, it is the set of
expressed proteins at a given time under defined conditions. Unlike the genome, the
proteome is very dynamic: Proteins are constantly formed and degraded in different cell
types and their expression is influenced by the environment and events going on inside
the cell, such as cell division and growth state. Proteins participate in almost all cellular
processes: They are part of the cell membrane, form enzymes that perform biochemical
reactions, and serve as receptors and transmitters in signal transduction. Identification
of all the proteins in a cell or an organism is one of the major tasks of proteomics – the
study of the proteome.

Protein Structure. Proteins are polypeptides: They form a chain of amino acid mole-
cules linked together in a certain order by peptide bonds.

There are 20 different naturally occurring amino acids, all sharing the same common
structure: A central carbon atom (often denoted by α (alpha) carbon) surrounded by
an amino group (HN2), a carboxyl group (COOH), a hydrogen atom and a side chain
specific for the amino acid. The generalized structure of an amino acid is depicted in
Figure 2.1. Each amino acid can be denoted either by its full name, symbol, or three-
letter abbreviation, see Table 2.2. Note that leucine (L) and isoleucine (I) have identical
molecular formula and usually cannot be distinguished by mass spectrometry. In the
following, we thus consider these two amino acids as one, and talk about 19 standard
amino acids.

From the structure shown in Figure 2.1, it is obvious that an amino acid looses a
water molecule (H2O) when it is included in the chain. Therefore, when amino acids
are part of a chain, they are commonly referred to as residues. The bonds between
two consecutive amino acid residues in the chain are amide bonds, and are denoted as
peptide bonds. Correspondingly, a short chain of amino acids is usually referred to as a
peptide. Each peptide has an an unbounded amine group, called the N-terminus, and an
unbounded carboxyl group, called the C-terminus. By convention, the peptide sequence
is written as a string of residues (usually denoted by symbols) from the N-terminus to
the C-terminus.

The peptide sequence is the most fundamental attribute of a protein and therefore
referred to as its primary structure: If the sequence is known, the protein is considered
identified. To determine the complete peptide sequence is, however, not a straightforward
process.

2.2 Proteomics 9

Cα

R OH

C
H

O

N
Cα

R

H

C
H

O

Cα

HN

H

C

R

O

N

H

Cα

R

C
H

OH

H

Residues

H Cα

HN

H

C

R

O

OH N

Amino group Carboxyl group

Side chain

N-terminus C-terminus

a) b)

Peptide bond

Figure 2.1: a) All amino acids have the same common structure. Different amino acids
vary in their side chains. b) A polypeptide is formed by linking together
multiple amino acids residues.

Protein Synthesis. In modern molecular biology, the word “genome” refers to the
hereditary information of an organism encoded in several deoxyribonucleic acid (DNA)
molecules, each a double-stranded polymer built from four different nucleic acids, or nu-
cleotides: adenine (symbol A), cytosine (C), guanine (G) and thymine (T). The genome
is mainly static and the same for all cells of an organism. The primary structure of a
protein is encoded in a gene, a coding region of the genome.

Protein synthesis is the creation of proteins using DNA and ribonucleic acid (RNA)
molecules. RNA molecules are very similar to DNA molecules, except that they are
single-stranded, use a different ribose in the backbone and have the base uracil (U)
instead of thymine (T). To build a new protein, the gene that encodes this protein
must be transcribed and translated. During the transcription, messenger ribonucleic
acid (mRNA) molecules are formed that contain a complementary copy of the genetic
information. Similar to the genome and the proteome, the transcriptome is the set of all
mRNA molecules present in a cell at a certain time. Like the proteome, the transcriptome
is dynamic.

In the translation process, the mRNA molecules, containing the genetic instructions
to make the protein, are first brought to the ribosomes, large ribonucleoproteins that are
responsible for building the protein’s primary structure from amino acids. This process
is done with the help of transfer RNA (tRNA) that transfers the amino acids to the
amino acid chain. The actual translation is done by the ribosomes that read the mRNA
sequence of nucleic acids and for each triplet of nucleotides, or codon, add the encoded
amino acid to the so far formed amino acid chain. Codons are consecutive and non-
overlapping, that is the next triple of nucleotides after each codon corresponds to the
next codon. The start and the end of the translation process are triggered by special
start and stop codons. When the ribosome reaches the stop codon, indicating the end
of the mRNA sequence, it releases the protein that then folds to its final structure.

This flow of information in a cell,

DNA → transcription → RNA → translation → protein

10 2. Biological Background

amino acid symb. TLC molecular mass (Da)
formula mono. average

Alanine A Ala C3H5N1O1 71.0371 71.0788
Cysteine C Cys C3H5N1O1S1 103.0091 103.1448
Aspartic acid D Asp C4H5N1O3 115.0269 115.0886
Glutamic acid E Glu C5H7N1O3 129.0425 129.1155
Phenylalanine F Phe C9H9N1O1 147.0684 147.1766
Glycine G Gly C2H3N1O1 57.0214 57.0520
Histidine H His C6H7N3O1 137.0589 137.1412
Isoleucine I Ile C6H11N1O1 113.0840 113.1595
Lysine K Lys C6H12N2O1 128.0949 128.1742
Leucine L Leu C6H11N1O1 113.0840 113.1595
Methionine M Met C5H9N1O1S1 131.0404 131.1986
Asparagine N Asn C4H6N2O2 114.0429 114.1039
Proline P Pro C5H7N1O1 97.0527 97.1167
Glutamine Q Gln C5H8N2O2 87.0320 87.0782
Arginine R Arg C6H12N4O1 156.1011 156.1876
Serine S Ser C3H5N1O2 87.0320 87.0782
Threonine T Thr C4H7N1O2 101.0476 101.1051
Valine V Val C5H9N1O1 99.0684 99.1326
Tryptophan W Trp C11H10N2O1 186.0793 186.2133
Tyrosine Y Tyr C9H9N1O2 163.0633 163.1760

Table 2.2: Amino acid residues with 3-letter-code (TLC), symbol, molecular formula,
monoisotopic (mono.) and average masses. The molecular formulas for the
residues are given without terminal H and OH groups.

is referred to as the central dogma of molecular biology. In fact, this is rather an oversim-
plified view on the transfer of biological information in a cell: Today, we know other fac-
tors, such as an alternative splicing of introns, DNA and RNA editing, post-translational
modifications (PTM), and others, that make this process more complicated, resulting in
a variability of protein molecules translated from a single gene. Here, we omit further
details.

Although DNA, RNA and proteins are the main players in the cell’s life circle and the
three primary types of molecules that biologists study, there are other types of molecules,
such as metabolites that play a crucial role in maintaining the cell’s structure. In the
next section, we address metabolites in more detail.

2.3 Metabolomics 11

2.3 Metabolomics

Metabolites are the end products of cellular regulatory processes, and their expressions
can be considered as the ultimate response of biological systems to genetic or environ-
mental changes [42]. Metabolomics deals with the systematic study of the metabolism
of both endogenous and exogenous metabolites present in biological systems. The word
“metabolism” is derived from the Greek word metabolè, meaning change, which is appli-
cable as metabolism is in a constant and rapid flux. In analogy to genome and proteome,
metabolome refers to the total amount of metabolites present in a biological system that
participate in metabolic reactions such as growth, maintenance and normal function [57].
Metabolites are organic and inorganic species, mostly of small molecular mass. Metabo-
lites are usually divided into two categories: primary metabolites are directly involved
in growth, development, or reproduction of an organism, whereas secondary metabolites
are not directly involved in these processes, but have other important biological func-
tions. Endogenous metabolites are biochemically synthesized or catabolized within the
cell or organism, whereas exogenous metabolites have an external origin, as is the case
for pharmaceuticals and food nutrients consumed by humans.

A typical analytical procedure in metabolomics can be divided in three major steps:
First, a biological sample must be collected without causing any change of the metabolo-
me: the metabolite molecules must be extracted and eventually undergo chemical deriva-
tization. Second, the metabolites are separated by chromatographic techniques, such as
gas chromatography (GC) or high performance liquid chromatography (HPLC), see Sec-
tion 2.4. Finally, metabolites are identified and quantified using Mass Spectrometry, or
Nuclear Magnetic Resonance (NMR).

Although metabolomics is closest to the phenotype in the “omics” cascade (see Fig-
ure 2.2), there currently exists no single-instrument platform that can analyze all metabo-
lites, and the tools for the comprehensive examination of the metabolome are still emerg-
ing [13]. In Table 2.3, a list of different strategies is given that are currently employed.
The complexity of the metabolome is due to the broad variety of compounds, such as
lipids, carbohydrates, vitamins, and others, which comprise the metabolome. These
compounds constitute a diverse set of molecular structures when compared to the pro-
teome (string of 20 standard amino acids) and transcriptome (string of 4 nucleotides).
The majority of metabolites contain only six elements CHNOPS that most frequently
occur in living beings. However, metabolites can also contain other elements, such as
chlorine (Cl), fluorine (F), and others [72]. This results in a wide variety of chemical
(molecular weight, polarity, solubility) and physical (volatile) properties of metabolites
becoming a challenge for the comprehensive biochemical analysis.

One of the major applications of metabolomics is the detection of biomarkers that
change as an indicator of the presence of a disease in an individual biological system. The
biomarkers for certain diseases, such as for reversible myocardial ischemia, can be found
on metabolomic, rather than on genomic or proteomic level [103]. Also, metabolomics
has been employed in a variety of other health applications including pharmacology,
pre-clinical drug trials, clinical chemistry, and others. Moreover, the concept of in-
dividualized health, such as nutrition or tailored pharmacological treatment based on

12 2. Biological Background

genome

transcriptome

proteome

metabolome

phenotype

What сan happen

What appears to
be happening

What makes it
happen

What has happened
and is happening

Figure 2.2: The “Omics” cascade contains several levels of the biological system, which
can be analyzed with regard to the response of the system to disease, genetic,
and environmental changes. Of these levels, the metabolome is the most
predictive of phenotype.

metabolic phenotype will strongly rely on metabolomics technology [124].

2.4 Mass Spectrometry

Mass spectrometry is an analytical technique that has played a key role in emerging
of proteomics and metabolomics into mainstream science. In the remainder of this
chapter, an introduction to the field of mass spectrometry from both experimental and
computational points of view is given.

According to Siuzdak [110], a mass spectrometer is “an analytical device that deter-
mines the molecular weight of chemical compounds by separating molecular ions accord-
ing to their mass-to-charge (m/z) ratio”. As mentioned before, molecular weights are
measured in Dalton (Da), or equivalently in unified atomic weight units (u). One Dal-
ton equals one atomic weight unit (amu) of 1.66 · 10−24 g, which is approximately the
molecular weight of one proton. The mass-to-charge is measured in Thompson (Th).

2.4.1 Instrumentation

Very schematically, a mass spectrometer consists of three main parts as shown in Fig-
ure 2.3: the ionization source, the mass analyzer, and the detector. Following the sample
introduction, the analyte is ionized in an ionization source, either operating at atmo-
spheric or vacuum pressures. The generation of charged molecules is necessary to enable
ion manipulation based on its mass-to-charge (m/z) ratio. The sample is then trans-
ferred to the mass analyzer that separates the components of the sample in space or time

2.4 Mass Spectrometry 13

Metabolomics Identification and quantification of as many of the com-
pounds present in a metabolome sample as possible.

Metabolic profiling Identification and approximate quantification of a large set
of metabolites, generally related by one or more specific
metabolite classes, within a metabolite sample. This strat-
egy can be also described as metabolite profiling or untar-
geted analysis, and provides metabolite identifications where
the compounds of biological interest are not known a priori.

Targeted analysis Identification and precise quantification of a single or highly-
related small set of metabolites within a metabolome sam-
ple.

Metabolic fingerprinting High-throughput generation of a global snapshot, or fin-
gerprint, of a metabolome sample without regard for the
individual compounds that it contains. Identification and
quantification is limited and the strategy is employed for
discrimination of samples from different biological origins.

Table 2.3: Typical strategies employed in metabolomic analysis.

according to their m/z ratios. After separation, ions are registered by a detector either
physically as an ion current or by the detection of orbital frequencies as image currents.
Finally, the mass spectrometer’s output – a mass spectrum – is acquired by a connected
computer. A mass spectrum is a diagram, with the position of the peak along the hor-
izontal axis that ideally indicates the presence of the molecule with the corresponding
m/z value in the sample, and the height of the peak, referred to as intensity or relative
abundance, which is proportional to the amount of molecules with this m/z value.

Sample introduction
(gas, liquid, solid)

Ion source Mass analyzer Detector PC

Figure 2.3: Schematic principle of the mass spectrometer

In the following, we briefly describe the main ionization sources and mass analyzers.
A comprehensive survey with more details about instrumentation can be found in [54].

14 2. Biological Background

Ionization Sources. Although invented in the late 19th century, mass spectrometry
(MS) for a long time was restricted to small and thermostable molecules due to the
lack of proper techniques to “softly” ionize and transfer ionized molecules from the
condensed phase to the gas phase without excessive fragmentation. This situation was
changed in the late 1980s, with the development of two techniques for the routine and
general accumulation of molecular ions of entire biomolecules, namely matrix-assisted
laser desorption/ionization (MALDI) [61,68] and electrospray ionization (ESI) [39,126]
that allowed the ionization of higher-value molecules such as proteins. For the develop-
ments of these invaluable MS technologies, Koichi Tanaka (MALDI) and John B. Fenn
(ESI) were given the Nobel Prize in Chemistry in 2002.

In MALDI, the analytes are dissolved with a matrix solution and a small drop (mi-
croliter volume) is spotted on a metal plate and allowed to dry. After drying, the metal
plate is transferred to the vacuum system of the mass spectrometer and a laser beam
shots onto a matrix, with wave length specific to the matrix. The absorbed energy causes
the matrix to evaporate, releasing the enclosed analyte and ionizing it. The ionization is
typically singly-charged protonation, meaning that the ionized molecules carry one ad-
ditional proton. Finally, directed by the electric field, ionized molecules are transported
to the mass analyzer. Since only a part of the sample and the matrix is used with each
laser shot, the same sample can be measured multiple times. Moreover, MALDI plates
can be kept and re-used in later experiments, allowing interruptions in the analysis.

In ESI, the analyte is dissolved in a liquid solvent, and is sprayed from a tiny highly
charged needle or capillary into a strong electromagnetic field, resulting in a condensate
of small aerosol droplets with a charged surface. The droplets are brought into the
vacuum system of mass spectrometer, and as the solvent in the droplets evaporates,
they get smaller and smaller, increasing the electric field on the surfaces. When the
electric field becomes strong enough, charged molecules desorb from the surfaces. These
conditions usually result in multiply protonated ions. Finally, influenced by the electric
field, ions are brought to the mass analyzer. In contrast to MALDI, ESI relies on
continuous supply of dissolved analytes, which makes it particular suited for coupling
with liquid chromatography, see Section 2.4.2.

Mass Analyzers and Detector. Mass analyzers separate ionized molecules, influenced
by the electromagnetic field according to their m/z ratios. Varying in physical principles
and performance standards, there exist several types of mass analyzers that are employed
in proteomics and metabolomics. Here, we first introduce several widely used technolo-
gies. Since most of our work was performed on high resolution mass spectrometers, we
then introduce several novel techniques, employment of which is increasingly becoming
a routine technique in modern laboratories, that allows for a precise and comprehensive
analysis of complex biological systems [81].

The simplest and most frequently used mass analyzers are time-of-flight (TOF) an-
alyzers, quadropoles and ion traps. TOF analyzers are usually coupled with MALDI,
whereas quadropoles and ion traps come along with an ESI source.

In a TOF analyzer, the ionized analyte is accelerated by an electric field for a certain

2.4 Mass Spectrometry 15

distance. Due to the same force of the electric field applied for all ions, the velocity of a
particular ion depends only on its mass and charge. Assuming the same singly-charged
type of ions produced by MALDI, an ion’s velocity depends only on its mass. After
acceleration, ions drift in the field-free tube towards detector. Clearly, the time needed
to pass the tube depends on velocity. When a particular ion hits the detector at the
end of the tube, the flight time is registered, and the mass of an ion is calculated. The
principle of a linear MALDI-TOF instrument is illustrated in Figure 2.4.

Matrix/sample

Laser

Ions

acceleration drift tube

Analyzer Detector

voltage
M1 > M2 > M3

Figure 2.4: Illustration of a linear MALDI-TOF mass spectrometer.

Quadrupole analyzer consists of four circular metallic rods arranged parallel to each
other. Each opposite pair of rods is connected together electrically, and a high frequency
alternating voltage applied on the rods produces a high oscillating electromagnetic field
between them. Ions passing through the field will move in spiral trajectories with the
radius depending on the m/z value of a particular ion and on the offset voltage of the field.
For a specific strength and frequency of applied voltage, only ions within a particular,
very confined m/z range will reach the detector, whereas others will be deflected.

Ions traps (IT) function by a similar principle as quadrupole, but the ions are captured
in a confined space of a vacuum system or tube. Ion traps exist in both linear and 3D
form, while the latter is often referred to as a quadrupole ion trap (QIT), or Paul trap.
The name is credited to its inventor Wolfgang Paul, who shared the Nobel Prize in
Physics in 1989 for this work. One can think of a QIT trap as a quadrupole with two of
the rods forming the endcap electrodes and a third bent into the ring electrode between
them. Similar to quadrupole, the ions are moved by specific trajectories within the trap
by applying an alternating voltage that results in an oscillating electric field inside the
trap. Applying certain voltage causes ions of a particular m/z range to be released from
the trap; the ejected ions are subsequently recordered by the detector.

The detector is typically build as an electron multiplier, and measures the signal by
converting the kinetic energy of arriving ions into an electric current. The ion current
is registered in equal intervals of time. Since the strength of the current depends on the
quantity of ions, the ion current is referred to as the intensity of that particular m/z
value.

16 2. Biological Background

Mass Accuracy and Resolution. Experimentally measured masses, or m/z values in-
evitably have some errors or uncertainties. The total error of mass measurements is
given as either an absolute, or relative value. An absolute error is typically provided in
Dalton, or milli-mass unit (mmu), where 1 mmu equals 0.001 Da. A relative error is
commonly given in parts-per-million (ppm), and is also referred to as a mass accuracy.
The mass accuracy of 10 ppm for measuring a molecule with mass 1 000 Da is equivalent
to an absolute error of 0.01 Da.

The term mass resolution, or resolving power describes an ability of mass spectrom-
eter to discriminate between several peaks with small differences in their masses. The

resolution (R) of mass m is calculated as R =
m

∆m
, with two common ways to determine

∆m residing in two corresponding IUPAC definitions: the ρ percent valley definition and
the peak width definition.

In the ρ percent valley definition, ∆m is defined as the smallest spacing between two
equally intense peaks with a valley between them, while the height of the valley at its
lowest point is bigger than ρ percent of either peaks. The typical value for ρ is 10%.

In the peak width definition, ∆m is defined as the width of the peak at a height which is
a specified portion of the maximum peak height. According to IUPAC, it is recommended
to always use one of the three values: 50 %, 5% or 0.5 %. A most common standard is
to measure the full width of the peak at half of its maximum height, also abbreviated as
“FWHM”. The higher values of mass resolution indicate a better separation of peaks.

Because of imperfections in ionization sources and mass analyzers, charged molecules
with equal m/z values never reach a detector at exactly the same time. For example,
in MALDI-TOF mass spectrometers the ions are not shot from exactly the same spot
on the matrix, therefore being spread out in 3D space when they enter the electric
field. Thus, their velocities after acceleration may slightly differ. As a result, hitting the
detector at slightly different times, two ions with equal m/z values are registered as one
“merged” peak of a certain width. This behavior consequences in worser resolution –
ions of similar m/z values may not be distinguished, and in lower mass accuracy – the
actual m/z value may not be detected exactly, but only with some tolerance.

Ion Cyclotron Resonance and Orbitrap Mass Analyzers. The introduction and com-
mercialization of Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrom-
eters with external ionization sources [108] was a breakthrough in terms of the mass
accuracy and resolving power of mass spectrometers, with a completely new principle to
determine the masses of charged molecules.

As its name implies, a FT-ICR analyzer is equipped with a cyclotron that accelerates
charged molecules to high energies. The cyclotron contains a Penning trap (a magnetic
field with electric plates), and the ions are moving in circles around this magnetic field
directed by an applied voltage. Under the influence of an oscillating electric field that
is placed perpendicular to the magnetic field, the ions are excited to a larger cyclotron
radius. The frequency (or angular velocity) of a particular ion depends on its m/z value
and the strength of the magnetic field applied. Instead of a detector, a pair of plates is
used to record a signal from ions that pass close by. Since the ions are moving in packets,

2.4 Mass Spectrometry 17

the frequencies of several ions are recorded simultaneously, resulting in a superposition of
sine waves. The frequency of a particular ion is extracted from this “interlaced” diagram
by applying a Fourier transformation. With individual frequencies extracted, it is then
straightforward to derive the corresponding m/z values.

The resolution and mass accuracy of FT-ICR analyzer are extremely high. However,
its employment adds a sizeable economic burden mostly due to the costs of the super-
conducting magnet.

Recently, a new type of mass analyzer, called Orbitrap [56], was introduced. Like FT-
ICR, Orbitrap follows the same principle to measure the frequency of rotating ions, but
instead of a magnet, an oscillating electric field is used for the acceleration of charged
particles.

An Orbitrap consists of an outer and inner coaxial electrode that create an electrostatic
field. The ions are injected into the field between electrodes, and influenced by centrifugal
forces, start moving around the inner electrode. Additionally, the ions move back and
forth forming a harmonic oscillation in orbits along the axis of the electrostatic field. The
oscillating frequency of a particular ion is inversely proportional to its m/z value. Like
in FT-ICR analyzer, the m/z value of a single molecule is derived from the superposition
of sine waves of several ions by applying a Fourier transformation. Thus, an Orbitrap
analyzer provides a resolution and mass accuracy similar to FT-ICR, but saves on the
usage of the expensive superconducting magnet. The design of Orbitrap analyzer is
patented by Thermo Scientific2.

The development of new mass analyzers catalyzed further improvements of instru-
mentation by assembling complex multistage instruments specifically suited for various
experimental setups. One typical example is a hybrid quadrupole time-of-flight (Q-TOF)
mass spectrometer that combines a quadrupole and TOF analyzer. Employing a TOF
analyzer in the last stage allows to achieve a higher mass resolution, and fastens the
analysis, which makes this design better suited for protein and proteome analysis [3].

Tandem Mass Spectrometry. As its name implies, the principle of tandem mass spec-
trometry is based on two mass analyzers in tandem. In the first mass analyzer, a partic-
ular ion is selected based on its m/z ratio. In the second analyzer, the selected peptide
ion undergoes a fragmentation step, resulting in the fragment ions of this peptide ion. In
the second analyzer, masses of the fragment ions are recorded. The spectrum containing
measured m/z values and intensities of the fragment ions is called an MS/MS spectrum,
or product ion spectrum. The peptide ion selected for fragmentation is referred to as a
precursor ion, or parent ion, whereas the fragment ions are called product ions, or daugh-
ter ions. A typical experimental setup for tandem MS includes LC/ESI interfaced with
several quadrupole analyzers. The precursor ions are selected in the first quadrupole,
and undergo fragmentation through collision-induced dissociation (CID) in the second
quadrupole, while the third quadrupole measures the resulting MS/MS spectrum.

In CID, the precursor ion is accelerated in vacuum by some electrical potential, and
enter the collision chamber, which contains chemically inert gas molecules, typically he-

2http://www.thermo.com/

http://www.thermo.com/

18 2. Biological Background

lium, nitrogen, or argon. In the chamber, the precursor ion repeatedly collides with gas
molecules resulting in the increase of its potential energy, until a certain fragmentation
threshold is achieved, and the precursor is fragmented into the product ions. For pep-
tides, the fragmentation typically occurs at the peptide bond (see Figure 2.1), which
results in the creation of b-ions and y-ions. The series of b-ions represents a sequence
of increasing m/z values from the N-terminus, with each ion differing from the previous
one by the mass of one amino acid. The y-ions are complementary to b-ions, and are
created on the C-terminus. The fragmentation of other ion types may also occur, i.e.,
through loss of ammonia, water, or immonium ion formation. Further details about the
ion types, and other fragmentation techniques used in tandem MS will be discussed in
Chapter 6.

2.4.2 Experimental Workflow

Any mass spectrometry-based workflow in proteomics and metabolomics usually consists
of three major experimental stages. First, samples are extracted from the biological
source, and optionally undergo further biochemical treatment. For proteins, this includes
purification from other cell molecules, such as DNA and metabolites by the means of
precipitation. For metabolites, the sampling procedure requires the rapid inhibition
of metabolic activity, referred to as quenching, followed by the subsequent release of
molecules into the suitable medium to facilitate cell lysis. In a second step, the resulting
complex mixture has to be separated into its individual components. There exist three
major separation techniques currently employed in the mass spectrometric analysis: 2D-
gel electrophoresis (2D-GE), liquid chromatography (LC), and gas chromatography (GC),
where the former two are used in proteomics, and the latter two are used in metabolomics.
Followed by the analysis in a mass spectrometer, in the last step, the identification
and quantification of the sample molecules is performed. The sample identity can be
determined either through database search, or de novo, i.e., without prior knowledge.

In the remainder of this section, we briefly describe two major techniques involved
in the sample separation: 2D-gel electrophoresis and liquid chromatography, while the
topic of the sample identification will be addressed in Section 2.5.

2D-gel Electrophoresis. A gel represents a matrix of various spot size, with each spot
containing a cross-linked polymer. As its name implies, 2D-GE is used to separate the
individual components of a sample in two dimensions, based on two properties of the
molecule. For proteins, these properties are usually a molecular mass and isoelectric
point. Separation of proteins on isoelectric point is performed by isoelectric focusing,
where a pH gradient is employed for separation. The proteins are loaded onto a gel ma-
trix with immobilized pH gradient, and the matrix is placed in an electric field. Charged
proteins start moving towards negative or positive electrodes until they reach a par-
ticular pH value within the gradient, neutralizing their charges. Since the separation
on isoelectric point is usually insufficient to separate all proteins, the separation based
on another property – molecular mass, follows. For mass-proportional size separation,
proteins have to be first denatured into a linear form and negatively charged. This nec-

2.4 Mass Spectrometry 19

essary preprocessing is achieved by treating proteins with sodium dodecyl sulfate (SDS).
Built from polyacrylamide (PA) for this separation technique, gel forms a network of
pores that allows the easier transit of smaller molecules than of larger ones. Directed
by a current applied to the second dimension, proteins start moving towards the pos-
itive electrode with smaller molecules migrating faster. Since the size of a molecule is
considered to be sufficiently proportional to its mass, proteins are separation with re-
spect to their molecular weights. Gel electrophoresis with SDS and PA is usually called
SDS-PAGE. Finally, the proteins are colored by silver or coomassie blue, making them
visible in the gel. The spots of interest are then picked from the gel either manually or
by picking robot, and are subjected to the mass spectrometric analysis.

Protein Digestion. After separation, proteins have to be biochemically dissociated or
digested, i.e., undergo a site-specific cleavage using a protease. Proteases are enzymes
that cut a peptide bond with a release of one water molecule, see Section 2.2. The most
common protease in proteomics is trypsin: Trypsin cleaves after each arginine (R) or
lysine (K), unless followed by a proline (P). Trypsin is well-suited for mass spectrometry-
based proteomics due to several reasons: It allows a high specificity of digestion with
relatively few missed cleavages, and none or very few cleavages at unexpected positions.
Furthermore, trypsin is easily obtained and applicable in most experimental setups, and
the resulting peptides follow the “Goldilocks” phenomena: they are neither too long,
nor too short, with an average length of 11 residues.

The process of proteins separation using 2D-gel and the subsequent digestion of each
instance individually is usually expensive, slow, and error-prone. Instead, another set of
techniques under the common term chromatography has emerged, where one first digests
the protein mixture as a whole, and then performs the separation of individual digested
peptides. Digestion of all proteins simultaneously significantly speeds up the process,
but, on the other hand, makes the subsequent data analysis harder.

Liquid Chromatography. The term “chromatography” defines a set of techniques that
are used to separate a mixture into the individual components. The separation is per-
formed by introducing the sample into a mobile phase, or solvent, that moves through
a stationary phase, or packing, and the individual molecules are interacting with either
the stationary or mobile phase. The more the component interacts with a stationary
phase, the longer it takes for transition. The characteristic time of a molecule to pass
through this system is called a retention time.

Column chromatography is the most widely used type of chromatography for separa-
tion of organic compounds. The stationary phase in column chromatography contains
a tube made from metal, glass or a synthetic matter. Based on the type of the mobile
phase, two methods of column chromatography exist: gas chromatography and liquid
chromatography. In gas chromatography, gas is used for the mobile phase, and a liquid,
gum, or elastomer for the stationary phase. The instruments for gas chromatography are
simpler in use, and are more efficient in separation than the ones for liquid chromatog-
raphy. However, being widely employed in metabolomics, gas chromatography cannot

20 2. Biological Background

be used for separation of non-volatile or thermally labile compounds, such as proteins.
Therefore, in the following, we skip further details about gas chromatography and de-
scribe its counterpart – liquid chromatography, that can be applied both in proteomics
and metabolomics.

In liquid chromatography, a liquid is used for the mobile phase, and a porous material
for the stationary phase. Originally, the mobile phase moved through the stationary
phase solely by the gravitation forces. However, to achieve a more practical flow, speed,
and a better separation, high-pressure pumps have been introduced some decades ago.
Therefore, the technique is often referred to as High-pressure liquid chromatography, or
High-Performance liquid chromatography (HPLC), and abbreviations HPLC and LC are
often used interchangeably.

In Figure 2.5, a schematic principle of HPLC is depicted. The components appear
in the column as bands, each containing a large number of molecules to be separated.
Passing through the column, different molecules interact with the stationary phase dif-
ferently, thus receiving the individual moving rates. Placed at the outlet of the column,
the detector registers the eluted components, and their representation is visualized as
a diagram, called chromatogram, by the connected computer. The chromatogram can
be interpreted as a two-dimensional spectrum with a retention time along the horizon-
tal axis, and the intensities of the measured components along the vertical axis. Each
chromatographic peak can contain dozens of individual species that further subjected to
the mass spectrometer. For the convenient MS analysis in the subsequent step, LC is
usually coupled in-line with liquid-based ESI: The analyte emerging from the outlet of
the column is directly introduced to the ESI ionization.

Pump

Mobile phase
(Solvent)

Injector

Sample

Column Detector

Waste

PC Chromatogram

am
ou

nt

time
Stationary phase

Solvent

Figure 2.5: Illustration of the HPLC principle.

So far, we have described biochemical and biotechnological aspects of the mass spectro-
metry-driven analysis. In the next section, we address the topic of analyzing the outcome
of the mass spectrometric experiment, pointing out the existing approaches to perform
the data analysis, and computational challenges that arise in this context.

2.5 Mass Spectrometry Data Analysis 21

2.5 Mass Spectrometry Data Analysis

One of the major tasks in mass spectrometry-based proteomics and metabolomics is the
identification of sample molecules. The identification is typically achieved by comparing
the measured mass spectra to a database, or de novo, that is deducing the sample identity
from the mass spectra without any prior knowledge. Clearly, the data analysis depends
on the the type of the measured mass spectra.

For a general overview of identification approaches, see the review articles [29, 32,
83, 91]. A detailed overview of identification algorithms can be found in [109], whereas
in [91, 83] shorter reviews of more recent advances are given. A detailed discussion of
available PFF algorithms is provided in [85]. Further information on experimental and
computational methods employed in proteomics can be found in books by Patzkill [92],
Snyder [113] (experimental), and Eidhammer et al. [34] (computational).

2.5.1 Types of Mass Spectrometric Analysis

Peptide Mass Fingerprinting. Peptide mass fingerprinting (PMF) is a method to iden-
tify proteins by comparing its constituent peptide masses to the masses of peptide se-
quences derived from the database. In the first step, an intact unknown protein is
cleaved in fragments (peptides) by a proteolytic enzyme, commonly trypsin. Masses of
the peptides are then measured by a mass spectrometer, and compared to the theoretical
masses of peptide sequences from the database. Theoretical masses are derived from the
database sequences that are generated by in silico digestion of all database entries. After
comparison, the best matched list of masses with the corresponding protein sequence is
returned as identification. In Figure 2.6, a schematic procedure of PMF is depicted. A
common instrumentation for PMF approach is a MALDI ionization source, coupled with
a TOF mass analyzer.

Protein sample
Protein sequence database

Peptides

digestion

MS experiment

m/z

in silico digestion

Theoretical mass
fingerprint

m/z

Experimental mass
fingerprint

comparison

Results

Figure 2.6: Protein identification with PMF.

22 2. Biological Background

The premise behind the PMF approach is that every protein has a unique set of pep-
tides and, hence, unique peptide masses. In practice, however, different peptides often
have the same or similar masses, requiring other approaches to identify such peptides.
A stronger indicator for peptide identity is the peptide sequence itself. Although two
peptide sequences from two different proteins may be the same, this overlap occurs in
practice much less than on the mass level. Using tandem mass spectrometry, the in-
formation about a peptide sequence, or a so-called peptide fragment fingerprint, can be
obtained.

Peptide Fragment Fingerprinting. For identification, the measured MS/MS spectrum
of the fragmented peptide can be compared to the theoretical spectra of every peptide
in the database, and the peptide that results in a best match to the measured spectrum
can be reported. Clearly, there can be millions of peptides in a sequence database,
therefore it is often impractical to inspect every peptide. Instead, some filtering is used
to restrict the search to only those peptides that can lead to a potential matching. Most
commonly used filters are the precursor mass and specificity of the enzyme used for
digestion. The result of the mass filtering is a mass interval that defines the constraints
on the peptides allowed for further comparisons. If the matching of mass spectra leads
to the identification of several peptides from one protein, the corresponding database
sequence is returned as the protein identification. In Figure 2.7, a schematic illustration
of the PFF approach is shown.

An experimental MS/MS spectrum of the fragmented peptide can be also used for de
novo peptide sequencing. In principle, since the fragmentation of the parent ion leads to
the presence of masses of all prefixes and suffixes of the peptide sequence in the measured
MS/MS spectrum, one can reconstruct the sequence by finding peaks in the spectrum
that lie at mass differences of exactly one amino acid to each other. In practice, however,
the quality of the measured spectrum is insufficient to perform such an exhaustive search
successfully. Some peaks corresponding to true peptide fragments may be missing, or
the background noise may give rise to additional “false” peaks, thus making the correct
interpretation of the measured spectrum impossible. These and other complications that
are faced while interpreting mass spectra are discussed in the next section, whereas more
details on the de novo peptide sequencing by tandem MS will be given in Chapter 6 in
the context of the corresponding application study.

2.5.2 Computational Problems

Peak List Construction. As mentioned earlier, in a mass spectrometer, each compound
is detected not exactly at one point of time, but rather over a tiny time interval. That is,
for each peak, a collection of intensities is detected over a very short m/z range rather
than one point, at exactly one m/z value. A spectrum containing a complete set of
intensity measurements at certain small increments of the m/z value is referred to as a
raw spectrum or raw data. To derive a in a form of peak list, the raw data has to be
transformed.

2.5 Mass Spectrometry Data Analysis 23

Protein sample

Protein sequence database

Peptides

digestion

MS experiment

m/z
in silico digestion

and filtering

Theoretical fragment
fingerprint

m/z

Selected peptide

comparison

Results

MS/MS experiment

Experimental
fragment fingerprint

m/z

Figure 2.7: Protein identification with PFF.

A peak list is a processed form of the raw data, and its construction typically involves
several processing steps. In the first step, the m/z values from the raw spectrum have
to be calibrated to eliminate systematic shifts in the measured data. Since the raw data
also include signals arisen from different forms of noise, in the second step, the effects
of noise have to be removed. This includes a baseline correction, i.e., normalizing the
signal level by eliminating a “drift” along the vertical axis, which commonly occurs due
to chemical noise. Moreover, a spectrum can be rugged, complicating the recognition
of the true peaks amongst noise. Therefore, a smoothing and noise reduction can be
performed. Finally, a peak detection or a peak picking procedure is performed, to collect
the ion signals that correspond to the sample compounds. A detailed introduction to
the peak list construction is out of scope of this introduction; the algorithms for the
spectrum processing can be found in [84,76,128].

The m/z values from the processed raw spectrum, together with the peak intensities
and possibly other features form the peak list. A peak list is typically used as an input
for the majority of computational methods.

Additional and Missing Peaks. Ideally, a mass spectrum would only consists of peaks
that correspond to the compounds present in the sample. However, the experimental
workflow including the sample preparation, measurement by a mass spectrometer, and
transformation of a raw spectrum inevitably has some imperfections. The measured

24 2. Biological Background

peak list, thus, can differ from its ideal counterpart encountering some additional and
missing peaks.

Additional peaks mostly appear due to the various types of chemical noise and ran-
domly occurring electronic disturbances. Chemical noise can originate from chemical
contaminants that have been unintentionally introduced during the sample preparation.
A typical contaminant is a human keratin from the hair or skin. In MALDI-TOF anal-
ysis, noise can occur due to the instability of peptides after the ionization by the laser
shot, which results in losses of parts of amino acid side chains. The 100 most com-
mon contaminants occurring in proteomic experiments can be found in [31]. Sometimes,
peaks of very low intensity, stemming from the random noise, are wrongly interpreted
as true peaks by the peak picking software.

Another complication are missing peaks, i.e., peaks that should be present in a peak
list but are not. This happens due to the lack of the analyte ionization, leading to low
abundance of the corresponding compound, or errors by the preprocessing algorithms.

2.5.3 Protein Identification using Databases

In a database-oriented approach, each database protein in silico undergoes the same
experimental modifications, as the protein to be identified. This commonly includes
an enzymatic cleavage and possibly further fragmentation. As a result, a theoretical
spectrum (or spectra) for each protein in a database is created, and subsequently com-
pared to the experimental data. Finding a best theoretical match is done by scoring
each theoretical spectrum against the measured spectrum, where a score corresponds to
some degree of similiraty between two spectra. A “hit” defines any score above a certain
confidence level, where the top hit is assumed to be the identity of an unknown protein.
If no score above a given significance threshold exist (“no hits”), the protein remains
unidentified.

Theoretically, any method to compare two spectra can serve as a scoring scheme.
The simplest example of such comparison is a Peak Counting Score (PCS) that counts a
number of peaks that two spectra have in common. Another example of a scoring metric
is sequence coverage, the fraction of the protein sequence covered by the peaks matched
in experimental and theoretical spectra. Scoring techniques that are used in practice
usually derive a final score as a combination of several basic scoring functions.

PMF Algorithms. Historically, first mass spectrometry-based algorithms to identify
proteins were PMF approaches: In 1993, several methods were published that rank
protein sequences by PCS with a certain tolerance on the mass of the measured peak [59,
80,130]. PMF approaches are still widely used in practice [60]. For the analysis of high
quality samples stemming from the well-characterized organisms, PMF is often able to
identify proteins with high confidence, particularly for organisms with small genomes.

One of the first advanced scoring schemes proposed by Pappin et al. [94] was MOlecular
Weight SEarch (MOWSE). MOWSE score takes into account several factors such as the
number of matched peak masses, mass of the database sequence, and the number of
peptides in the database with masses similar to the experimental mass. The latter is

2.5 Mass Spectrometry Data Analysis 25

derived from the frequency of occurrence of a particular fragment mass of a protein,
assuming the non-uniform distribution of the peptide molecular masses in a database.
Based on the MOWSE score, two further probabilistic algorithms have been developed,
MASCOT [97] and MS-Fit as a component of ProteinProspector [25].

An important probabilistic measure is the p-value, the probability that the observed
match between the experimental data and the database entry occurs by chance. MAS-
COT also provides a calculation of the significance of each score based on the p-value.
A typically used significance threshold is p < 0.05. The significance score is calculated
by taking the negative logarithm of p-value multiplied by a constant. Unfortunately, no
further details about the actual, proprietary algorithm to calculate a MASCOT score
are available.

Another probabilistic algorithm is ProFound [134]. It is based on Bayesian Statistics
to score hits using additional background information such as enzyme cleavage infor-
mation, presence or absence of particular amino acids in the protein, a protein’s mass
and sequence, and previous experiments on the sample protein. ProFound assumes the
Gaussian distribution of mass measurement error, takes into account overlapping and
adjacent peptides, and includes additional and missing peaks in its scoring model. As a
score, it returns the probability that the protein suggested from the database originates
from the measured spectrum.

An extensive list of PMF algorithms can be found in [109]. A recent evaluation of
PMF approaches using mass spectra gathered on MALDI-TOF instruments revealed
the performance of ProFound to be slightly better than of MASCOT, and both methods
were found to be superior to MS-FIT [23].

One of the drawbacks of PMF algorithms is their sensitivity to the database size.
Growing number of database sequences has a direct effect on the significance of database
hits, increasing the probability that the match between the experimental and theoretical
data occurs by chance. Therefore, for protein identification many laboratories employ
PMF as a “first run”, and if the results remain uncertain, continue with PFF analysis.

PFF Algorithms. Protein fragment fingerprinting is very similar to PMF approach but
applied to MS/MS spectra. Peptide sequences are identified by comparing the measured
ion spectra to the peptide spectra derived either from a protein sequences database, or
from libraries of experimental spectra identified in previous experiments.

Due to the additional information acquired from the fragmentation, MS/MS-based
approaches have several advantages over PMF algorithms. Provided significant peptide
coverage, identification algorithms are less sensitive to the database size and various side
effects such as protein modifications, and can provide results of higher confidence than
traditional PMF. Furthermore, to achieve confident results, PFF methods do not require
all peptides of a target protein to be found, and can handle analysis of complex peptide
mixtures.

One of the earliest and still widely used PFF programs is a commercial software SE-
QUEST [37,129]. SEQUEST divides the scoring procedure in two steps: the preliminary
scoring employs simple metrics including the intensities of matching peaks, and presence

26 2. Biological Background

and continuity of spectrum ions, to filter out ions that have a very low probability of
being a correct peptide. The final scoring evaluates the remaining segments using more
sophisticated means, such as a cross-correlation function that computes the correlation
between the measured and theoretical spectra.

Another popular representative of a non-probabilistic scoring approaches is the open-
source program X!Tandem [40], available from the Global Proteome Machine Organi-
zation3. It employs nonlinear scoring functions to account for the number and intensi-
ties of matching peaks in the measured and theoretical spectra. The reported score is
converted to an expectation value, or E-value, which refers to the expected number of
peptides with scores equal to or better than the observed score, assuming that peptides
match the measured spectrum by random chance.

Originally based on the MOWSE algorithm for PMF search, MASCOT has been
further adapted for tandem MS analysis. It uses the parent mass and relative abundances
of corresponding peptide masses as search space constraints; however, no further details
about the scoring scheme have been published.

A detailed list of the most widely used PFF tools can be found in [85]. A few re-
cent benchmarking studies have compared several publicly available PFF tools on their
sensitivity and specificity. The comparison of PFF packages using data collected on
the low-resolution ESI ion trap instrument from human samples, revealed better sensi-
tivity of SEQUEST, while MASCOT and X!Tandem were better at distinguishing true
positives from false positives [67].

One of the major challenges in tandem MS analysis is the assignment of statistical sig-
nificance to peptide identifications. Typical estimates of the error rates such as p-value,
or E-value, are currently based on empirical assumptions or fitting of the database scores
distribution (for example, Gaussian). In 2008, a principally different approach, called
MS-GF, was proposed [71], which employs generating functions to establish the theoret-
ical estimates of statistical confidence of spectral identifications. Weighted generating
functions are computed by the dynamic programming algorithm, and are further used
to derive exact significance scores of spectral matches. The performance of MS-GF was
compared to that of another popular open-source package X!Tandem, and was found to
be significantly superior.

3http://www.thegpm.org/

http://www.thegpm.org/

3 Decomposition Algorithms

One of the key challenges in analyzing the mass spectrometry (MS) data is the assign-
ment of the individual peaks to the sample compounds they represent. Given a mass
of a peak, the obvious way to encounter this problem is to look at which elementary
components this mass can be composed of. For the case of integer masses, there exists
a lot of work on the mass decomposition problems. Since we address these problems in
our applications, and use the decomposing of integer masses as a cornerstone in all our
implementations, in this chapter, we give a brief overview to the integer mass decompo-
sition problems. Followed by a few extensions of the existing algorithmic solutions, we
then show how to integrate the integer decomposition techniques for the analysis of the
real-valued MS data.

3.1 Integer Mass Decomposition

From the algorithmic point of view, the problem of finding decompositions with a
given integer mass and related issues have been frequently addressed in the litera-
ture [19, 18, 77]. Here, we outline the decomposition problems relevant to our appli-
cations, and mention their typical solutions. We also briefly describe recently developed,
more efficient algorithms that we use as a basis for our implementations, and present a
few extensions of these algorithms. A detailed survey in the integer mass decomposition
algorithms can be found in, i. e., [19].

3.1.1 Definitions and Problems

Inferring the molecular formula of a sample molecule from its mass M comes to comput-
ing a decomposition of M over the masses of its individual components, i. e., considering
M as a non-negative integer linear combination of these masses. We call a set of individ-
ual masses an alphabet Σ = {a1, . . . , an}, where n = |Σ| is the size of the alphabet. For
example, the proteins alphabet consists of 20 standard amino acids, while 4 nucleotides
build the DNA alphabet.

Given an alphabet Σ of size n, we define a decomposition as a n-tuple (c1, . . . , cn),
where each entry ci ∈ N0, for i = 1, . . . , n, corresponds to a multiplicity of the i-th
element in Σ. For example, over the alphabet of 4 nucleotides Σ = {A,C, G, T}, the
strings ACGC and CCGA have the same decomposition (1, 2, 1, 0), or specified using
a symbolic sum A1 + C2 + G1 + T0 = A1C2G1. Decomposition thus can be seen as
an unordered representation of a molecular sequence: it allows an abstraction from the
order of molecular components, instead only counting the number of occurrences of each
component in the molecule. We call |c| =

∑n
i=1 ci the length of the decomposition c, that

27

28 3. Decomposition Algorithms

equals the overall multiplicity of the decomposition entries. For the example above, the
length of the decomposition (1, 2, 1, 0) equals 4. Decompositions have been frequently
referred to in the literature under different names such as compomers [14], Parikh-
vectors [104], abelian patterns [35], to name a few. Here, we skip further description of
the properties of decompositions, they can be found in, i. e., [77].

Formally, the Integer Mass Decomposition Problem (IMDP) can be stated as follows:

Given an alphabet Σ = {a1, . . . , an} with ai ∈ N, for i = 1, . . . , n, and a mass
M ∈ N, find all decompositions (c1, . . . , cn) with ci ∈ N0, for i = 1, . . . , n,
such that M =

∑n
i=1 ciai.

We call M decomposable over the alphabet Σ if at least one such decomposition exists.
Different forms of IMDP problem include the following related invariants:

1. Decision Problem: Does a decomposition of M exist?

2. One Instance Problem: Find one decomposition of M?

3. Counting Problem: How many decompositions of M exist?

A decision form of IMDP is known as the Money Changing Problem, or Equality
Constrained Integer Knapsack Problem [1]. The problem is known to be NP-complete,
when the input parameters, a mass M and alphabet Σ, vary [79], but can be solved in
pseudo-polynomial time by a dynamic programming (DP) algorithm [82]. Two other
problems can be also solved by the invariants of the DP algorithm, originally proposed
by Gilmore and Gomory [51] for the Coin Change Problem, where the decomposition
with the minimal number of coins, or in our terms, with the minimal length, is sought.

Classical Solutions. For the Decision Problem, one builds a one-dimensional boolean
table B of size M +1, where B[m] = 1 means that m is decomposable over the alphabet
Σ, otherwise B[m] = 0. The table entries are filled using the following simple recurrence:
B[0] = 1, B[m] = 0, for 1 ≤ m ≤ a1; and for m ≥ a1,

B[m] =

{
1 if there exists 1 ≤ i ≤ n with m ≥ ai and B[m− ai] = 1,
0 otherwise.

Then, the solution for the Decision Problem requires O(nM) time and O(M) space. If we
are interested only in B[M], we can keep only those table entries that can contribute to
the currently computed value in the recurrence; the remaining entries can be overridden.
Doing so, the space complexity is decreased to O(maxi ai). The One Instance Problem
can be solved using the same table by backtracking, in time proportional to the length
of the decomposition, which can be in the worst case O(M

a1
).

For the Counting Problem, a two-dimensional integer table C of size n · (M + 1) can
be constructed, which entry C[i,m] contains the number of decompositions of mass m

3.1 Integer Mass Decomposition 29

over alphabet {a1, . . . , ai}, for i = 0, . . . , n and m = 0, . . . ,M . The table is initialized
with C[0, 0] = 1, C[0,m] = 0, for m > 0, and is filled using the following recurrence:

C[i,m] =

{
C[i− 1,m] + C[i,m− ai] if m ≥ ai,
C[i− 1,m] otherwise

for 1 ≤ i ≤ n. This solution requires O(nM) time and space complexity. If we only
want to know the number of decompositions over {ai, . . . , an}, for each m ≤ M , we
can compute the table row by row, while the previous row can be discarded. Doing
so, reduces the space requirements to O(M). Alternatively, if we are only interested
in C[n, M], we can compute the table column by column, while the columns that are
unreachable by the recurrence equation can be dropped. Then, the memory complexity
is reduced to O(n maxi ai) and does not depend on M .

For solving the original IMDP problem to find all decompositions with mass M , an
intermediate between the above two solutions can be employed: A two-dimensional
boolean table A of size is n · (M + 1) is created, where A[i, m] = 1 means that m
is decomposable over an alphabet {a1, . . . , ai}, for i = 0, . . . , n and m = 0, . . . ,M ,
otherwise A[i, m] = 0. We initialize the table with A[0,m] = 1 if and only if m mod a1 =
0, for 0 ≤ m ≤ a1. The table is further filled using the recurrence:

A[i,m] =

{
A[i− 1,m] ∨A[i,m− ai] if m ≥ ai,
A[i− 1,m] otherwise

for 1 ≤ i ≤ n. The construction time is O(nM). We denote D(M) as a set of all
decompositions of mass M . Then, D(M) can be generated by a simple backtracking
algorithm, which requires O(nM) space and O(

∑
c∈D(M) |c|) = O(γ(M) · M

a1
) running

time, where γ(M) is the number of decompositions of M .

3.1.2 Enumerating Integer Decompositions

Recently, a novel algorithm for the above problems has been introduced [19], which out-
performs the classical dynamic programming algorithm in running times and particularly
in space requirements, that are reduced to several orders of magnitude depending on the
alphabet in use. Here, we only sketch the algorithm to solve IMDP, further details and
evaluations of the algorithms for this and other problems can be found in [19].

Given an alphabet Σ = {a1, . . . , an}, first a two-dimensional table called Extended
Residue Table (ER table) of size na1 is computed in time O(na1). Each entry ER(r, i),
for r = 0, . . . , a1 − 1 and i = 1, . . . , n, stores the smallest number congruent r modulo
a1, which is decomposable over an alphabet {a1, . . . , ai}. The last column of the table
thus contains the smallest number, which is decomposable over the whole alphabet.
The ER table is then used to generate all decompositions of a query mass M using the
recursion through the table. As a result, the space requirements of the algorithm is na1,
whereas the running time is proportional only to the table size na1 and the number of
decompositions γ(M), with no direct dependency on the input mass M itself.

30 3. Decomposition Algorithms

Decompositions with Elemental Bounds. Often in applications, we know that sample
molecules have certain bounds on the minimal and maximal amount of elements. For
example, if we know that our protein molecule must have at least 4 cysteins (C), or
at most 2 tryptophans (W), then the peptide sequence A3C5D4W3 is invalid solution,
violating the second constraint.

Now, we want to extend the above algorithm for finding all decompositions to make
the results compliant with the provided constraints. For the case with minimal bounds,
the modification is trivial: We simply subtract the mass that contributes to the minimal
bounds from the query mass, and start the backtracking algorithm with the reduced
value. After the backtracking is complete, we add each elemental bound to the solution.
For example, consider computing all decompositions of mass 100 over the alphabet with
the smallest mass 5, with at least 2 copies must be present in the solution: We run the
backtracking algorithm for mass 90, and after the results are obtained, we modify them
by increasing the first entry in each solution vector by 2.

For the maximal bounds, there exist two possible ways to extend the algorithm: A
naive approach is first to generate all decompositions as before, and then, for each
decomposition, to check if it fits the constraints. This, however, may generate many
decompositions unnecessary. Another possibility is to include the bounds in the back-
tracking algorithm itself. In fact, the recursive nature of the backtracking process allows
us to easily do so: while increasing the decomposition entry for the current alphabet
element, we can check if the upper bound is not exceeded. In this case, we enter into
the recursion for the next element, otherwise we discard the partial solution. At the
end, we apply the same test for the smallest element, before reporting the result. In
Figure 3.1.2, we give the pseudo-code of the find-all-with-bounds algorithm, which
is a slight extension of the recursive find-all algorithm, which was proposed in [19]
to find all decompositions with no bounds. Similar to the unbounded version, on each
recursion step find-all-with-bounds keeps a current query M , a decomposition c,
and an index i of the current alphabet element. Additionally, we know the maximal
elemental bounds b, and check if they are satisfied for the i-th element (line 11), and for
the first element (line 3). If so, we either step into the recursion for the next element, or
report the resulting decomposition. Here, we skip further description of the algorithm,
referring the interested reader to [19] for a detailed discussion.

Analogously to the unbounded version, the running time complexity of find-all-
with-bounds is O(na1γ(M)). Clearly, applying the bounds on the resulting decompo-
sitions can only decrease the number γ(M). Thus, the usage of find-all-with-bounds
algorithm can lead to a significant improvements of the actual performance depending
on the applied constraints, see Chapter 6.

While the former term na1 in the running time complexity of the algorithm is fixed
for a given alphabet, the number of decompositions γ(M) grows rapidly with increasing
M . In Section 3.2.1, we show how to approximate this number for various alphabets.

3.2 Decomposing Real-valued Masses 31

Algorithm find-all-with-bounds (mass M , index i, compomer c, bounds b)
1 if i = 1 then
2 c1 ←M/a1;
3 if c1 ≤ b1 then
4 output c; return;
5 end if;
6 end if;
7 lcm← lcm(a1, ai); `← lcm /ai;
8 for j = 0, . . . , `− 1 do
9 ci ← j; m←M − jai;
10 r ← m mod a1; lbound ← ert(r, i− 1);
11 while m ≥ lbound and ci ≤ bi do
12 find-all-with-bounds(m, i− 1, c);
13 m← m− lcm; ci ← ci + `;
14 end while;
15 end for;
16 done.

Figure 3.1: Algorithm for finding all decompositions that satisfy given upper bounds
on the amount of elements. The algorithm is an extended version of find-
all algorithm, originally proposed in [19]. We mark the modified lines with
bold type. For a integer M , find-all-with-bounds(M,n, 0) recursively
generates all decompositions of M over an alphabet {a1, . . . , an}, such that
each solution satisfies the elemental upper bounds {b1, . . . , bn}.

3.2 Decomposing Real-valued Masses

So far, we have learned the algorithmic techniques to decompose integer masses, but
in reality, neither masses of biomolecules, nor peak masses from the MS output are
integers. We have thus to transform the integer decomposition problem into a problem
instance with real-valued coefficients, as well accounting for the inaccuracies of the mass
spectrometer measurement.

Real Mass Decomposition Problem. To this end, we want to find all molecules with
mass M0 in the range [Ml,Mu] ⊆ R+, where Ml := M0 − ε and Mu := M0 + ε, for some
mass measurement accuracy ε.

Formally, the Real Mass Decomposition Problem (RMDP) can be stated as follows:

Given an alphabet Σ = {a1, . . . , an}, with aj ∈ R+, for j = 1, . . . , n, of
monoisotopic masses of elements, and a mass range [Ml,Mu] ⊆ R+, find all
decompositions c = (c1, . . . , cn) with cj ∈ N0, for j = 1, . . . , n, such that

a1c1 + a2c2 + · · ·+ ancn ∈ [Ml,Mu]. (3.1)

32 3. Decomposition Algorithms

This problem is closely related to a well-known Integer Knapsack Problem [70], but
instead of maximizing the profit

∑n
i=1 ciai as in a classical knapsack, RMDP looks for

the “profit” that falls into a certain, typically a quite tiny range. Without a loss of
generality, we can assume a1 < a2 < · · · < an.

A naive approach is to compute all vectors c with cn = 0 and
∑

j ajcj ≤Mu, and then
to test if there is some cn ≥ 0 such that

∑
j ajcj ∈ [Ml,Mu]. This leads to Θ(Mn−1) run-

ning time, for constant element masses. As an alternative, the preprocessing technique
can be used: We can compute all possible decompositions up to some upper bound M ,
sort them by mass and use binary search; this leads to Θ(Mn) memory requirement.
These methods are unsuitable both in theoretical complexity and in practice. For ex-
ample, for the alphabet of six elements most abundant in living beings CHNOPS (see
Table 2.1), there exist more than 7 · 109 molecular formulas with mass below 1 500Da.

Instead of straightforward but impractical solutions, we can employ the efficient integer
decomposition techniques described before. For this, the input masses need to be scaled
to integers using some precision. We define a blowup factor b ∈ R, corresponding to
precision 1/b, and apply a rounding function φ(x) := dbxe on the coefficients in (3.1).

After modification, our alphabet masses a′j := φ(aj) and upper and lower bounds
M ′

l := φ(Ml), M ′
u := φ(Mu) of the mass interval form another RMDP instance:

a′1c1 + a′2c2 + · · ·+ a′ncn ∈ [M ′
l ,M

′
u], (3.2)

but with integer coefficients. Clearly, a new and original equations are not equivalent:
modifying coefficients introduces rounding errors, resulting in false positives (solutions of
the integer coefficient equation with mass not in [Ml,Mu]) and false negatives (solutions
with mass in [Ml,Mu] that are not part of the output of the integer coefficient equation).
Filtering out false positives is straightforward by examining boundaries of (3.1). We now
focus on the more compelling problem of false negative solutions that lack in the integer
coefficient equation.

Let us first consider the lower bound M ′
l .

Lemma 3.1. If a solution vector c satisfies
∑

j ajcj ≥Ml, then
∑

j a′jcj ≥M ′
l .

Proof. Clearly,
∑

j ajcj ≥ Ml implies
∑

j a′jcj ≥
∑

j bajcj ≥ bMl. Now, consider two
possibilities: either

∑
j a′jcj = bMl, then bMl is integer, and∑

j

a′jcj = bMl = dbMle = M ′
l ,

or
∑

j a′jcj > bMl, then ∑
j

a′jcj ≥ bMl + 1 ≥ dbMle = M ′
l .

In both cases,
∑

j a′jcj ≥M ′
l .

3.2 Decomposing Real-valued Masses 33

In contrast to unmodified lower bound, the upper bound M ′
u has to be increased

to guarantee that no solutions of (3.1) are missed. For every element aj ∈ Σ, for
j = 1, . . . , n, we define relative rounding errors

∆j = ∆j(b) :=
dbaje − baj

aj
.

Note that from 0 ≤ dbaje − baj ≤ 1 follows 0 ≤ ∆j ≤ 1
aj

. Let ∆ = ∆(b) := max{∆j}
denote the maximal relative rounding error.

Lemma 3.2. If a solution vector c satisfies
∑

j ajcj ≤Mu, then
∑

j a′jcj ≤ bMu+Mu∆.

Proof. From
∑

j ajcj ≤ Mu follows
∑

j bajcj ≤ bMu, or 0 ≤ bMu −
∑

j bajcj . Adding∑
j a′jcj to both parts leads to

∑
j a′jcj ≤ bMu +

∑
j(a

′
j − baj)cj and our proof follows

from

0 ≤
∑

j

(a′j − baj)cj =
∑

j

dbaje − baj

aj
ajcj

≤
∑

j

∆jajcj ≤ ∆
∑

j

ajcj ≤Mu∆.

So, we find the bounds of the integer coefficient equation as dbMle to bbMu + ∆Muc.
One can easily check that these bounds are tight. Before modifying the bounds, we
had to decompose (Mu − Ml)b integers, but the modification introduces Mu∆ extra
values to decompose, while this number is independent of the interval size Mu −Ml.
For example, for the elements CHNOPS and the blowup factor b = 105, the maximum
relative rounding error ∆(b) = ∆H(b) = 0.4961178. Thus, for M = 1000 we have to
decompose 496 integers more. As we will see in the next section, the running time of
this approach is dominated by the number of decompositions of these integers, and not
by the number of integers itself.

In applications, a blowup factor b, or a precision 1/b is simply a parameter of the
decomposition algorithm and in principle independent of the measurement accuracy ε.
To avoid rounding error accumulation, precision is typically chosen one to two orders of
magnitude smaller than the measurement accuracy.

3.2.1 Approximating Number of Decompositions

The number of decompositions γ(M) for an integer mass M over {a1, . . . , an} grows
rapidly with increasing M , namely with a polynomial of degree n − 1 in M (Schur’s
Theorem [127]):

γ(M) ∼ 1
(n− 1)! a1 · · · an

Mn−1. (3.3)

Note that this is a rather crude approximation of the true number of decompositions as
convergence is slow. A closer approximation is given in [9], of which three leading terms

34 3. Decomposition Algorithms

are:

1
a1 · · · an

 Mn−1

(n− 1)!
+

Mn−2

2(n− 2)!

n∑
i=1

ai +
Mn−3

4(n− 3)!
(
1
3

n∑
i=1

a2
i +

∑
i<j

aiaj)

 . (3.4)

For example, for CHNOPS alphabet this implies that the number of molecules γ̂(M, ε)
with real mass in the interval [M,M + ε] can be approximated as

γ̂(M, ε) ≈ 3.10657 · 10−9 ε M5 + 8.22867 · 10−7 ε M4

+ 8.05088 · 10−5 ε M3.
(3.5)

In Figure 3.2, we plot the number of decompositions for masses up to 2 000 Da over
CHNOPS elements. It can be seen that Equation (3.5) gives a very good approximation
of γ̂(M, ε) over CHNOPS elements.

We can use (3.4) to approximate the number of amino acid decompositions γ̂(M, ε)
with mass in the interval [M,M + ε], over the alphabet with 19 standard amino acids (I
and L are indistinguishable):

γ̂(M, ε) ≈ 1.12687 · 10−55 ε M18 + 2.29513 · 10−51 ε M17 + 2.16611 · 10−47 ε M16. (3.6)

Unfortunately, approximation (3.6) over the amino acids alphabet is very inaccurate for
masses below 10 000 Da. To this end, we use an improved version of (3.6) with eight
leading coefficients [74]:

γ̂(M, ε) ≈ 1.12687 · 10−55 ε M18 + 2.29513 · 10−51 ε M17 + 2.16611 · 10−47 ε M16

+ 1.25733 · 10−43 ε M15 + 5.02375 · 10−40 ε M14 + 1.46529 · 10−36 ε M13

+ 3.22832 · 10−33 ε M12 + 5.48395 · 10−30 ε M11.
(3.7)

Note also that the true number of amino acid decompositions is oscillating with high
intensity. In Figure 3.3, we plot the number of amino acid decompositions with mass up
to M , and the true and approximate number of decompositions with mass M for bin
width ε = 0.001 Da, for masses 0 ≤M ≤ 2500 Da.

It can be seen that the number of decompositions grows very fast with the increasing
mass, thus for higher mass regions, it soon becomes impractical to look for all possible
interpretations of a peak based on the mass property alone. In the next chapter, we
show how to take into account peak intensities, commonly available in a peak list, using
the isotopic information from sample molecules, and to employ this knowledge for de
novo identification of the molecular formula of metabolites.

3.2 Decomposing Real-valued Masses 35

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 250 500 750 1000 1250 1500

nu
m

be
r

of
 d

ec
om

po
si

tio
ns

mass[Da]

γ(m)
min

max
approx

 3600

 3800

 4000

 4200

 4400

 992 994 996 998 1000

Figure 3.2: Number of decompositions over the elements CHNOPS for intervals of width
ε = 0.001 Da. Minima and maxima taken in intervals of width 1 Da. True
number of decompositions in comparison with approximate (3.5) (approx).
As is shown in the inlay, γ̂(M, ε) varies with a periodic function of period of
about 1 Da.

36 3. Decomposition Algorithms

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 0 500 1000 1500 2000 2500

nu
m

be
r

of
 d

ec
om

po
si

tio
ns

mass [Da]

cumulative
max

mean
min

approx

Figure 3.3: Number of amino acid decompositions with mass up to M (cumulative), true
and approximate (approx) number. Approximate number of decompositions
from (3.7) with mass M to M + ε, for ε = 0.001 Da. Maxima (max), mean,
and minima (min) of the true number calculated using bin width 1 Da.

4 Molecular Formula Identification of
Metabolites

In principle, elemental compositions of small molecules can be identified using only
accurate output masses. However, even with high mass accuracy (< 1 ppm), there
are many chemically possible formulas obtained in higher mass regions. Recently, it has
been shown that this information is, therefore, not sufficient to identify a compound, and
other information such as isotopic abundances, also needs to be taken into account [72].
Obtaining an accurate isotope pattern from a high resolution mass spectrometer, we
want to use this information to identify the molecular formula of a sample molecule.

Related Approaches. To determine the molecular formula, Kind and Fiehn [72] sug-
gested to proceed as follows: First, find all molecular formulas based on the monoisotopic
mass of the measured peak list. Then, for every generated candidate molecule, simulate
its isotope pattern, and compare it with the measured spectrum. However, the strategy
proposed in [72] remained only a suggestion with no implementation or evaluations. A
number of other experimental studies using a similar setup have been reported in the
literature, e.g., [64, 88, 52]. The most notable results were achieved in [64] using high-
performance LC/FTICR-MS interface: almost 500 metabolites in Tomato (Solanum
lycopersicum) from the tandem MS dataset were claimed to be newly discovered.

Zhang et al. [132] focused on a related problem for analyzing peptides, but this method
strongly relies on several ad hoc criteria regarding allowed molecular formulas and em-
ploys a heuristic search. Böcker and Rasche [21] proposed a method for the automated
interpretation of metabolite tandem mass spectra but ignore isotope patterns.

Very recently, a new probabilistic approach was proposed [102] for assigning molecular
formulas to the peaks in the measured spectrum using a set of possible formulas and
putative biochemical transformations. To enumerate over the complete set of assign-
ments of masses to formulas, a Gibbs sampling procedure is employed. Although no
references or comparisons to existing approaches are provided, the proposed method is
very interesting, and first results on small sample molecules are promising. This method
is also able to include isotopic peaks in the model as additional compounds with respect
to the monoisotopic mass. However, this can increase the search space dramatically, and
make the enumeration of the extended full distribution over the formula assignments
infeasible in practice.

Algorithmic Pipeline. Our input is a peak list of masses with normalized intensities
that corresponds to the isotope pattern of the sample molecule. We want to find that
molecule’s formula whose isotope pattern best matches the input. To undertake this

37

38 4. Molecular Formula Identification of Metabolites

task we proceed as follows: First, using the decomposition techniques for real-valued
and integer masses described earlier, all molecular formulas are generated that share
the monoisotopic mass with the input peak list. Second, to filter out those molecules
that cannot exist in nature due to the chemical consideration, Senior rules are applied
to remove molecular formulas to which no legitimate molecular structure exists (see
Section 2.1 on page 5). Followed by the computation of theoretical isotope patterns
for remaining candidate molecules, each simulated isotope pattern is then matched and
ranked against the measured peak list, and the pattern with the best score is reported.

The remainder of this chapter is organized as follows: We start by introducing the
concept of isotope patterns, and methods to compute the isotope pattern from the
molecular formula of a sample molecule. Then, we discuss a scoring scheme to assess the
similarity between two isotope patterns for the ranking of candidate molecular formulas.
Finally, we evaluate the performance of our approach using several experimental datasets
obtained from different high resolution mass spectrometers.

4.1 Isotope Patterns

The isotope patterns of molecules have always been available in MS measurements,
but only recently the mass accuracy and resolution of mass spectrometers have become
sufficient to deduce molecular formulas from such data.

4.1.1 Isotope Species

The mass of a molecule is the sum of masses of its atoms, while its nominal mass is the
total number of protons and neutrons in these atoms. Clearly, both mass and nominal
mass depend on the individual isotopes a molecule is composed of, thus on the isotope
species of a molecule. We call the isotope species monoisotopic if all its constituting
isotopes are also monoisotopic. The monoisotopic (nominal) mass of the molecule is
the sum of (nominal) masses of the monoisotopic species. For example, the molecule of
adenine triphosphate (ATP) C10H16N5O13P3 has a monoisotopic mass of 506.99575 Da,
and its monoisotopic nominal mass equals to 507Da.

The number of isotope species with distinct mass for a molecule with nH hydrogen,
nC carbon, nN nitrogen, nO oxygen, nP phosphor, and nS sulfur atoms is

(nH + 1)(nC + 1)(nN + 1)
(
nO+2

2

)(
nO+3

3

)
(4.1)

This follows because for an element E with r isotopes, a molecule El consisting of l atoms
of the element has

(
l+r−1
r−1

)
different isotope species. In general,

(
l+r−1
r−1

)
possibilities exist

to distribute l identical objects into r groups. For example, a molecule with l nitrogen
atoms (Nl) has l+1 isotope species: one consisting only of 14N atoms, one with one 15N
atom and l − 1 14N atoms, etc. Noticing that distributing a particular element over its
isotopes is independent of other elements, the formula (4.1) is obtained by multiplying
the number of possibilities for different elements.

For example, the molecule of ATP has 117 810 isotope species. The probability to ob-
serve a certain isotope species is a product of the relative abundances of the constituting

4.1 Isotope Patterns 39

isotopes. In Table 4.1, the first ten isotope species of ATP and their relative abundances
are given.

Formally, we define the mass distribution of an element E by a discrete random
variable XE with finite space ΩE ⊆ N: For example, XN with state space {14.003074,
15.001090} and

P
(
XN = 14.003074

)
= 0.99634 and P

(
XN = 15.001090

)
= 0.00366

is the random variable of nitrogen. Then, given a molecule consisting of l elements, its
mass distribution X can be expressed as a sum of independent random variables that
correspond to the constituting elements:

X := X1 + . . . + Xl,

where Xi ∼ XE , for i = 1, . . . , l, with E being the corresponding element. For example,
the mass distribution of a water molecule is the sum of mass distributions of 2 hydrogens
and 1 oxygen, XH2O := XH + XH + XO.

Given the isotope species of two molecules, the isotope species of a combined molecule
can be computed straightforward by folding individual species: Species with masses
m1,m2 and probabilities p1, p2 contribute to the isotope species with mass m1 +m2 and
probability p1p2 in the combined molecule. After sorting and merging the species with
identical mass, the resulting isotope species of the combined molecule are obtained.

nominal
12C 13C 1H 2H 14N 15N 16O 17O 18O 31P mass (Da) mass (Da) abundance %

10 0 16 0 5 0 13 0 0 3 507 506.995751 84.9310

10 0 16 0 4 1 13 0 0 3 508 507.992786 1.5599
9 1 16 0 5 0 13 0 0 3 508 507.999106 9.5331

10 0 16 0 5 0 12 1 0 3 508 507.999968 0.4205
10 0 15 1 5 0 13 0 0 3 508 508.002028 0.2038

10 0 16 0 3 2 13 0 0 3 509 508.989821 0.0114
9 1 16 0 4 1 13 0 0 3 509 508.996141 0.1750

10 0 16 0 4 1 12 1 0 3 509 508.997003 0.0077
10 0 15 1 4 1 13 0 0 3 509 508.999063 0.0037
10 0 16 0 5 0 12 0 1 3 509 508.999997 2.2134

Table 4.1: Isotope species of adenine triphosphate (ATP) molecule C10H16N5O13P3,
sorted by mass. Isotope species with nominal mass ≥ 509 omitted.

4.1.2 Isotopic Distributions

Unfortunately, even the employment of high-resolution MS usually does not allow to
resolve isotope species with identical nominal mass. Instead, these species occur as
a single peak in the MS output. To simulate the similar behavior while calculating
the theoretical peak list, the isotope species with identical nominal mass have to be
combined.

40 4. Molecular Formula Identification of Metabolites

Similar to the mass distribution, we define the nominal mass distribution of an element
E by a discrete random variable YE with finite state space ΩE ⊆ N: For example, YN

with state space {14, 15} and

P
(
YN = 14

)
= 0.99634 and P

(
YN = 15

)
= 0.00366

is the random variable of nitrogen.
Given the molecule with n elements, its nominal mass distribution is Y := Y1+. . .+Yl,

where Yi ∼ YE , for i = 1, . . . , l, with E being the corresponding element. We refer to
the resulting distribution of nominal masses as the isotopic distribution of a molecule.
For the isotopic distribution of ATP molecule, see its relative abundances in Table 4.2.
Note the correlation between X and Y : XE can be seen as a function of YE and E.

The peak at the monoisotopic mass is usually referred to as a monoisotopic peak,
and the subsequent peaks as +1, +2, . . . peaks. In an ideal mass spectrum, normalized
peak intensities would correspond to the molecule’s isotopic distribution. But due to
the imperfection of MS instruments, the actual output contains +1, +2, . . . peaks that,
in fact, are superpositions of the isotope species with identical nominal mass. It is
reasonable to assume that the mass of such a superposition peak is the mean mass of all
isotope species that contribute to its intensity, that is, the species with the same nominal
mass as of the superposition peak [101].

nominal mass (Da) 507 508 (+1) 509 (+2) 510 (+3) 511 (+4) 512 (+5)

abundance % 84.9309 11.7175 2.9653 0.3343 0.0469 0.0044
mean peak mass (Da) 506.995751 507.998347 509.000220 510.002655 511.004629 512.006961

Table 4.2: Isotope pattern of the ATP molecule C10H16N5O13P3. Peaks with nominal
mass ≥ 513 have abundances < 0.001 % and omitted.

Formally, we define a mass function µ̃ : N → R that maps the nominal masses from
Table 2.1 on page 6 to the corresponding real masses: µ̃(1) = 1.007825, µ̃(2) = 2.014102,
. . . , µ̃(34) = 33.967867, µ̃(36) = 35.967081.

Given a molecule with monoisotopic nominal mass N, let X := X1 + . . . + Xl be its
mass distribution, and Y := Y1 + . . . + Yl be its isotopic distribution. Then, the mean
peak mass of the +k peak is

mk =
1

P(Y = n + k)

∑
P

i ni=n+k

P(Y1 = n1, . . . , Yl = nl) ·
(
µ̃(n1) + · · ·+ µ̃(nl)

)
. (4.2)

Here, the sum is calculated over all l-tuples (n1, . . . , nl) of non-negative integers that
satisfy

∑l
i=1 ni = n + k. We refer to the isotopic distribution together with the mean

peak masses as the molecule’s isotope pattern. See Table 4.2 for the isotope pattern of
the ATP molecule.

4.2 Computing Isotope Patterns 41

4.2 Computing Isotope Patterns

The calculation of the molecule’s isotope pattern can be divided into two parts: com-
puting the isotopic distribution (relative abundances of the nominal masses), and the
mean peak masses of the molecule. Regarding the calculation of isotopic distributions,
note that all molecules that consist of elements CHNOPS have isotope distributions that
decrease rapidly with increasing mass. Thus, we can limit our attention to calculating
the first K non-zero entries of the distribution, for rather small K such as K = 10.
For example, amongst 11479 entries in the KEGG COMPOUND database [66] (release
42.0) with mass below 3 000 Da, no molecule has an intensity of the +10 peak larger
than 0.00007.

4.2.1 Folding Isotopic Distributions

Finding the isotopic distribution of an arbitrary molecule can be further divided into
two parts: First, computing the isotopic distributions of molecules El consisting of l
identical elements E, and then combining these parts by folding distributions from all
element types present in the molecule. For example, for a sucrose molecule C12H22O11,
this means computing individual distributions YC12

, YH22
and YO11

, and then combining
them in the resulting distribution Y := YC12

+ YH22
+ YO11

.
Since the elements hydrogen, carbon, and nitrogen only have two isotopes each, the

isotopic distribution of a molecule El with E ∈ {H,C,N} follows a binomial distribution:

qk := P(El has nominal mass +k) =
(

l

k

)
pk(1− p)l−k, (4.3)

where p is the probability of the +1 isotope. q0 = (1− p)l, and the values of the qk can
be computed iteratively:

qk+1 =
l − k

k + 1
· p

1− p
qk for k ≥ 0, (4.4)

The overall calculation time is O(K + log l) if log l multiplications is used to calculate
q0.

For elements E with r > 2 isotopes, such as oxygen and sulfur, the isotopic distribution
of El can be computed as follows: Let pi, for i = 0, . . . , r − 1, denote the relative
abundance of the i-th isotope. Then,

qk := P(El has nominal mass +k) =
∑ (

l
l0,l1,...,lr−1

)
·

r−1∏
i=0

pli
i , (4.5)

where the sum is calculated over all l0, . . . , lr−1 ≥ 0 satisfying
∑r

i=0 li = l and
∑r

i=1 i·li =
k [63].

The tuples (l0, . . . , lr) satisfying
∑

i · li = k are the integer partitions of k into at most
r parts. To compute all partitions, a greedy algorithm with a simple recursion can be

42 4. Molecular Formula Identification of Metabolites

employed. However, this approach faces the problem that the number of summands in
(4.5) grows rapidly, at least as a polynomial in k of degree r − 1 [123].

Alternatively, the isotopic distributions of oxygen Ol and sulfur Sl can be computed
by consecutive folding of the corresponding distributions using a Russian multiplication
scheme discussed below.

Given two discrete random variables Y and Y ′ with state spaces Ω,Ω′ ⊆ N, we can
compute the combined distribution of the random variable Z := Y + Y ′ by folding the
distributions as follows:

P(Z = n) =
∑

k
P(Y = k) · P(Y ′ = n− k). (4.6)

Computing the first K values of this sum requires O(K2) time. To fold isotopic distri-
butions of individual elements, Kubinyi proposed [75] to use a Russian multiplication
scheme: We start with the molecule consisting of a single element E, and using for-
mula (4.6) compute the isotopic distributions of molecules with 2, 4, 8, . . . atoms. For
example,

Z1 + Z2 + Z3 + Z4 + Z5 + Z6 + Z7 =
(
(Z1 + Z2) + (Z3 + Z4)

)
+ (Z5 + Z6) + Z7,

where Zi denote independent and identically-distributed (i. i. d.) random variables.
Then, we combine these distributions to compute that of El. This adds a logarithmic
factor to the algorithm’s total running time, altogether O(K2 log l).

In applications, the distributions of elements with more than two isotopes can be
computed not on the fly but during preprocessing. For all l ≤ L, a lookup table is created
that uses O(KL) space for every such element, where L is small: In our applications, the
mass range of the analyzed biomolecules usually does not exceed 2 000 Da; 128 oxygen
atoms already have a mass of about 2 048 Da, being larger than the relevant upper
bound.

After the isotopic distributions of individual elements have been computed (C, H, N)
or looked up from memory (O, S), we combine them by folding using formula (4.6).
Doing so requires O(|Σ| ·K2) time in total.

Note that we can use Fourier transforms of isotopic distributions, and instead of folding
the distributions, multiply the Fourier transforms [100]. This can eventually substitute
the K2 factor in the algorithm’s running time by the K log K factor. However, as we
restrict ourselves to rather small K such as K = 10, this will not speed up the algorithm
in practice. Moreover, this approach may face the problem of numerical errors.

4.2.2 Folding Peak Masses

We now move to the more intriguing issue of efficiently calculating the mean peak masses
of a distribution. Computing the mean peak mass using formula (4.2) is highly inefficient,
because we have to calculate the sum over all isotope species. Pruning techniques have
been proposed to speed up computation [131], but they result in a drop of accuracy [101].
We now present a simple approach to compute the mean masses similar to the folding
of isotopic distributions:

4.2 Computing Isotope Patterns 43

Given two molecules with monoisotopic nominal masses N and N ′, and isotopic dis-
tributions Y = Y1 + · · ·+Yl and Y ′ = Y ′

1 + · · ·+Y ′
L, respectively. Let mk and m′

k be the
mean peak masses of the +k peaks, and pk := P(Y = N + k) and qk := P(Y ′ = N ′ + k)
denote the respective probabilities. Consider the random variable Z = Y + Y ′ with
monoisotopic nominal mass Ñ = N + N ′.

Theorem 1. The mean peak mass m̃k of the +k peak of the random variable Z = Y +Y ′

can be computed as:

m̃k =
1∑k

j=0 pjqk−j

·
k∑

j=0

pjqk−j

(
mj + m′

k−j

)
(4.7)

Note that
∑k

j=0 pjqk−j = P(Z = Ñ + k).

Proof. Let ~N = (N1, . . . , Nl) ∈ Nl and ~N ′ = (N ′
1, . . . , N

′
L) ∈ NL be vectors of nominal

masses. We denote
∑ ~N :=

∑l
i=1 Ni and

∑ ~N ′ :=
∑L

i=1 N ′
i . Let ~Y := (Y1, . . . , Yl) and

~Y ′ := (Y ′
1 , . . . , Y

′
L) be vectors of the input random variables, and note that

P(~Y = ~N, ~Y ′ = ~N ′) = P(~Y = ~N) · P(~Y ′ = ~N ′)

due to the independence of the underlying random variables. Finally, we set µ̃(~N) =∑l
i=1 µ̃(Ni) and define µ̃(~N ′) analogously.

Ignoring the normalization factor, we can rearrange formula (4.2) as

P(Z = Ñ + k) · m̃k =
∑

P ~N+
P ~N ′=Ñ+k

P(~Y = ~N, ~Y ′ = ~N ′) ·
(
µ̃(~N) + µ̃(~N ′)

)
.

Now observe that this formula can be divided into two independent sums of the form

∑
P ~N+

P ~N ′=Ñ+k

P(~Y = ~N, ~Y ′ = ~N ′) · µ̃(~N) (4.8)

and a second summand, where µ̃(~N) is substituted with µ̃(~N ′).

44 4. Molecular Formula Identification of Metabolites

We now concentrate on (4.8):∑
P ~N+

P ~N ′=Ñ+k

P(~Y = ~N, ~Y ′ = ~N ′) · µ̃(~N)

=
k∑

j=0

∑
P ~N=N+j

∑
P ~N ′=N ′+k−j

P(~Y = ~N)P(~Y ′ = ~N ′) · µ̃(~N)

=
k∑

j=0

∑
P ~N=N+j

P(~Y = ~N) · µ̃(~N)
∑

P ~N ′=N ′+k−j

P(~Y ′ = ~N ′)

=
k∑

j=0

∑
P ~N=N+j

P(~Y = ~N) · µ̃(~N) · P(Y ′
1 + · · ·+ Y ′

L = N ′ + k − j)

=
k∑

j=0

P(Y ′ = N ′ + k − j)
∑

P ~N=N+j

P(~Y = ~N) · µ̃(~N)

=
k∑

j=0

qk−jpjmj ,

where the last equality follows from the definition of mj ,

mj =
1
pj

∑
P ~N=N+j

P(~Y = ~N) · µ̃(~N).

Analogously, we can show that

∑
P ~N+

P ~N ′=Ñ+k

P(~Y = ~N, ~Y ′ = ~N ′) · µ̃(~N ′) =
k∑

j=0

qk−jpjm
′
j ,

which concludes the proof of the theorem.

The theorem allows us to “fold” mean peak masses of two distributions to compute
the mean peak masses of their sum. This means that we can compute the mean masses
as efficiently as the distribution itself, i.e., in O(K2 log l) time. This improves on the
best present-day approach [101], substituting the linear running time dependence on the
number of atoms l by its logarithm.

4.3 Scoring Candidate Molecules

Our task is to distinguish between candidate molecules produced by the decomposition
of the monoisotopic mass, and to choose the candidate, whose isotope pattern matches
the measured peak list best. In Section 4.1, we have seen how to efficiently calculate the

4.3 Scoring Candidate Molecules 45

isotope pattern from the molecular formula. Now we want to compare this simulated
isotope pattern with the measured peak list by matching the pairs of peaks in both.

To assess the similarity between mass spectra, Zhang and Chait [134] and Zhang et al. [133]
propose the probabilistic approach employing Bayesian Statistics:

P(Mj |D,B) =
P(Mj |B) P(D|Mj ,B)∑
i P(Mi|B) P(D|Mi,B)

,

where Mi are the models (the candidate molecules), D is the data (the measured peak
list), and B stands for any prior background information.

Concerning the background information, we first employ the prior knowledge about the
candidate molecules, by assigning the prior probability P(Mj |B) zero for all molecules
but the decompositions of the monoisotopic mass. Next, we model the chemical bonding
rules by setting the prior probability to zero for molecular formulas that do not satisfy the
conditions of the Senior’s theorem (see Section 2.1 on page 5). For example, molecules
violating Senior’s third rule are rare, particularly for natural compounds: less than
0.16 % of substances in the KEGG COMPOUND database violate this rule.

Other priors such as the hetero-to-carbon ratio [73] exist that are typically derived
empirically based on the already known compounds. To keep the comparison unbiased
for unknown molecules, we deliberately avoid further use of such priors.

Next, we assign probabilities to the measured peak masses and intensities. Let
P(Mj |mj) denote the probability to detect peak j at mass Mj when its actual mass
is mj , and P(fj |pj) denote the probability to detect peak j with intensity fj when its
actual intensity is pj . Then, assuming independence, particularly from background in-
formation, the probability to observe the measured peak list, given a certain candidate
molecule and background information can be calculated as follows:

P(D|M,B) =
∏
j

P(Mj |mj)
∏
j

P(fj |pj) (4.9)

Note that the peak intensities are, in fact, not independent, since they sum up to one,
but the product (4.9) can be viewed as a rough estimate of the true probability.

4.3.1 Estimating Probabilities of Peak Masses

As mentioned in Section 2.5.3, experimentalists typically assume that the mass deviation
of a mass spectrometer follows the Gaussian distribution with mean zero. Given the
relative mass accuracy α of the measurement (in ppm), we can assign the standard
deviation σj := 1

3α 10−6 Mj for peak j, assuming that more than 99.7 % of measurements
belong to the mass range [−3σj ,+3σj]. However, we notice that peaks of high intensity
reveal better mass accuracy than those of low intensity, which can be referred to the
complications of extracting the low intensity peaks from the background noise. Our data
shows an approximately linear correlation between peak intensity and mass accuracy.
To take this into account, we use two mass accuracies α1 (at full intensity) and α0 (at
minimal intensity), and calculate the standard deviation for peak j as follows:

σj := 1
3

(
pj α1 + (1− pj)α0

)
· 10−6 Mj . (4.10)

46 4. Molecular Formula Identification of Metabolites

Additionally, imperfections in calibrating mass spectrometers lead to a systematic mass
shift between different peak masses of the same spectrum. This occurs frequently even
for high resolution MS. To eliminate this error for all masses except the monoisotopic
mass, we do not compute the mass differences of the +1,+2, . . . peaks directly but
instead, the difference to the monoisotopic mass, Mj −M0 against mj −m0, for j ≥ 1.

Given a peak with theoretical mass mj , we want to estimate the probability to ob-
serve a peak at mass Mj in the measured peak list, or, saying strictly, we calculate the
probability of detecting a mass difference of |Mj −mj | or larger. This probability can
be computed using the complementary error function “erfc”:

P(Mj |mj) = P(mass difference ≥ xj) = erfc
(|xj |√

2 σj

)
=

2√
2π

∫ ∞

z
e−t2/2dt (4.11)

with z := |xj |
σj

, where x0 = (M0−m0)/m0 and xj = (Mj−M0−mj +m0)/mj , for j ≥ 1,
denote the relative mass differences.

4.3.2 Estimating Probabilities of Peak Intensities

Concerning the peak intensities, a systematic shift in the measured data can be observed:
The peaks of high intensity are overestimated, while the peaks with low intensity are
underestimated in the measured peak list, see Figures 4.1 and 4.2.

This problem can be attributed to inaccuracies of peak intensity calculation on the
preprocessing step: peak picking algorithms typically determine peak intensities using a
signal-to-noise ratio or height above a certain baseline (see Section 2.5.2 on page 22). The
calculation of the baseline, in turn, is done using some empirical estimates that can be
imprecise. These inaccuracies have unequal impact on peaks of different intensities. To
adjust this systematic bias, we introduce a user-defined parameter off . This parameter
is added to the measured intensities, which are then re-normalized again. In the next
section, when evaluating our algorithm, we provide more details on setting the parameter
off .

After applying the correction to the measured data, we observe that log ratios between
measured and theoretical peak intensity log(fj/pj) are roughly normally distributed.
Similar to mass differences, we introduce two precision parameters β1 (at full intensity)
and β0 (at minimal intensity) to be set (in percent), and compute the standard deviation
for peak j as follows:

σ̂j := 1
3 log

(
1 + pj

β1

100 + (1− pj) β0

100

)
,

so that more than 99.7 % of ratios log(fj/pj) belong to the range [−3σ̂j ,+3σ̂j]. Now,
the computation of probability P(fj |pj) can be done analogously to (4.11).

4.4 Experimental Results

Datasets. To evaluate our method, two datasets measured on two instruments were
used. Mass spectra with single charge were measured from several organic (macro)mole-
cules, composed of elements CHNOPS. For every such spectrum, the molecular formula

4.4 Experimental Results 47

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

in
te

ns
ity

 d
iff

er
en

ce

measured intensity

off = 0
off = +0.02

Figure 4.1: Differences between measured and theoretical peak intensities and mass accu-
racies for the FT-ICR dataset in comparison: measured intensities computed
without correction (crosses), measured intensities computed with correction
off = +0.02 (circles). The difference is computed as measured peak intensity
minus theoretical peak intensity.

of the sample molecule is known. The spectra were acquired over a period of two years;
the molecules range in mass from 117 to about 1 000 Da. Peak detection and estimation
of the peak masses and intensities were performed using vendor software.

The first dataset consists of 153 peak lists. Electrospray ionization (ESI) experiments
were conducted using the Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass
spectrometer APEX III (Bruker Daltonik GmbH, Bremen, Germany). The FT-ICR MS
was equipped with a 7.0 T, 160 mm bore superconducting magnet, infinity cell, and
interfaced to an external (nano)ESI ion source. Measured data was externally mass
calibrated. The five analysis parameters were chosen as α1 = 3, α0 = 6, β1 = 10,
β0 = 90, and off = +0.02.

The second dataset consists of 86 peak lists. ESI experiments were conducted using the
oa-TOF mass spectrometer MicrOTOF (Bruker Daltonik GmbH, Bremen, Germany).
Quasi-internal mass calibration was used, by measurement of an infused calibrant prior
to the compound of interest. For the oa-TOF analysis, the parameters were set to α1 = 5,
α0 = 6.5, β1 = 10, β0 = 90, and off = +0.02.

48 4. Molecular Formula Identification of Metabolites

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

in
te

ns
ity

 d
iff

er
en

ce

measured intensity

off = 0
off = +0.02

Figure 4.2: Differences between measured and theoretical peak intensities and mass accu-
racies for the oa-TOF dataset in comparison: measured intensities computed
without correction (crosses), measured intensities computed with correction
off = +0.02 (circles). The difference is computed as measured peak intensity
minus theoretical peak intensity.

4.4.1 Identification Rates

Every input peak list consists of masses M0, . . . ,Mk and intensities f0, . . . , fk. For
every such peak list, we generated all candidate molecules such that the monoisotopic
mass m0 of the candidate molecule has a relative mass difference of at most α1 ppm,
|M0 −m0| /m0 ≤ α1·10−6. To do so, we decomposed integer masses using an appropriate
scaling of the query mass and alphabet masses, see Section 3.2 on page 31, and filtered
out decompositions, whose real-valued mass was outside the allowed mass range. Next,
we discarded molecules that disobey Senior’s rules on the chemical formation of the
molecule. For each remaining molecule, we computed its theoretical isotopic pattern
with K leading peaks (K = 10), and compared it to the measured peak list. We
matched and ranked the molecules based on resulting probabilities. We did not use any
other background information to identify the molecule.

For the 153 peak lists in our FT-ICR dataset, 89 resulted in a correct identification; in
86 % of the peak lists, the correct interpretation was found in the TOP 10 explanations.
There is a clear correlation between mass and identification accuracy, see Table 4.3.
For peak lists below 700 Da, the true interpretation was always found in the TOP 10
explanations, except in one case where it had rank 13.

4.4 Experimental Results 49

For 86 peak lists in the oa-TOF dataset the correct molecular formula was found in
the TOP 10 interpretations in all but two cases. Moreover, 79 out of 86 compounds were
identified correctly, which corresponds to an identification rate of over 90 %, see Table 4.3.
Better identification results on the oa-TOF dataset with lower mass accuracy show the
crucial importance of including intensity measurements into the candidate evaluation.
We note that the intensity accuracy of the oa-TOF instrument is significantly higher
than that of the FT-ICR.

mass no. rank in output list no. molecular formulas
range pl. 1 2 3–5 6–10 11+ int. real chem. time

200–300 13 11 2 0 0 0 67 37.2 8.6 1.5
300–400 37 28 5 2 2 0 200 109 10.4 4.3
400–500 57 39 6 6 5 1 579.5 318.2 22.8 13.5
500–600 7 5 2 0 0 0 1800.4 990.3 59.6 40.1
600–700 4 3 0 0 1 0 2668.5 1454 37.3 55
700–800 5 0 1 1 1 2 8797.8 4812 247 232
800–900 14 3 2 1 3 5 14781.6 8101 534.6 485

900–1000 16 0 1 1 1 13 31805.7 17448 1570 1281

mass no. rank no. molecular formulas
range pl. 1 2–6 11+ int. real chem. time

100–200 7 7 0 0 11.3 7.4 1.9 0
200–300 21 21 0 0 60.1 40.1 4.6 1.4
300–400 27 26 1 0 297.8 199.7 22.6 8.1
400–500 15 14 1 0 725.6 484.1 32.4 17.3
500–600 10 7 2 1 1479.1 988.9 54.3 36
600–700 1 1 0 0 4600 3080 276 130
700–800 2 1 1 0 10336 6909 578 461
800–900 3 2 0 1 18172.3 12146 914.3 757

Table 4.3: Number of correct molecular formulas at specific positions of the output list,
for the FT-ICR dataset (top) and the oa-TOF dataset (bottom). We report
the number of peak lists in this mass range (no. pl.), as well as the aver-
age number of molecular formulas over all molecules in the mass range (no.
molecular formulas). We distinguish between the number of integer decom-
positions (int.), the number of decompositions over real-valued masses (real),
and the number of those molecular formulas that satisfy chemical bonding
rules (chem.). Finally, we give the average running time in milliseconds per
peak list (time).

Regarding the scoring parameter off , for both of our datasets we used the same value
off = +0.02. We have also tested the robustness of our method by varying different

50 4. Molecular Formula Identification of Metabolites

scoring parameters: Identification accuracy remained relatively stable for small distur-
bances of parameter values, confer Table 4.4 and Figures 4.3 and 4.4. In applications,
parameters can be estimated using a small training set.

β1 β0 identification rate
rank1 (%) top10 (%)

5 70 58.82 86.93
15 70 58.82 86.93
5 80 58.82 85.62

10 70 58.17 86.93
10 90 58.17 86.27
15 90 58.17 86.27
20 70 58.17 85.62
5 90 57.52 86.27
5 100 57.52 86.27

10 100 57.52 86.27
15 80 57.52 86.27
20 80 57.52 86.27
20 90 57.52 86.27
5 110 57.52 85.62

10 80 57.52 85.62
20 110 57.52 85.62
10 110 56.86 85.62
15 100 56.86 85.62
15 110 56.86 85.62
20 100 56.86 85.62

β1 β0 identification rate
rank1 (%) top10 (%)

5 90 91.86 97.67
5 100 91.86 97.67

10 90 91.86 97.67
10 100 91.86 97.67
15 90 91.86 97.67
15 100 91.86 97.67
20 90 91.86 97.67
20 100 91.86 97.67
5 80 90.70 97.67
5 110 90.70 97.67

10 80 90.70 97.67
10 110 90.70 97.67
15 80 90.70 97.67
15 110 90.70 97.67
20 80 90.70 97.67
20 110 90.70 97.67
5 70 89.53 97.67

10 70 89.53 97.67
15 70 89.53 97.67
20 70 89.53 97.67

Table 4.4: Identification rates for various intensity precisions β1 (at full intensity) and β0

(at minimal intensity), for the FT-ICR dataset (left) and the oa-TOF dataset
(right). We set mass accuracies α1 (at full intensity) and α0 (at minimal
intensity) to fixed values: α1 = 3, α0 = 6 for the FT-ICR dataset, and
α1 = 5, α0 = 6.5 for the oa-TOF dataset. Parameter off is set to +0.02. One
can see that our method is very robust to small variations of the parameters.

Running Times. All algorithms were implemented in Java, and executed within the
SIRIUS software environment, see Chapter 7. All 239 peak lists were analyzed on a
Pentium M 1.5 GHz processor with blowup b = 5 · 104, using only a few Megabyte
of memory. This results in running times of less than 1.3 seconds per peak list for the
complete analysis of one peak list. Clearly, running times depend on masses of molecules,
again see Table 4.3. Increasing the blowup beyond 5 · 104 increased the running times,
presumably because the smaller table can be kept in the processor cache.

4.4 Experimental Results 51

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055

id
en

tif
ic

at
io

n
ac

cu
ra

cy
, %

off

rank1
top10

Figure 4.3: Identification rates for various parameters off , for the FT-ICR dataset in
comparison: Percentage of correct identifications (crosses), percentage of
true molecular formulas found in TOP 10 explanations (circles). We set
mass and intensity precisions to fixed values: α1 = 3, α0 = 6, β1 = 10,
β0 = 90.

 40

 50

 60

 70

 80

 90

 100

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055

id
en

tif
ic

at
io

n
ac

cu
ra

cy
, %

off

rank1
top10

Figure 4.4: Identification rates for various parameters off , for the oa-TOF dataset in
comparison: Percentage of correct identifications (crosses), percentage of
true molecular formulas found in TOP 10 explanations (circles). We set
mass and intensity precisions to fixed values: α1 = 5, α0 = 6.5, β1 = 10,
β0 = 90.

5 Deriving Peptide Compositions

In the previous section, we have seen that using only a high quality isotope pattern of a
sample molecule, it is possible to identify the molecular formula of unknown metabolite.
For proteins, one however encounters the problem that the same molecular formula may
correspond to multiple peptides even when abstracting from the order of amino acids in
the peptide sequence. In this chapter, we present a novel approach to efficiently derive
the amino acid composition of an unknown peptide from its molecular formula.

Novel mass spectrometry techniques allow us to determine the mass of a sample
molecule with very high accuracy of 5 ppm, and sometimes below 1 ppm [89,58]. These
techniques are increasingly coupled with high-throughput separation techniques such as
(ultra) high performance liquid chromatography (HPLC), and have become one preferred
method for the analysis of peptides [55, 112]. This setup becomes of high importance
in particular when tackling non-trivial issues in proteomics, such as detecting the post-
translational modifications [118], or non-ribosomal peptides that are not directly encoded
in the genome [6]. With the advent of new MS instruments (Bruker MicrOTOF, Thermo
Electron LTQ Orbitrap, Waters SYNAPT-MS), mass spectra with very high mass accu-
racy will be routinely acquired for protein identification and quantification in the near
future [81].

Given an isotope pattern of an unknown peptide, in theory, one could use an algorith-
mic procedure similar to the one described above for the identification of metabolites:
one can decompose the monoisotopic mass of the peptide to obtain amino acids candi-
date sequences, and then compare and score candidates using their simulated isotope
patterns. However, this approach is infeasible in practice due to the several reasons:
First, masses of peptides have to be decomposed over an alphabet of 19 standard amino
acids, compared to 6 elements in CHNOPS, which is used for the majority of metabolites.
Thus, the number of possible amino acid decompositions is significantly larger than of
CHNOPS decompositions, see Section 3.2.1 on page 33: There exist about 3.96 · 1011

amino acid decompositions with mass up to 2 500 Dalton, see Figure 3.3. Moreover, sev-
eral peptides can have identical molecular formula even when ignoring the order of amino
acids: Besides leucine (L) and isoleucine (I), another example are peptides consisting of
two glycine (G) versus a single asparagine (N), both with molecular formula C4H8N2O3

(see Table 2.2 on page 10). Using the above scoring procedure, we cannot distinguish
between amino acids compositions with the same molecular formula, and thus, the same
isotope pattern. In addition, the sample may be contaminated by metabolite molecules
that have a molecular formula which cannot be explained by any peptide. So, instead
of determining peptide compositions from the isotope pattern directly, it is much more
reasonable first to find out the molecular formula of a sample from its isotope pattern,
and then to calculate all amino acid compositions that correspond to this molecular

53

54 5. Deriving Peptide Compositions

formula. Using the molecular formula of a sample molecule, we can also easily filter out
any contaminant, whose molecular formula cannot correspond to any peptide.

Our input is the molecular formula of an unknown peptide. We want find all amino
acid compositions that match the given molecular formula. We formulate the problem
as a joint decomposition of a set of queries on the number of carbon, hydrogen, and
other elements that amino acid residues consist of.

The remainder of this chapter is organized as follows: First, we give a formal definition
of a problem and outline its possible solutions. Then, we present our approach based on
the dimension reduction technique that transforms an instance of the multi-dimensional
decomposition problem to the one-dimensional decomposition problem, which in turn
can be efficiently solved using methods presented in Chapter 3. Finally, we provide an
experimental evaluation of the algorithm’s running time, both on simulated data and
peptides from experimental mass spectra. We find that our mixed matrix approach is
the fastest method for generating solutions, and is about two orders of magnitude faster
than the next best algorithm.

5.1 Peptide Molecular Formula Decomposition Problem

Recall that proteins and peptides are built from five elements hydrogen (symbol H),
carbon (C), nitrogen (N), oxygen (O), and sulfur (S). For each amino acid its exact
molecular formula is known, see Table 2.2.

Formally, the Peptide Molecular Formula Decomposition Problem (PMFDP) can be
stated as follows:

Given a molecular formula b = (b1, . . . , bd) and a matrix Ad×n = (ai,j) con-
taining the abundances of all elements in amino acid residues, with bi ∈ N0

and ai,j ∈ N+, for i = 1, . . . , d and j = 1, . . . , n, where d is the number
of amino acid residues and n is the number of elements that amino acid
residues consist of, find all decompositions x = (x1, . . . , xn) with xj ∈ N0,
for j = 1, . . . , n, such that Ax = b.

If we have d = n many equations, then A is a square matrix, and if its rows are
linearly independent, we can compute its inverse A−1. We then only need to check
whether x = A−1b has only non-negative integer entries, what can be done in constant
time. In the remainder of this chapter, we assume d� n.

Considering n = 19 number of amino acid residues that made up from d = 5 elements
CHNOS, we thus search for 19-dimensional vector x using the input molecular formula b
over the elements CHNOS. Note that only amino acids methionine (M) and cysteine (C)
contain sulfur. Thus, we can use a simple technique to further simplify the problem if our
input molecular formula contains k sulfur elements: we first distribute these elements
between methionine and cysteine, iterating over all k combinations M0Ck, M1Ck−1, . . . ,
MkC0. In each case, we reduce the input molecular formula respectively, and compute
the decomposions of the resulting formulas over the remaining 17 amino acids A, D, E,

5.1 Peptide Molecular Formula Decomposition Problem 55

F, G, H, K, L, N, P, Q, R, S, T, V, W, Y:

A :=


3 4 5 9 2 6 6 6 4 5 5 6 3 4 5 11 9
5 5 7 9 3 7 12 11 6 7 8 12 5 7 9 10 9
1 1 1 1 1 3 2 1 2 1 2 4 1 1 1 2 1
1 3 3 1 1 1 1 1 2 1 2 1 2 2 1 1 2

 ,

b =


carbon

hydrogen
nitrogen
oxygen

 , Ax = b (5.1)

Here, x is a 17-dimensional vector representing the remaining amino acid residues.
Finally, after solutions of (5.1) are obtained, for each of the reduced formulas, we

extend each solution vector x by adding the corresponding number of methionine and
cysteine, and combine them in our final set of decompositions.

5.1.1 Related Problems and Solutions

Our problem is a special case of a system of linear Diophantine equations. Unlike in
PMFDP, the coefficients of matrix A in the linear Diophantine systems can be nega-
tive integers. This seemingly negligable relaxation makes a significant impact on the
differences in the number of solutions of these two problems: while PMFDP is limited
to a finite number of possible explanations, a system of linear Diophantine equations
generally has an infinite number of solutions.

To see this, consider an instance of one-dimensional Equality Constrained Integer
Knapsack Problem

a1x1 + a2x2 + · · ·+ anxn = b (5.2)

where aj are integer-valued coefficients satisfying aj ≥ 0, b ≥ 0. We search for all solution
vectors x = (x1, . . . , xn) such that all xj are non-negative integers. Note that if there
exist indices i, j with ai > 0 and aj < 0, as allowed in a linear Diophantine equation,
and if (5.2) has at least one solution, then there is an infinite number of solutions.

Our problem can be also seen as d one-dimensional knapsack equations (5.2) that
we want to solve simultaneously, and is equivalent to a multi-dimensional Equality
Constrained Integer Knapsack Problem. Unlike in a typical formulation of a multi-
dimensional Integer Knapsack Problem [70], we are not looking for the maximization of
a set of objective functions, but instead for the exact matches of these functions to the
set of given queries.

As for a special case of a more general problem, approaches, that exist for solving a
system of linear Diophantine equations, can be also employed to solve PMFDP. Most
of them have in common to increase the solution vector until an exact hit or a failure
is achieved. We call this the branch-and-bound algorithm. In the remainder of this
section, we describe this and other existing methods to solve PMFDP in some detail,
and afterwards present our novel mixed matrix approach to efficiently derive the peptide
composition from its molecular formula.

56 5. Deriving Peptide Compositions

Branch-And-Bound Algorithm One simple method to solve our problem is a branch-
and-bound search, which general idea is to add amino acids as long as for each element,
the resulting molecule contains at most as many atoms as the input molecule, and to
report exact hits.

The algorithm starts by examining all possibilities for the first amino acid alanine and
branches, then repeats the same for aspartic acid, and so on until it reaches the last
amino acid tyrosine. Then, the algorithm checks whether the number of elements in
the current peptide decomposition is equal to the number of elements in the molecular
formula, and output exact hits. The algorithm branches using the recursive calls and
on each recursion step it maintains a current decomposition c, an index i of an amino
acid, and the current bounds on the number of carbon, hydrogen, nitrogen and oxygen
in the vector b. In Figure 5.1, we provide the pseudo-code of the algorithm. As an

Algorithm branch-and-bound (decomposition c, index i, bounds b)
1 if bj = 0 for all j = 1, . . . , d then
2 output c;
3 return;
4 end if;
5 ni ← 0;
6 while bj >= 0 for all j = 1, . . . , d do
7 if i > 1 then
8 ci ← ni;
9 branch-and-bound(c, i− 1, b);
10 else
11 c1 ← b1/A1,1;
12 if bj = Aj,1 ∗ c1 for all j = 1, . . . , d then
13 output c;
14 return;
15 end if;
16 end if;
17 bj ← bj −Aj,i for all j = 1, . . . , d;
18 end while;
19 done.

Figure 5.1: branch-and-bound algorithm for finding all peptide compositions using the
molecular formula. For a molecular formula b = (b1, . . . , bd), where d = 4 is
the number of bounds, branch-and-bound(0, k, b) will recursively produce
all peptide compositions over matrix Ad×k that satisfy b.

alternative to the branch-and-bound search, we can compute the molecular formulas
of all amino acid compositions up to a fixed mass during preprocessing, and employ
hashing to efficiently find those decompositions matching the input molecular formula.
Unfortunately, due to the large number of possible solutions, in practice this approach
suffers from large requirements of memory: Recall that there exist about 3.96 · 1011

5.1 Peptide Molecular Formula Decomposition Problem 57

amino acid decompositions with mass up to 2500 Da.

Decomposition Algorithms In Chapter 3, we have seen how to efficiently solve an
instance of one-dimensional knapsack problem (5.2). Now, as we move to a multi-
dimensional problem, a simple algorithm to compute all solutions of Ax = b, is to
choose one row i ≤ d as the master row, then to find all solutions of the one-dimensional
knapsack ai,1x1 + · · · + ai,nxn = bi and, finally, for each solution of the master row to
check if it also satisfies the other equations of our multi-dimensional knapsack. We call
this the näıve decomposition algorithm. Solutions of the master row can be found by
backtracing through the Extended Residue (ER) table, as described in Section 3.1.2.
However, this involves generating many decompositions unnecessarily.

Instead of discarding the false positives after the completion of the recursive algorithm
over the master row, we can introduce several ER tables that correspond to other rows
of Ax = b, and perform the backtracing over multiple instances simultaneously: The
multiple decomposition algorithm also picks up a master equation to decompose, but
tests during recursion if all other equations of Ax = b besides the master equation can
still be satisfied using the current partial solution. If this is no longer possible, then
the algorithm stops and discards the current partial solution. Doing so, this approach
doesn’t generate any false positives, but it requires additional memory to store the data
for several decomposition instances.

5.1.2 Multi-dimensional Integer Knapsack

As we have seen in Equation (3.3), the number of mass decompositions over the alphabet
of size n increases with a polynomial of degree n − 1. It is thus logical to reduce n as
much as possible, if we can do so. Actually, the multi-dimensional knapsack allows us to
lower n: To this end, we apply a Gaussian elimination to the matrix A to find a lower
triangular matrix L ∈ Rd×d and an upper triangular matrix R = (ri,j) ∈ Rd×n such that
A = LR. Then, Ax = b if and only if Rx = L−1b =: b′, where L−1 is known. Every
solution of the original equation must henceforth satisfy the bottom equation of R,

0 · x1 + · · ·+ 0 · xd−1 + rd,dxd + · · ·+ rd,nxn = b′d (5.3)

that has at most n − d + 1 non-zero coefficients. Now, our idea is to search for all
decompositions of the bottom equation, and for each solution, to test if it is also a
solution of Ax = b.

Since all coefficients of the matrix A are integers, we can easily assure that after
applying Gaussian elimination, the same holds for the coefficients of the output matrix
R. On the other hand, we cannot guarantee that ri,j ≥ 0 holds for all coefficients after
Gaussian elimination, even if all entries in the matrix A are non-negative. In particular,
there may be negative coefficients in the bottom row of R. But as mentioned above,
this means that the bottom equation has an infinite number of solutions, provided that
there exists at least one solution. Therefore, we have to avoid that the bottom row of
R contains negative coefficients. To find Gaussian eliminations arrangements where this

58 5. Deriving Peptide Compositions

condition holds, we may swap the columns and rows of A: We select a permutation π of
the rows of A, and a permutation σ of the columns of A that brings d columns to the
front but ignores the remaining n− d columns. We have d! possibilities to select π, and
(n− d + 1) · · ·n possibilities to select d front rows of A in σ.

We apply the following simple invariant of the Gaussian elimination method in our
computations, see the pseudo-code of the algorithm on page 68: Assume that rows
and columns of matrix A have been already swapped. For the sake of simplicity, we
will compute L−1, instead of L. We initialize L−1 = (li,j) ← I as the identity matrix
and R← A. We use the row i of matrix R as our master row, and repeat the following
procedure for i = 1, . . . , d−1 (lines 3-19): We take the element ri,i in the master row, and
the element ri′,i below the main diagonal for each row i′ = i+1, . . . , d, as our multipliers
mi and mi′ (lines 9-10), and iterate through columns j = i, . . . , n, and modify elements
in the row i′ as following: ri′,j = mi′ri,j −miri′,j . Then, ri′,i = 0 must hold. Similarly,
for columns j′ = 1, . . . , d in the matrix L−1, we modify elements in the row i′ such that
li′,j′ = mi′ li,j′ − mili′,j′ . If ri,i = 0, this operation reduces the rank of the modified
matrix R, which is no longer equivalent to the input matrix. In this case, we discard
the partial solution R,L−1 and quit the algorithm (lines 4-5). Otherwise, we further
check if all entries of the bottom row of R are non-positive: If so, we negate all entries
of the bottom row (lines 21-23). At last, we test if rd,j ≥ 0 holds for all j = d, . . . , n.
Otherwise, we discard R,L−1. Applying different permutations on the input matrix A
might result in the identical bottom rows in the output matrix R. Thus, at last, we have
to filter out matrices with identical bottom rows.

We end up with a set of matrix pairs R,L−1 that all can be used to find solutions of
the multi-dimensional problem using their bottom rows: Given an input vector b, for one
such pair R,L−1, we first apply the row permutation π to b, that was used to generate A.
Then, we search all solutions of the equation Rx = L−1b as follows: We compute b′ ←
L−1b, and apply the decomposition algorithm for the single-dimensional integer knapsack
on the bottom equation of Rx = b′. For every decomposition (xd, . . . , xn), we iterate
over i = d − 1, d − 2, . . . , 1, and calculate value xi using row i of Rx = b′. We check if
xi ≥ 0 and if xi is integer: Otherwise, we discard the partial solution. At last, we apply
the inverse column permutation σ−1 to the solution x. Doing so for all decompositions
of the bottom equation of Rx = b′, assures that we find all solutions of Ax = b. On the
other hand, many decompositions might be generated unnecessarily because these are
no solutions of Ax = b.

To reduce the number of solutions that are produced “in vain”, we apply one further
enhancement to the decomposition process: Note that the first row of R contains only
positive entries, that can be used as upper bounds for each amino acid during backtrack-
ing. On each step of the recursion, we thus check if the current solution of the bottom
equation doesn’t exceed the upper bound provided by the top equation of Rx = b′. In
this case, we dynamically update the bound b′0 and step into the recursion for the next
amino acid; otherwise, we discard the partial solution. This enhancement is similar to
the one proposed for the bounds on the amount of elements, see Section 3.1.2 on page 29.
But here, instead of fixed upper elemental bounds, we have the constraints provided by
another query and alphabet. Therefore, we can dynamically update the upper bound

5.2 Generating Decomposition Matrices and a Mixed Matrix Approach 59

depending on the decision we made on each recursion step. This enhancement allowed
us to improve the performance of our decomposition algorithm by about 30 % (data not
shown).

5.2 Generating Decomposition Matrices and a Mixed Matrix
Approach

We have run the Gaussian elimination for all 1 · 2 · 3 · 15 · 16 · 17 = 1370880 combinations
of row and column permutations of A, and generate all possible matrix pairs R,L−1.
In 43176 cases, the modification routine successfully produced a bottom row with non-
negative entries. After filtering out matrices with duplicate bottom rows, only 19 matrix
pairs R,L−1 remained, see Section 5.5.

Now, we want to know which of these matrix pairs R,L−1 decomposes the fastest.
Different bottom equations generate different number of decompositions that are pro-
duced unnecessarily and have to be removed. If we use efficient decomposition methods
for one-dimensional instances (see Chapter 3), then we can assure that the running time
for computing decompositions is, in fact, linear in the number of decompositions. Then,
the number of discarded decompositions is a good estimate for the quality of a matrix
pair.

In our evaluations we use the notion of competitive ratio: the ratio between the number
of true solutions and the number of decompositions generated by the bottom equation
of a particular matrix pair. Using a training set of molecular formulas to decompose,
we can sort out matrices that produce too many additional decompositions, and thus
have large competitive ratios. To find the exact number of decompositions that will
be generated by the bottom equation of a particular matrix, we can use the dynamic
programming techniques mentioned in Chapter 3.

Although well suited for evaluation purposes, in application, one would like to avoid
the explicit calculation of the number of decompositions, because this can be very time
consuming. But how can we estimate the number of discarded decompositions without
actually computing them? To answer this question, we recall that the number of de-
compositions of some query value over n coprime integers asymptotically behaves like
a polynomial of degree n − 1, see Equation (3.3). Since the value we actually want to
decompose using the bottom equation (5.3) is b′d =

∑d
k=1 ld,kbk, we define

l̃(b) :=
1

(m− 1)! rn−m+1,d · · · rn,d

(∑d

k=1
ld,kbk

)m−1

(5.4)

as our indicator, where m is the number of non-zero elements in the bottom row of the
matrix R. As we will see in the next section, there is a clear correlation between this
indicator, and the running time of our algorithm.

Now our mixed matrix approach proceeds as follows: Given a vector b to decompose,
we calculate the indicators l̃(b) for every matrix pair R,L−1, and select the matrix pair
with the smallest indicator. Then, we use the bottom equation of the corresponding
matrix R to actually decompose the value

∑d
k=1 ld,kbk.

60 5. Deriving Peptide Compositions

5.3 Experimental Results

For evaluations of our method we proceed as follows: We first compute the competitive
ratios for all decomposition matrices, and filter out those that produce too many addi-
tional solutions. The number of decompositions to be discarded is not a single factor
that has an impact on the running times. Additionally, the time required to discard
false solutions may vary for different matrices. To better assess the actual performance
of a specific matrix pair, we will apply a slight correction to our indicator. We also
perform a comparison of the running times of the mixed matrix approach and several
other algorithms on simulated and experimental data.

Datasets. We use two datasets in our evaluations: The first dataset consists of 6 000
peptides that have been simulated by in-silico digestion (trypsin) using the Swiss-Prot
database (release 56.5); duplicate entries have been removed. We take peptides with
masses between 900 and 1 500 Da, and for each mass range of 100 Da, we randomly select
1 000 peptides. The second dataset consists of 99 peptides from de novo interpretations
of an experimental tandem mass spectra dataset, acquired on quadrupole ion-trap mass
spectrometer. The peptides in the second dataset range in mass from about 900 to
2 000 Da.

5.3.1 Selecting Good Decomposition Matrices

To filter out matrix pairs that produce too many additional decompositions, for each pair
we compute competitive ratios for all peptides in the simulated dataset. We compute
the average competitive ratio over all peptides for ranges of size 100 Da. Competitive
ratios of the six best matrix pairs are shown in Figure 5.2. For the remaining 13 pairs,
the average competitive ratio is never below 3900 for any pair and any mass range of
size 100 Da. See Figure 5.3 for the competitive ratios of seven more matrix pairs.

Finding Final Decomposition Matrix. For further evaluation, we chose the six matrix
pairs with the best competitive ratios. These matrix pairs are listed in Section 5.5. For
each matrix pair, we compute the indicator l̃(b) for the input vector b, and compare
it with the actual running time of the algorithm. In Figure 5.4, we have plotted these
values for all peptides in the mass range 1000–1100 Da from our simulated dataset.

We can see an almost linear correlation between logarithms of indicators and running
times. We also observe a slight shift of the intercept of the linear fit over the y-axis
for various matrices. This corresponds to the differences in running times required for
filtering out additional decompositions. Using a linear fit with the least squares criterion,
we derive an affine correction of the indicator from this data, see Figure 5.4. Peptides
from other mass ranges reveal a similar correlation (data not shown).

Now, we apply the linear correction to the indicator l̃(b), and select the matrix with
the minimal value. This matrix is then used to actually decompose the input vector b.
Clearly, this is not necessarily the matrix that decomposes the fastest for a particular
input. We want to evaluate how often we hit the matrix pair with the minimal running

5.3 Experimental Results 61

 0

 5000

 10000

 15000

 20000

 25000

1400-15001300-14001200-13001100-12001000-1100900-1000

co
m

pe
tit

iv
e

ra
tio

mass range [Da]

[3 2 -10 -2]
[-48 30 -150 528]

[-8 7 0 9]
[8 -4 12 -8]

[-8 4 84 -24]
[-2 -3 0 45]

Figure 5.2: Competitive ratios of six matrix pairs R,L−1 with the lowest competitive
ratios on average for mass ranges of size 100 Da. Matrix pairs are labeled by
the last row of the matrix L−1.

times from the six pairs, see Figure 5.5: For the simulated data, we select the fastest
matrix pair in more than 91.4 % of the cases, resulting in a total loss of performance of
about 1.35 %. Rates for the experimental dataset are similar: in more than 87.5 % of
the cases an optimal matrix is chosen, leading to an overall loss of performance of about
1.71 %.

5.3.2 Comparison with Other Methods

Finally, we want to evaluate how good the mixed matrix algorithm performs in com-
parison with branch-and-bound searching, the näıve decomposition algorithm, and the
multiple decomposition algorithm, described in Section 5.1.1. Both the näıve and the
multiple decomposition algorithms generate solutions using Extended Residue Table.
Note that there exist four possibilities to select one of the rows of the matrix A from
(5.1) as the master row for these two methods. We only present the best results of the
four variants.

A comparison of the running times of these approaches is shown in Figures 5.6 and 5.7
for the simulated and real data respectively. The performance of the näıve decomposi-
tion algorithm was significantly worser than those of all other methods and, therefore,
omitted. For both datasets, our mixed matrix approach was greatly superior to the
runner-up method, branch-and-bound algorithm: For the simulated dataset, we observe
92-fold speedup over the branch-and-bound searching, whereas the real data is processed
125 times faster on average. The improvement of the running times over the multiple
decomposition algorithm is yet better: We observe a 190 and a 218-fold speedup for the

62 5. Deriving Peptide Compositions

 1000

 10000

 100000

 1e+06

 1e+07

1400-15001300-14001200-13001100-12001000-1100900-1000

co
m

pe
tit

iv
e

ra
tio

mass range [Da]

[0 -5 65 -10]
[-90 -135 315 1710]

[36 -6 -30 -24]
[0 4 -8 -4]

[-12 -30 30 372]
[4 0 -4 -4]

[-200 220 60 -120]

Figure 5.3: Competitive ratios of seven matrix pairs with rather high competitive ratios
compared to the matrix pairs depicted in Figure 5.2. Values are calculated on
average for mass bins of width 100 Da. Competitive ratios for the remaining
six matrices have comparable or higher values than the matrices shown here.

simulated and real data respectively. The performance of the mixed matrix approach is
about 33 microseconds per decomposition on average for both datasets. We also observe
that the mixed matrix approach significantly outperforms each particular matrix pair
alone, see Figure 5.6.

We have also tested the performance of the matrix pairs with five rows, that contain
a decomposition query for sulfur. Performance for these matrix pairs was in all cases
significantly worser than for the matrix pairs with four rows.

All algorithms were implemented in C++, and the running times were measured on
an AMD Opteron-275 2.2 GHz with 6 GB of memory running Solaris 10.

5.4 Summary

We have presented an efficient algorithm to generate all solutions of a multi-dimensional
equality constrained integer knapsack problem. We have demonstrated the applicability
of our method on the problem of finding all compositions of an unknown peptide using
its molecular formula. The results on both simulated and experimental data reveal the
outstanding performance of our mixed matrix approach, which is about two orders of
magnitude faster than the runner-up algorithm. In absolute terms, the average running
time of our algorithm is about 33 microseconds per decomposition.

We can further enhance our method by including more matrix pairs to the selection
of the matrix pair that is finally used for generating decompositions. Moreover, we can

5.5 Best Six Matrix Pairs 63

-14

-12

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

-15 -10 -5 0 5 10 15

ru
nn

in
g

tim
e

[s
]

indicator

[3 2 -10 -2]
[-48 30 -150 528]

[-8 7 0 9]
[8 -4 12 -8]

[-8 4 84 -24]
[-2 -3 0 45]

Figure 5.4: Indicators of running times calculated for peptides in the mass range 1000–
1100 Da. Values are plotted in a log-log scale. Lines depict the results of the
least squares fits.

speed up the decomposition procedure by eliminating identical entries in the bottom
row of R, and distributing the resulting value between the amino acids that correspond
to the duplicates.

Our mixed matrix approach can be used for any application where all solutions of a
multi-dimensional equality constrained integer knapsack [1] are sought. This is needed
whenever searching an optimal solution of the knapsack cannot be modeled via a simple
linear or quadratic objective function. For example, the method can be used to speed up
the search for a molecular formula of an unknown sample molecule, as proposed in [15].
Moreover, our approach is applicable for the decision version of the multi-dimensional
knapsack problem. For example, it can be used to find out whether a given molecular
formula is originated from the protein molecule. This question is relevant in applications
to quickly filter out any contaminants in the protein sample.

5.5 Best Six Matrix Pairs

In the first row of each matrix, we give the permutation of amino acids (for R matrices)
or elements (for L−1 matrices) that have to be applied before or after using the decom-
position matrices. Last rows of the matrices R are divided on the corresponding least
common multipliers, see Table 5.1 on page 69.

64 5. Deriving Peptide Compositions

 0

 100

 200

 300

 400

 500

 600

1400-15001300-14001200-13001100-12001000-1100900-1000

nu
m

be
r

of
 h

its

mass range [Da]

[3 2 -10 -2] true
[3 2 -10 -2] chosen

[-48 30 -150 528] true
[-48 30 -150 528] chosen

[8 -4 12 -8] true
[8 -4 12 -8] chosen

[-2 -3 0 45] true
[-2 -3 0 45] chosen

missed

Figure 5.5: Number of hits of a particular matrix chosen by our estimate (chosen), num-
ber of times when a particular matrix is actually the fastest (true) and the
total number of wrong hits (missed). Number of hits shown for the four,
most frequently chosen matrices. Numbers are counted over all peptides in
a specific mass range in the simulated dataset.

R1 =


G H R F A D K L N P Q E S T V W Y
2 6 6 9 3 4 6 6 4 5 5 5 3 4 5 11 9
0 4 -6 9 -1 2 -4 -6 0 1 -1 1 -1 -2 -3 13 9
0 0 -2 7 1 2 4 2 0 3 1 3 1 2 3 7 7
0 0 0 33 7 6 28 20 0 17 7 13 5 12 21 31 31



L−1
1 =


C H N O
1 0 0 0
3 -2 0 0
1 0 -2 0
3 2 -10 -2



R2 =


H R W F G A K L N P Q D S T V E Y
6 6 11 9 2 3 6 6 4 5 5 4 3 4 5 5 9
0 -30 17 9 -4 -9 -24 -30 -8 -7 -13 -2 -9 -14 -19 -7 9
0 0 -88 -96 -4 -24 -84 -60 -8 -52 -28 -32 -24 -44 -64 -52 -96
0 0 0 18 31 32 35 25 62 29 63 116 76 77 34 117 62



5.5 Best Six Matrix Pairs 65

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

1400-15001300-14001200-13001100-12001000-1100900-1000

ru
nn

in
g

tim
e

[s
]

mass range [Da]

branch-and-bound
multiple decomposer

[3 2 -10 -2]
[-48 30 -150 528]

[-8 7 0 9]
[8 -4 12 -8]

[-8 4 84 -24]
[-2 -3 0 45]

mixed matrix

Figure 5.6: Running times of the algorithms (in seconds) for simulated data. Running
times are calculated per decomposition and averaged over all peptides in the
mass range. We also report the performance of our method with only one
particular matrix pair applied.

L−1
2 =


C H N O
1 0 0 0
7 -6 0 0
-8 -6 30 0
-48 30 -150 528



R3 =


F W Y A G H K L N P Q R S T V D E
9 11 9 3 2 6 6 6 4 5 5 6 3 4 5 4 5
0 1 0 -2 -1 -1 -5 -6 -2 -2 -3 -6 -2 -3 -4 -1 -2
0 0 9 2 5 1 -7 -9 10 0 7 -9 11 8 -4 21 18
0 0 0 10 7 14 19 27 14 9 17 36 10 13 16 6 9



L−1
3 =


C H O N
1 0 0 0
1 -1 0 0
1 -2 9 0
-8 7 0 9



66 5. Deriving Peptide Compositions

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 800 1000 1200 1400 1600 1800 2000

ru
nn

in
g

tim
e

[s
]

mass [Da]

branch-and-bound
multiple decomposer

mixed matrix

Figure 5.7: Running times of the algorithms (in seconds) for real data.

R4 =


D E S F G H K L N P Q R A T V W Y
4 5 3 9 2 6 6 6 4 5 5 6 3 4 5 11 9
0 -3 -5 9 -2 2 -14 -18 -4 -3 -7 -18 -5 -8 -11 15 9
0 0 -8 24 -8 -16 -8 -24 -16 0 -16 -48 -8 -8 -8 24 24
0 0 0 5 1 6 1 2 2 2 2 5 1 0 1 8 4



L−1
4 =


C H N O
1 0 0 0
5 -4 0 0
8 -4 -12 0
8 -4 12 -8



R5 =


D E Y F G H K L N P Q R S T V W A
4 5 9 9 2 6 6 6 4 5 5 6 3 4 5 11 3
0 -3 9 9 -2 2 -14 -18 -4 -3 -7 -18 -5 -8 -11 15 -5
0 0 24 24 -8 -16 -8 -24 -16 0 -16 -48 -8 -8 -8 24 -8
0 0 0 3 7 26 7 18 14 6 14 39 4 4 7 12 7



L−1
5 =


C H N O
1 0 0 0
5 -4 0 0
8 -4 -12 0
-8 4 84 -24



5.5 Best Six Matrix Pairs 67

R6 =


F K Y A G H D L N P Q R S T V W E
9 6 9 3 2 6 4 6 4 5 5 6 3 4 5 11 5
0 -5 0 -2 -1 -1 -1 -6 -2 -2 -3 -6 -2 -3 -4 1 -2
0 0 45 24 32 12 112 -3 64 14 56 -3 69 61 8 -7 104
0 0 0 12 16 51 11 21 32 7 28 66 12 8 4 19 7



L−1
6 =


C H O N
1 0 0 0
1 -1 0 0
-2 -3 45 0
-2 -3 0 45



68 5. Deriving Peptide Compositions

Gaussian Elimination Algorithm (matrix Ad,n)
1 L−1 = (li,j)← I;
2 R = (ri,j)← A;
3 for i = 1, . . . , d− 1 do
4 if ri,i = 0
5 return;
6 end if;
7 for i′ = i + 1, . . . , d do
8 if ri′,i! = 0
9 mi ← ri,i;
10 mi′ ← ri′,i;
11 for j = i, . . . , n do
12 ri′,j ← mi′ri,j −miri′,j ;
13 end for;
14 for j′ = 1, . . . , d do
15 li′,j′ ← mi′ li,j′ −mili′,j′ ;
16 end for;
17 end if;
18 end for;
19 end for;
20 if rd,j ≤ 0 for all j = d, . . . , n then
21 for j = d, . . . , n do
22 rd,j ← −rd,j ;
23 end for;
24 end if;
25 if rd,j ≥ 0 for all j = d, . . . , n then
26 output R, L−1;
27 return;
28 end if;
29 done.

Figure 5.8: Gaussian elimination algorithm for finding a lower triangular matrix L ∈
Rd×d and an upper triangular matrix R ∈ Rd×n such that A = LR, where
A ∈ Rd×n is the input matrix. The algorithm reports a matrix pair R,L−1

such that all entries of the bottom row of R are non-negative.

5.5 Best Six Matrix Pairs 69

L
as

t
ro

w
of

th
e

m
at

ri
x

R
(m

od
ifi

ed
)

lc
m

L
as

t
ro

w
of

L
−

1

1
1

1
1

2
2

2
2

4
5

5
6

8
8

8
-4

12
-8

3
4

4
6

7
7

7
7

12
14

14
18

26
39

8
-8

4
84

-2
4

1
2

2
2

3
3

4
5

5
6

6
7

8
4

0
4

-8
-4

1
1

1
1

1
2

3
3

3
4

6
7

8
4

4
0

-4
-4

5
10

10
16

16
17

22
27

29
33

56
58

73
77

8
-8

0
10

8
-7

6
-4

8
3

5
6

8
10

10
11

12
14

16
23

29
36

39
40

-2
00

22
0

60
-1

20
1

1
1

3
4

4
5

7
7

8
9

18
18

19
10

20
-1

5
65

-2
0

1
1

1
1

2
2

3
4

6
7

7
8

15
19

10
0

-5
65

-1
0

2
4

7
9

12
13

16
19

27
28

31
32

45
49

90
-9

0
-1

35
31

5
17

10
5

6
7

7
12

13
17

20
21

28
31

31
33

1
3

2
-1

0
-2

1
2

2
2

3
5

5
6

7
8

16
18

21
12

36
-6

-3
0

-2
4

18
25

29
31

32
34

35
62

62
63

76
77

11
6

11
7

12
-4

8
30

-1
50

52
8

1
1

3
4

5
6

7
8

8
9

24
27

29
43

3
21

-1
2

12
-6

2
5

6
11

15
18

24
33

42
43

48
49

73
79

12
-1

2
-3

0
30

37
2

1
5

6
8

9
10

11
13

14
26

45
78

84
11

3
1

19
-9

0
-6

1
1

1
1

1
2

2
2

2
4

8
12

13
18

6
18

-9
3

-6
5

9
17

25
27

41
53

81
94

10
1

10
6

11
3

17
1

18
3

1
-2

-5
0

72
4

7
7

8
11

12
12

16
19

21
28

32
51

66
2

-2
-3

0
45

6
7

9
9

10
10

13
14

14
16

17
19

27
36

2
-8

7
0

9

T
ab

le
5.

1:
19

de
co

m
po

si
ti

on
m

at
ri

x
pa

ir
s

R
,L

−
1

w
it

h
di

st
in

ct
bo

tt
om

ro
w

s.
T

he
la

st
ro

w
of

th
e

m
at

ri
x

R
is

sh
ow

n
m

od
ifi

ed
:

V
al

ue
s

ha
ve

be
en

di
vi

de
d

on
th

e
le

as
t

co
m

m
on

m
ul

ti
pl

ie
r

(l
cm

)
an

d
so

rt
ed

in
th

e
in

cr
ea

si
ng

or
de

r;
ze

ro
en

tr
ie

s
ha

ve
be

en
re

m
ov

ed
.

6 Application Tools and Cases

In the previous chapters, we have been extensively discussing our algorithms to decom-
pose integer and real-valued mass spectrometry (MS) data. In this chapter, we present
several application tools that implement the described algorithms for de novo identi-
fication of sample molecules. We start by describing Decomp, a web-based tool for
solving integer and real-valued mass decomposition problems over any arbitrary alpha-
bet of biomolecules. Typical examples include amino acids, nucleotides, and the elements
CHNOPS most frequently occurring in nature. Then, we demonstrate its applicability
as a part of another algorithm, called CompNovo, for de novo sequencing of peptides
using tandem mass spectrometry. Finally, we present the Rdisop package that integrates
more data such as accurate isotopic abundances, for identification of molecular formulas
of metabolites.

6.1 DECOMP

6.1.1 Introduction

Assume you have a DNA fragment of mass 1896.33 ± 0.05 Dalton and no other infor-
mation. What are the possible nucleotide combinations that fall into this mass range?
Here, there exist two such DNA molecular formulas: either 6 adenines (amounting to
1878.35 Da, plus 18.01 Da for a water molecule) or 2 cytosines, 1 adenine, and 3 guanines
(1878.31 Da plus 18.01 Da). Decomp helps to efficiently solve this and other related
problems.

Recall that the Real Mass Decomposition Problem (RMDP) can be stated as follows:
Given an alphabet of positive, real-valued numbers Σ = {a1, . . . , an}, a mass M , and a
mass error ε, find all non-negative integer vectors c = (c1, . . . , cn) such that a1c1 +a2c2 +
· · ·+ ancn ∈ [M − ε,M + ε]. If the alphabet elements are positive integers, and no mass
error is allowed, the problem is referred to as the Integer Mass Decomposition Problem
(IMDP), which decision version is also known as Money Changing Problem (MCP), see
Chapter 3 for details.

In mass spectrometry applications, three types of alphabets are most prevalent: 19 stan-
dard amino acids that make up protein sequences (isoleucine and leucine are indistin-
guishable), 4 nucleotides that constitute to DNA molecules, and 6 chemical elements
(CHNOPS) that most frequently occur in nature, and are the major building blocks of
metabolites.

Existing Approaches. From the algorithmic and combinatorial point of view, a signif-
icant amount of biochemical and mass spectrometry literature exists on the problem of

71

72 6. Application Tools and Cases

finding the molecular formula of a sample molecule using its mass, see i.e., [47, 99, 11].
There are many other methods such as [102, 64, 73, 52, 115] that exploit the knowledge
about the molecular formulas for the interpretation of mass spectra. In addition, a
multitude of software packages exist to compute the molecular formulas, see i.e., Seth1,
ElComp2, HiRes MS3, Elemental Composition Calculator4 and MF finder5, to name a
few. To the best of our knowledge, all these packages employ simple exhaustive strate-
gies to search for all decompositions of a given mass. Since exhaustive algorithm tests
all possible solutions up to the input mass, its performance drops dramatically with
the increasing input mass, if, at all, it becomes possible to complete the task success-
fully. Recall that there exist 5.1 · 108 molecular formulas with mass up to 1500 Da over
19 standard amino acids.

Additionally, some of these packages are available for one operating system only (Seth
and Elemental Composition Calculator for Windows), whereas others are confined to
a certain type of alphabet (HiRes MS and MF finder to the masses of the common
chemical elements).

We have developed Decomp, a new application tool to find decompositions of a given
mass over any arbitrary alphabet. It implements the efficient algorithms for solving inte-
ger and real-valued mass decomposition problems, and is equipped with an user-friendly
web-based interface to handle both types of problems conveniently. Thus, Decomp is
easily applicable for both the interpretation of MS data, i. e., for calculating all molecu-
lar formulas with a given molecular mass from various types of samples, and for finding
solutions of MCP problems.

Since the algorithmic part has been discussed in detail in Chapter 3, here we focus on
the implementation and the front-end features of our software.

6.1.2 Implementation and Use

Decomp’s algorithms are implemented in C++ and run as a stand-alone program on the
Bielefeld University Bioinformatics Server6 (BiBiServ). To submit a request to Decomp
interactively, a simple web-based interface has been written using a plain HTML, sup-
plied with a few JavaScript functions for the validation of the input parameters. After
submission, the program is processed on the dedicated server, and after the computation
is complete, results can be retrieved as a text file.

Web Services. Data retrieval from the biological online resources is typically realized
by HTML links to the web pages or by regular, manual downloads and a subsequent
integration of the obtained data. This is both error-prone and time-consuming. The

1http://www.zebra-crossing.de/software/
2http://medlib.med.utah.edu/masspec/
3http://hires.sourceforge.net/
4http://www.wsearch.com.au/
5http://www.chemcalc.org/
6http://bibiserv.techfak.uni-bielefeld.de/decomp/

http://www.zebra-crossing.de/software/
http://medlib.med.utah.edu/masspec/
http://hires.sourceforge.net/
http://www.wsearch.com.au/
http://www.chemcalc.org/
http://bibiserv.techfak.uni-bielefeld.de/decomp/

6.1 DECOMP 73

introduction of Web Services offers an opportunity to overcome this difficulty and to
perform the data exchange in much more reliable and faster way.

Web Services represent software interfaces that interact via network using XML-based
messages. The structure of these messages, which contain query requests or the corre-
sponding results, can be described using a simple object access protocol (SOAP). Any
software that is implemented in a programming language, which supports a SOAP inter-
face can retrieve data directly from that service. Doing so, the end-user does not even
realize that the results come from another service.

Web Services have been widely used for the data integration and exchange between het-
erogeneous systems [87,8], and have been recently implemented by well-known databases
at European Bioinformatics Institute (EBI) [98], and KEGG database [66].

Decomp offers a Web Service client, which can be used from the command line for
batch processing and other non-interactive uses. The interface is written in Java, and is
available upon request.

Parameter Input. Decomp is designed to tackle the decomposition problems for both
integer and real-valued queries. Therefore, in an initial step the appropriate submission
form has to be selected. Since we want to keep the user interface as simple as possible,
specifying only a few parameters is necessary for submission; others are either optional,
or provided with reasonable default values.

One required parameter is the query mass or masses that can be entered manually,
or the file for upload can be specified. Another prerequisite for the submission is to
define the alphabet to be used for the decomposition. For the analysis of MS data,
several predefined alphabets of the common types of sample molecules such as amino
acids, nucleotides, and CHNOPS are supplied, and the user can select between the
monoisotopic and average isotopic mass distribution. Alternatively, a custom alphabet
can be entered manually or uploaded from the file. Specifying these two parameters is
already enough to successfully submit the input form.

Additionally for the real-valued case, the allowed mass error can be set as an abso-
lute (Da) or relative (ppm) deviation from the query mass. Another optional parameter
is the computational precision that corresponds to the blowup factor, described in Sec-
tion 3.2. It defines the way how the algorithm rounds the real values to integers. Decomp
provides an option to calculate the computational precision automatically depending on
the alphabet in use, which in most cases allows user to remain unconcerned about this
setting.

For the query upload, Decomp supports the majority of the most common MS file
formats such as mzData, mzXML, and others. To be recognized as a supported format,
the file to upload should have an appropriate extension, i. e., mgf for the Mascot Generic
Format. Other supported file formats can be found in Decomp’s manual7.

The user can specify the constraints on the minimal and maximal amount of elements
in the output molecule. Often in de novo interpretations of tandem MS data, a partial
tag or other sample preparation information can suggest such constraints. Specifying the

7http://bibiserv.techfak.uni-bielefeld.de/decomp/manual.html

http://bibiserv.techfak.uni-bielefeld.de/decomp/manual.html

74 6. Application Tools and Cases

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 300 600 900 1200 1500

ru
nn

in
g

tim
e

[s
]

mass [Da]

find-all
max(N) = 10

max(S) = 5
max(N) = 10 and max(S) = 5

Figure 6.1: Running times of the algorithm find-all (line) and find-all-with-bounds
(points) for various elemental bounds in comparison. Decompositions with
mass M to M + ε, for ε = 0.0001 Da, computed over the alphabet CHNOPS.

upper and lower bounds for each element allows user to confine the search space to only
valid decompositions, e.g., those containing at most 4 sulfur (S), or at least 1 carbon
(C). Moreover, providing the bounds on the number of elements can greatly speed up the
decomposition process: We have compared the performance of find-all and find-all-
with-bounds algorithms, described in Section 3.1.2, for various elemental constraints,
and observed the significant improvement in the running times of the latter algorithm
depending on the constraints provided, see Figure 6.1. To specify the constraints, the
same notation as for decompositions is used: For example, the minimum constraints
CH2 mean that the output molecule must contain at least 1 carbon (C) and 2 hydrogen
(H) atoms.

Regarding the modifications of the query mass, Decomp separates these in two groups:
the modifications of the entire molecule and the post-translational modifications (PTM).
The former apply for any type of sample molecule. The interface provides the list of
predefined modifications those that commonly occur due to the ionization process or
sample preparation. Typical examples are protonation and addition of a water molecule.
The latter modify only protein molecules, and can be further divided into fixed and
variable modifications: Fixed modifications apply to all copies of the corresponding
amino acid. For example, selecting modification Phosphorylation (S, +80 Da) means

6.2 Application Case with CompNovo 75

that all serines (S) have been phosphorylated. In contrast, variable modifications apply
to some, but not necessarily all copies of a relevant amino acid. For instance, choosing
modification Acetylation (M, +42 Da) means that any methionine (M) in the molecule
can be acetylated. The modified amino acid is then specifically marked in the output.
Note that introducing variable modifications significantly increases the search space, as
the alphabet size increases, therefore they should be used sparsely.

Decomp’s results are by default ranked with regard to the deviation from the query
mass. Several output and filtering parameters allows user to further customize the
output: for each decomposition, the appearance of the actual mass and deviation in
the output can be specified. Furthermore, the number of solutions to show can be
restricted to a certain threshold. Finally, for the atom alphabet, an additional filter
for molecular formulas can be activated that discards irrelevant solutions based on the
Senior conditions, described in Section 4.1. Doing so guarantees that only chemically
valid compounds will be shown in the output. In Figure 6.2, the submission form for
decomposing the real-valued masses is depicted.

The submission view for the integer queries in general resembles its real-valued coun-
terpart, but keeps only parameters relevant for solving integer mass decomposition prob-
lems. In particular, the user can select between (1) finding all solutions (default), (2)
finding one solution, (3) getting the number of solutions, or (4) deciding whether a query
is decomposable.

Summary. We have presented Decomp, a fast and simple tool for solving various mass
decomposition problems, both for facilitating in MS data analysis, and for solving in-
stances of MCP problems. An easy-to-use design of our software allows users to quickly
submit a task by providing a very few required parameters. Decomp is supplied with
a detailed manual8 that serves as an extensive guide to all nuances of the submission
process and relevant parameters. The results of the program can be used either inde-
pendently or as a part of a larger identification pipeline of unknown sample molecules.

6.2 Application Case with CompNovo

In this section, we show the applicability of Decomp as a part of a combinatorial
algorithm, called CompNovo, for de novo sequencing of peptides using different frag-
mentation types of tandem mass spectra. We start with the overview of the existing al-
gorithms for de novo sequencing of peptides using tandem mass spectrometry. Followed
by a brief introduction into several techniques recently appeared for the fragmentation
of the tandem mass spectra, we present CompNovo, a novel approach that makes use of
the complementary information available in the spectra of different fragmentation types
for de novo peptide identification. CompNovo is being developed by Andreas Bertsch
(University Tübingen) and coworkers, and is described in [12].

8http://bibiserv.techfak.uni-bielefeld.de/decomp/manual.html

http://bibiserv.techfak.uni-bielefeld.de/decomp/manual.html

76 6. Application Tools and Cases

Figure 6.2: Submission form for the real-valued mass decomposition problem.

6.2 Application Case with CompNovo 77

6.2.1 Existing Approaches for De Novo Peptide Sequencing by Tandem MS

The identification of peptide sequences is one of the major goals in mass spectrometry-
based proteomics. Approaches that exploit the knowledge of tandem mass spectra are
the current mainstream of the high-throughput protein and peptide identification [83].
These approaches can be divided into Peptide fragment fingerprinting (PFF) algorithms,
where the reference database with protein sequences is used for the interpretation of the
measured spectra as shown in Section 2.5.3, and de novo sequencing methods, that
infer the knowledge about the peptide sequence without prior information. While the
former approaches remain the standard strategy for identifying peptides and proteins in
complex mixtures, there exist cases, when no appropriate sequence database is available,
or when target databases are subjected to sequencing errors, or composed of homologous
sequences in the case of cross-species identification. For these cases, de novo sequencing,
i.e., the determination of the peptide sequence directly from the experimental spectrum,
may outperform the database searching [91], and become the method of choice for the
successful inference of the peptide identity. Moreover, as a result of the interpretation of
the experimental spectra, de novo sequencing methods often compute short sequences of
length 5–7 amino acids known as tags, that can be further used for searching against the
database. This mixture of de novo sequencing and database searching is often referred
to as tag-based approaches. Since tag-based methods in the first step of finding putative
tags employ exactly the same techniques as de novo sequencing, here, we concentrate
on the de novo algorithms. The overview of the existing tag-based approaches can be
found, i.e., in [83].

A wide variety of methods exists for de novo peptide sequencing, i.e., [7, 121, 26, 24].
Typically, their algorithmic procedure can be divided into two main parts: generation
of candidate sequences and scoring. For the first part, the majority of algorithms,
i.e., [26,24,122,10,45], employ a notion of the spectrum graph, which nodes represent the
spectrum ions and edges represent the differences between m/z ratios of two ions that
correspond to the masses of one of the standard amino acids. The candidate sequences
are then computed by traversing this graph.

The algorithm NovoHMM [43] utilizes the hidden Markov model (HMM) to directly
score the generated sequence. The de novo identification problem has been also for-
mulated as the integer linear program (ILP) [30], and this approach demonstrated an
excellent performance compared to other de novo algorithms for the data measured on
high-quality mass spectrometers.

Scoring of candidate sequences against the measured spectrum has also been the sub-
ject of intensive investigations. This is due to the crucial importance of the scoring
procedure for the overall performance of the database-oriented and de novo algorithms.
A multitude of different probabilistic scoring schemes, discriminant analysis approaches,
and statistical models have been published, i.e., [26, 5, 36]. Even a kinetic fragmenta-
tion model to predict complete MS/MS spectra of peptides has been used to score the
similarity of peptide sequences to the experimental spectrum [135].

78 6. Application Tools and Cases

Novel Fragmentation Techniques. Although some de novo algorithms presented out-
standing results on the high-quality spectra, where the majority of the theoretical ions
are available, the overall performance of this technique until recently remained poor
compared to the database-oriented methods. One of the reasons for this inferiority is
the quality of the spectra, in particular, the missing fragment ions obtained from the
most widely used collisionally-induced dissociation (CID) of the precursor ions. Using
low-energy CID as a fragmentation technique allows for the determination of the peptide
sequence from the typical ion series, mainly b-ions and y-ions resulting from the cleavage
of the peptide bond.

More recently, CID has been complemented by electron-induced fragmentation meth-
ods such as electron capture dissociation (ECD) [136] and electron transfer dissociation
(ETD) [117]. Both these techniques have in common that the fragmentation of mul-
tiply protonated peptide ions is induced upon transfer of electrons to them. In ECD
fragmentation, low-energy electrons are directly introduced to the peptide ions, result-
ing in fragmentation of the precursor in different types of fragment ions compared to
those produced by other fragmentation methods, such as CID or infrared multi-photon
dissociation (IRMPD). However, low efficiencies of ECD technique and other experimen-
tal difficulties hinder its utilization on the wide scale. Usually, ECD fragmentation is
confined with FT-ICR instruments.

In ETD mode, radical anions derived from, e.g. anthracene or fluoranthene molecules
by chemical ionization, function as electron donors for positively charged peptide ions,
resulting in the spectra similar to those obtained by ECD. Whereas CID spectra con-
tain b-ions and y-ions and many neutral losses to form a complex mixture of ions, ETD
spectra commonly show only c-ions and z-ions as fragment ions. Hence, CID and ETD
techniques mostly contain complementary information, leading to a more complete cov-
erage of a peptide sequence with fragment ions.

Horn et al. [62] proposed a method for de novo sequencing of the entire protein utilizing
complementary information obtained from CID and ECD spectra on a high-resolution
FT-ICR instrument. Utilizing the very accurate mass measurements of FT-ICR-MS/MS,
the same group introduced a linear de novo sequencing method, which begins with
the most reliable fragment ion and generates the sequence by simply adding masses
of possible amino acids [105]. However, the proposed greedy strategy is unlikely to
generalize well beyond the expensive and rare CID/ECD FT-ICR setup. Moreover, this
approach may be an overkill, since FT-ICR allows reliable de novo sequencing even
without the complementary CID/ECD fragmentations, as shown in [46].

Very recently, Datta et al. [27] presented a method for de novo sequencing of peptides
including CID and ETD spectra at the same time. In particular, a machine learning
approach was proposed for learning dependencies between peak types, to improve on
a näıve Bayes classifier. However, the performance of this approach heavily relies on
the scoring combined spectra, whereas the focus of our work was on the generation of
peptide candidates.

Here, we present CompNovo, a novel combinatorial algorithm for de novo sequencing
using CID and ETD spectra from the same peptide. Recent improvements in instrumen-
tation made available the ion trap mass spectrometers that are capable to produce CID

6.2 Application Case with CompNovo 79

and ETD spectra from the same precursor ion in a tiny interval of time [117]. Thus, the
focus of CompNovo has been on developing an efficient method for de novo sequencing on
medium-quality mass spectrometers such as ion traps. For generation of candidate pep-
tides, CompNovo exploits a divide-and-conquer algorithm and the mass decomposition
techniques described above. The algorithm evaluation shows that employing comple-
mentary information obtained from both CID and ETD spectra can improve the de
novo identification significantly, and lead to the identification rates that are superior to
those obtained by previous approaches using CID spectra only.

6.2.2 Algorithm Overview

The algorithm consists of two steps: candidate generation and candidate scoring. Fol-
lowed by spectrum preprocessing, a divide-and-conquer algorithm recursively divides the
spectrum into smaller units until the segment is small enough to be the input for the
mass decomposition algorithm that produces all amino acid compositions for a given
mass segment. Using this list of compositions, all permutations of sequences are com-
puted, and are then scored against the experimental spectra. For each segment the best
scoring sequences are kept and marked as candidates for this segment. After processing
all segments, the final list of candidates is created and is scored against the measured
spectra. The candidates scoring consists of two steps: First, very simple spectra are gen-
erated from the candidate sequences and scored against the experimental spectra. The
best candidates are then used in a second scoring step to generate more detailed theo-
retical spectra (including additional ion series, losses, and isotope clusters), which are in
turn scored against the experimental spectra. The complete pipeline of the CompNovo
algorithm is schematically depicted in Figure 6.3.

In the following, we will discuss individual parts of the algorithm in more detail.

Spectrum Preprocessing. The goal of the preprocessing step is to provide the true
y-ions of the CID spectrum for the subsequent divide-and-conquer algorithm. To find as
many true y-ions as possible and to reduce the chance of selecting other types of ions from
the spectrum, all peaks present in the spectrum are scored using the properties described
below. The initial score is the peak’s intensity. For the subsequent scoring steps, the
fact that ETD spectra contain abundant peaks of the precursor in almost all cases is
used, which allows for calculation of the peptide mass the within the mass tolerance
of the tandem MS scan. First, for each peak its isotope pattern is compared to the
theoretical isotope distribution based on the molecular mass of the fragment ion and on
the average elemental composition of peptides with respect to carbon, hydrogen, oxygen,
and nitrogen. A simple correlation is used as a multiplicative scoring for this comparison.
Doubly charged ions with isotope peaks that correlate well with the theoretical isotope
distribution are converted to singly charged ions and added to the spectrum, or the
intensity is added to the corresponding singly charged ion if already present in the
spectrum.

For further ranking of y-ions, a simplified version of the probabilistic InsPecT [119]
scoring scheme is used. The scores of the witness set of an ion, i.e., the set of all ions

80 6. Application Tools and Cases

Scored ion list

Ion scoring

ETD spectrumCID spectrum

Mass range
< 450 Da?

No

Yes
Decompose

Amino acid compositions

Permute

Scored permutations

Selected pivot ions

Divide range

Right segmentLeft segment

Peptide candidates

Final scoring

Final peptide list

Subsegment candidates

Combine

P
re

pr
oc

es
si

ng
D

iv
id

e-
an

d-
C

on
qu

er
Fi

na
l s

co
rin

g

Figure 6.3: Illustration of the CompNovo workflow.

that support this y-ion, are used to increase the score. Additionally, the c/z-ions of the
ETD spectrum are used to provide further evidence that a proposed ion is a true y-ion.
All intensities of witness ions are weighted by a factor based on the deviation between
the expected and calculated mass positions, and are then added to the intensity of the
y-ion.

Finally, for each ion and its counterpart with respect to the precursor, it is checked if
a mass decomposition is possible for these ions. If no valid decompositions exist for a
given ion, its score is set to zero. All ions with positive scores can be used as pivot ions
in the following divide-and-conquer step.

Divide-and-conquer algorithm. Peptide sequence candidates are generated using a
divide-and-conquer approach, similar to the one proposed in [135]. The main distinc-
tion is that, CompNovo uses y-ions as pivot ions, instead of using b-ions. The idea
of the divide-and-conquer algorithm is to recursively divide the spectrum into smaller
sub spectra until a subspectrum is small enough to be used by the mass decomposition
algorithm to compute all possible peptide sequences. Pivot ions are used to divide the
spectrum segment into two smaller subsegments.

The algorithm starts with a highly scored putative y-ion that divides the original
spectrum into two segments. The lower m/z segment corresponds to the suffix of the
peptide sequence and the upper m/z segment corresponds to the prefix of the peptide

6.2 Application Case with CompNovo 81

sequence. If a newly created segment is larger than a given threshold, it is further divided
into two subsegments using a pivot ion. The same process is repeated for several pivot
ions, to ensure that the correct sequence is generated, i.e., at least one of the selected
pivot ions is a true y-ion.

If the subsegment is small enough, the mass decomposition algorithm is employed to
compute all possible amino acid decompositions. For each decomposition all possible
permutations of sequences are generated. To reduce the number of generated sequences,
for each permutation its theoretical spectrum is built and scored against the experimental
spectrum; only the best candidates are kept. For subsegments located somewhere in the
middle of the original spectrum, a prefix and suffix are added for the generation of the
theoretical spectra. CID and ETD spectra are handled independently, and then both
scores are added to get a similarity between a sequence and measured spectrum pair.

After the generation of all subsegment candidates is completed, the results are merged
by combining every candidate for the left segment with every candidate for the right
segment. The merged set is again ranked and reduced to only the best candidates. The
entire process is repeated for several ions and the results are reported for the final scoring
of the full-length sequence candidates, see Figure 6.3.

Scoring Candidates. At last, the candidates generated by the divide-and-conquer step
are scored against the experimental spectra. For this, theoretical CID and ETD spectra
of the peptides are generated, which are then compared with the experimental spectra
and ranked according to the similarity. To consider the discrepancies in the expected
and observed ion positions, the following weighting factor fi,j for peak i in the first
spectrum and peak j in the second spectrum is used:

fi,j =
ε− |Pi − Pj |
|Pi − Pj |

,

where Pi and Pj denote respective peak positions, and ε is the mass tolerance allowed
for the scoring. Let Ii and Ij denote the intensities of the corresponding peaks. The
similarity of two spectra is then computed as follows:

s =

∑
i,j

√
Ii · Ij · fi,j√∑

i Ii ·
∑

j Ij

.

Since the number of candidates can be very large, the scoring procedure is divided into
two parts: For the calculation of the first score all possible pairs of ions are considered,
and those that achieve low ranking are filtered out. For this preliminary comparison
very simple theoretical spectra are created that consist only of b/y-ions for CID spectra
and c/z-ions for ETD spectra. For the second, final score, only the best ion pairs are
taken, so that each ion can have at most one counterpart in the other spectrum. The
pairs are determined using a spectrum alignment algorithm, where the number of paired
ions is maximized and the sum of position distances is minimized. The intensities of ions
are ignored by this algorithm. Since for the second score less candidates are compared,

82 6. Application Tools and Cases

the calculation of the theoretical CID spectra is enhanced with more properties of the
spectrum, such as a-ions and neutral losses from b- and y-ions. Additionally, doubly
charged b- and y-ions are taken into account. Finally, a ranked list of candidate scores
is created and reported as the output of the algorithm.

6.2.3 Experimental Results

Experimental Data Generation. For the parameter estimation and evaluations of Comp-
Novo two datasets were used. For the generation of the first, training dataset, nine
known proteins, obtained from Sigma (St. Louis, MO) and Fluka (Buchs, Switzerland)
were partitioned into two mixtures, and tryptically digested. The resulting peptide mix-
tures were then separated using capillary ion-pair reversed-phase HPLC (IP-RP-HPLC)
and subsequently identified by electrospray ionization tandem mass spectrometry (ESI-
MS/MS). On-line ESI-MS/MS detection was carried out on a quadrupole ion-trap mass
spectrometer with electron transfer dissociation capability (Model HCTultra PTM Dis-
covery System, Bruker Daltonics, Bremen, Germany). Tandem mass spectra were gen-
erated using sequential CID and ETD fragmentation of the same precursor ion. Singly
charged analytes were automatically excluded. For the second dataset of a real life sam-
ple, the proteins extracted from Sorangium cellulosum [106], a soil living bacteria, were
used. The experimental setup used for the generation of the second dataset was the
same as described above.

Data Preprocessing. Using the experiments described, training and benchmark datasets
were generated. Since no currently available database search engines support the use of
both CID and ETD spectrum pairs during the identification process and identification
using only ETD spectra showed significantly poorer performance with very few iden-
tifications found, only CID spectra were used for the annotation of peptides in both
datasets.

CID spectra from the eight HPLC runs of the known protein mixture were identified
by MASCOT [97], version 2.1.03. Hits to spectra of doubly and triply charged precursors
with scores larger than 10 were used. To avoid bias towards specific sequences, spectra
corresponding to the same combination of the peptide sequence and charge were allowed
at most once in the dataset. Peptide sequences with molecular mass above 2000 Da
were excluded. This procedure resulted in a training dataset of 156 pairs of CID/ETD
spectra of doubly charged peptides. Only seven pairs of triply charged peptides were
obtained and were handled separately.

The benchmark dataset was identified using MASCOT, version 2.1.03, OMSSA [49],
version 2.1.1, and X!Tandem [40], version 07-07-01. The target protein database included
9384 protein sequences from S. cellulosum and 86 protein sequences of trypsin and
keratin. To ensure that peptides included in the dataset were correctly identified, all
identifications were extensively verified. Further details about verification procedure can
be found in [12]. Out of 38, 261 MS/MS spectrum pairs, the verification routine kept
2, 190 spectrum pairs of doubly charged and 54 of triply charged peptide sequences, and
these were included in the benchmark dataset.

6.2 Application Case with CompNovo 83

Both datasets have been deposited in the Proteomics Identification Database (PRI-
DE) [65] and are publicly available under the accession numbers #8689 and #8690.

Parameter Estimation. After the determination of the algorithm parameters using
the training set, they were applied on the benchmark dataset. The threshold for the
maximal mass that can be decomposed was set to 450 Da, and for each subsegment the
40 best amino acids compositions were kept. The computation of the divide-and-conquer
algorithm was performed nine times using nine different pivot ions, if available. For the
scoring candidates, the 250 top-ranking peptides were kept after the preliminary scoring,
and were rescored again using the enhanced CID spectra. The fragment mass tolerance ε
allowed for scoring was set to 0.4 Da.

Comparison with Other De Novo Algorithms. To evaluate the performance of Comp-
Novo, its results on the benchmark dataset were compared with other publicly available
de novo algorithms such as PepNovo [45] (version v2.00) and LutefiskXP [122] (version
1.0.5a). Note that both these packages use only CID spectra for the analysis, therefore
CompNovo initially has a benefit through using both, CID and ETD spectra. To eval-
uate the improvements that a pair of CID and ETD spectra provides over CID spectra
alone, a slightly modified version of CompNovo, called CompNovoCID, was evaluated,
that uses the same algorithm but analyses only CID spectra.

The results of this comparison are summarized in Table 6.1 with the number of fully
identified peptide sequences and the identifications with deviations of one to three missed
amino acids compared to the correct sequence. One can see that for all types of identi-
fications CompNovo demonstrates the improvements in performance compared to other
packages. The identification rates range from 28.5 % for correct sequences to 61.8 % for
sequences with 3 missed residues, while the total number of correctly identified amino
acids reaches 75.6 %. Moreover, the results show the crucial importance of including the
ETD spectra in the analysis. Although the CID version of the algorithm already out-
performs other algorithms in all categories, this is the inclusion of ETD data that makes
the accuracy of CompNovo’s identifications greatly superior: While CompNovoCID finds
only 9.9 % fully correct sequences, CompNovo makes 28.5 % correct identifications, which
corresponds to roughly 3-fold improvement in the identification rates upon the inclusion
of ETD spectra. Identification performances for the triply charged peptides were much
lower: As the consequence of the decreased coverage of the cleavage sites, the identi-
fication rates of CID-based algorithms were decreased dramatically. Out of 54 triply
charged peptides the benchmark dataset, CompNovo identifies 35 % of the amino acids
correctly, whereas PepNovo assigns the correct residues in 15.2 % of the cases. Note,
however, that in the current experimental setup 54 triply charged peptides constitute
to only about 2.5 % of the spectra in the benchmark dataset, which might be too small
amount for the rigorous evaluation.

Here, we skip further discussion of the other aspects of the algorithm evaluation, such
as a number of correctly predicted short subsequences, or the influence of the charge
state of the precursor ion on de novo sequencing; further details can be found in [12].

84 6. Application Tools and Cases

LutefiskXP PepNovo CompNovoCID CompNovo

correct peptides 0.0 2.2 9.9 28.5
within 1 residue 0.0 3.2 10.1 29.3
within 2 residues 1.6 11.5 25.4 54.0
within 3 residues 2.9 19.0 32.1 61.8
total correct residues 6.9 48.1 56.0 75.6

Table 6.1: Identification rates for different de novo sequencing programs for the bench-
mark dataset in comparison. Rates are given as a proportion to the total
amount of 2 190 spectrum pairs in the dataset. For each spectrum pair, only
the best scoring peptide sequences were considered from each de novo algo-
rithm.

Summary. We have presented CompNovo, an efficient algorithm for de novo peptide
sequencing using the medium-quality fragmentation data from CID and ETD spectra
in combination. Using CompNovo, the applicability of the previously described mass
decomposition techniques has been demonstrated, for the efficient candidate generation
in the divide-and-conquer procedure. The CompNovo algorithm is available for download
as a part of the software package OpenMS [116], which offers an open-source C++
framework for LC/MS data management and analyses9.

6.3 Rdisop

6.3.1 Introduction

Suppose you are given two peaks with masses 285.075375 and 286.079064 Da and the
corresponding intensities 82.03 % and 17.97 %, and the mass accuracy of your instrument
is about 3 ppm. If you were to use Decomp to try to find out what molecule this peak
list may represent, you would though find all seven candidates that have the monoiso-
topic mass in the given mass range correctly, but the true molecule C16H12O5 with
monoisotopic mass 284.068475 Da (plus 1.007278 Da for H+) would be only the fourth
candidate with respect to the deviation of the monoisotopic mass. Clearly, the mass
information alone does not suffice for the unambiguous identification of a compound
even for higher mass accuracies, i.e., < 1 ppm, [72]. Rdisop helps to efficiently solve
this problem, by taking into account an additional information provided by the isotope
pattern of the molecule for the better identification of molecular formula of metabolites.
For the above example Rdisop can unequivocally find the correct molecular formula, and
clearly distinguish it from other candidates.

There exists a wide variety of tools for identification of small molecules [17,73,52,115].
However, some of them have been designed to account only for the peak masses during
the identification process [17, 115], while others show significant problems usability and

9www.openms.de

www.openms.de

6.3 Rdisop 85

data exchange [73,64]. Moreover, none of the existing solutions have been equipped with
the built-in functionality for the statistical analysis of the results.

We have developed Rdisop, a new package to determine the molecular formula of
metabolite solely from its accurate mass and isotope pattern. It employs efficient tech-
niques for the decomposition of molecular masses and simulation of the isotope patterns,
and integrates them into a freeware statistical package R10, which in turn provides a
excellent environment for the subsequent statistical data analysis. Employing an algo-
rithmic core written in C++, that has been enhanced with an extensive R functionality,
Rdisop combines the fastness of the C++ implementations with the modularity and
comprehensiveness of statistical analysis using R.

Rdisop does not provide a graphical user interface, and all operations are performed
using a command line interface. It is possible to add a more elaborate user interface
on top of this infrastructure, however, the focus of this package was on a programmatic
approach to enable the convenient use of novel algorithmic methods, and their easy
integration with other existing software for the statistical analysis of mass spectrometry
data.

Rdisop is available through Bioconductor [50], an open-source project11 for the collab-
orative development of extensible software for computational biology and bioinformatics.
Although started as an initiative for the statistical analysis of microarray data, mean-
while, Bioconductor has evolved into one of the standard tools for analyzing of various
types of high-throughput genomic and metabolomic data [50].

The biological and chemical background on the metabolites and isotope patterns have
been given in Chapter 4, while the algorithms for the mass decomposition and simulation
of the isotope patterns have been extensively discussed in Chapters 3 and 4. Thus, in
the following, we focus on the implementation and usage of our software.

6.3.2 Implementation and Use

The core algorithms in Rdisop are implemented in C++. They have been integrated
in the R statistical environment using a package Rcpp, available at Comprehensive R
Archive Network (CRAN)12. Rcpp is a tool that facilitates the process of using C++
libraries from within the R system, by providing the user with the set of C++ classes
that allows the simple usage of C++ implementations from R, without necessity to know
technical details about R API internals.

Like any R package, Rdisop is command-line oriented. The functions are called by the
user, possibly with arguments and options. Any session using Rdisop in R starts with
the command

> library(Rdisop)

that makes the functions of Rdisop available in the R environment.

10http://www.r-project.org/
11http://www.bioconductor.org/
12http://www.cran.r-project.org/

http://www.r-project.org/
http://www.bioconductor.org/
http://www.cran.r-project.org/

86 6. Application Tools and Cases

Initialization of Elements and Molecules. The key object in Rdisop is a Molecule
that represents a list containing its molecular formula, an isotope pattern, a score and
other properties. There are principally two ways to initialize molecules. The explicit
initialization can be performed by providing the molecular formula to getMolecule()
function or using a predefined set of elements: For example, the six most common
elements in living beings, CHNOPS, can be initialized using initializeCHNOPS() func-
tion. Most functions in Rdisop operate only a subset of the periodic system of elements
(PSE). Alternatively, molecules can be created implicitly by executing the algorithm
either for masses alone using decomposeMass(), or for both masses and intensities using
decomposeIsotopes() function.

Function getMolecule() returns a list object containing the data for a single element
or composite molecule. For example, an amino acid alanine can be initialized as follows:

> alanine <- getMolecule("CH3CHNH2COOH")
> alanine$formula

[1] "C3H7NO2"

> alanine$exactmass

[1] 89.04768

Note that the molecule’s formula is written in a canonical form, and the monoisotopic
mass includes decimals, while the nominal mass of alanine equals 89 Da. By default,
the elements in use are CHNOPS that are most relevant in metabolomic research. To
create a subset of different elements of PSE, one can use another initialization function,
for example, as follows:

> newElements <- initializeCHNOPSMgKCaFe()
> chlorophyll <- getMolecule("C55H72MgN4O5H", z = 1,
+ elements = newElements)
> isotopes <- getIsotope(chlorophyll, seq(1,4))
> isotopes

[,1] [,2] [,3] [,4]
[1,] 893.5431133 894.5459715 895.5462516 896.54753129
[2,] 0.4117684 0.3176796 0.1793288 0.06834484

In the above listing, an extended set of elements has been created that includes other
elements occurring in metabolites such as magnesium (Mg), kalium (K), calcium (Ca),
and iron (Fe). Using this set, a composite molecule chlorophyll has been created that
contains a metal ion Mg, and is positively, singly charged (z = +1). To examine the
leading four isotopes of the chlorophyll, the getIsotope() function was used. For the
visual inspection the isotope pattern can be plotted using the following command:

> plot(t(isotopes), type = "h", xlab = "m/z", ylab = "intensity").

6.3 Rdisop 87

Decomposing Masses. There are two functions that execute the identification algo-
rithm: decomposeMass() and decomposeIsotopes(). Given a mass and an error, the
decomposeMass() returns a list of molecules with monoisotopic masses that fall into a
specified mass range:

> molecules <- decomposeMass(57.0214, ppm = 20)

$formula
[1] "C2H3NO"

$score
[1] 1

$exactmass
[1] 57.02146

$charge
[1] 0

$parity
[1] "e"

$valid
[1] "Valid"

$DBE
[1] 2

$isotopes
$isotopes[[1]]

[,1] [,2] [,3] [,4] [,5]
[1,] 57.0214640 58.02401863 59.025741860 6.002822e+01 6.103017e+01
[2,] 0.9715877 0.02618779 0.002171668 5.238267e-05 4.294902e-07

[,6] [,7] [,8] [,9] [,10]
[1,] 6.203062e+0 16.303616e+01 6.404216e+01 6.504829e+01 66
[2,] 1.087790e-09 4.333328e-13 6.224049e-17 3.043903e-21 0

Here, a single molecule, the amino acid glycine exists with the monoisotopic mass
that lies in the specified mass region. In addition to a molecular formula and isotopes,
each candidate is supplied with the parity, the validity, and the double-bonds equivalent
(DBE), which are simple and frequently used indicators to test the plausibility of a solu-
tion. The parity indicates the evenness of the number of electrons in the molecule. The
validity is determined by the nitrogen rule, which states that the molecule with an odd
number of nitrogens should have an odd nominal molecular mass. DBE is equivalent to
the rings-plus-double-bonds equivalent (RDBE) or the degree of unsaturation (DU) [96],

88 6. Application Tools and Cases

which is calculated as 1 + 1
2

∑
ni(vi − 2), where ni is the number of atoms with valence

vi.
The candidate molecules that are marked as invalid, or those with the unusual DBE

values, are not discarded by default. Instead, the decision regarding the relevant filtering
strategy is left to the user. Doing so, we avoid removing rare, but legimitate compound
classes that do not obey common chemical rules.

Regarding the nitrogen rule, it should be applied only with nominal masses. However,
small non-nominal mass contributions from a large number of constituting elements
add up in higher mass regions, leading to the monoisotopic mass which rounds to the
next integer compared to the true nominal mass. For example, consider a molecule
C38H64N2 with the monoisotopic mass 548.50692 Da that rounds not to the true nominal
mass 548 Da, and thus do not follow the nitrogen rule. Regarding the DBE value, it
is calculated using the atom valences. However, as mentioned in Chapter 4, several
elements can have different valence states in different molecules. For example, nitrogen
and phosphor can have valence 3 or 5, whereas sulphur can have valence 2, 4, or 6. Thus,
molecules with negative DBE values can not be excluded beforehand, because normal
valence state may be exceeded. For example, a molecule CH2F10S2 contains sulphur at
a valence state of six with a DBE value of -4.

Taking into account these considerations, we want to refrain from removing any legit-
imate compound a priori. The user can, after all, arrange the appropriate filtering rules
to report only the relevant portion of results.

Decomposing Isotope Patterns. On the modern mass spectrometers, such as FT-ICR
or Orbitrap, a molecule’s isotope pattern of outstanding accuracy can be obtained. This
allows to use both masses and intensities in the identification process to improve the
accuracy of the molecular formula prediction. Given the isotope pattern of a sample
molecule and a mass measurement accuracy, decomposeIsotopes() returns a ranked
list of molecule candidates sorted by a score, that represents a similarity measurement
between the theoretical and measured isotope patterns (see Section 4.3 on page 44):

> masses <- c(196.100708, 197.102185, 198.105295)
> intensities <- c(0.8122, 0.1549, 0.0329)
> molecules <- decomposeIsotopes(masses, intensities, ppm = 3.0)
> cbind(molecules$formula,molecules$score,molecules$valid)

[,1] [,2] [,3]
[1,] "C13H12N2" "0.99999998888609" "Valid"
[2,] "C7H18NO3S" "1.11087825603777e-08" "Invalid"
[3,] "C9H15N3P" "5.1275127846229e-12" "Invalid"
[4,] "C3H21N2O3PS" "1.97564553565218e-33" "Valid"
[5,] "C5H18N4P2" "1.12078165228393e-47" "Valid"
[6,] "H26N3S4" "2.59829944976493e-91" "Invalid"
[7,] "C2H141NO" "5.39181020551907e-105" "Invalid"
[8,] "CH21N5P3" "5.0512131881472e-200" "Invalid"

6.3 Rdisop 89

[9,] "H20O11" "0" "Valid"

The above listing contains 9 candidate molecules whose monoisotopic masses lie within
3.0 ppm from the measured mass of 196.100708 Da. Each candidate can be inspected
on the validity with respect to the nitrogen rule. The true molecule C13H12N2 is clearly
identified as the top candidate, based on the score of its isotope pattern.

In the mass spectrometry experiment, the measured peak list typically corresponds
to some adduct ion, such as [M + H]+ in LC/ESI-MS experiment. In order to obtain
the molecular formula of the actual sample molecule, the adduct can be removed using
subMolecules() function:

> query <- subMolecules("C5H10NO4", "H")
> query$formula

[1] "C5H9NO4"

Similarly, if during the ionisation an in-source fragmenation occurs, the lost fragment
can be added to the sample molecule using addMolecules() function.

Related Bioconductor Packages. The data from a mass spectrometer is typically ob-
tained in the form of a raw machine data. The current release of Bioconductor (version
2.4) contains two packages that handle the peak picking of the raw data: MassSpec-
Wavelet [33] and XCMS [111]. As the latter contains a wrapper for MassSpecWavelet,
we can suggest XCMS to be used to transform the raw data into the input peak lists
for Rdisop. Another package, called CAMERA [120], which is at the time of this writ-
ing available only in a Bioconductor development version13, can be used to extract the
isotope peaks from the peak lists generated by XCMS.

After the candidate molecular formulas are generated, the results can be further
queried in open-access compound databases, including PubChem14 from the National
Center for Biotechnology Information (NCBI), and Chemical Entities of Biological In-
terest (ChEBI)15, to find out if any information about this compound exists. Note that
a match or non-match does not indicate a correct or incorrect formula, but facilitates in
the subsequent validation or structure elucidation steps.

Summary. We have presented Rdisop, a new R package for the identification of the
molecular formula of metabolites solely from its accurate mass and isotope pattern as
obtained from high resolution mass spectrometers. The efficient algorithm implementa-
tions in Rdisop are complemented with the front-end features to perform the subsequent
statistical analysis. The distributions of Rdisop for Unix/Linux and Windows operating
systems are available under the GNU General Public License (GPL). As other Biocon-
ductor packages, Rdisop offers a high level of standardized documentation through the
dedicated vignette and help pages16.
13http://bioconductor.org/packages/devel/bioc/html/CAMERA.html
14http://pubchem.ncbi.nlm.nih.gov/
15http://www.ebi.ac.uk/chebi/
16http://www.bioconductor.org/packages/2.4/bioc/html/Rdisop.html

http://bioconductor.org/packages/devel/bioc/html/CAMERA.html
http://pubchem.ncbi.nlm.nih.gov/
http://www.ebi.ac.uk/chebi/
http://www.bioconductor.org/packages/2.4/bioc/html/Rdisop.html

90 6. Application Tools and Cases

Rdisop fills the need for a simple and efficient tool for experiments in metabolomics
on a small scale. For a large scale application, a relevant graphical user interface is
an indispensable feature for the successful interpretation of the molecular formulas of
unknown sample fragments. In the next chapter, we address this issue by presenting
a standalone program, that complements the efficient computational methods with a
powerful graphical user interface for the large scale analysis of MS data.

7 SIRIUS

According to Human Metabolome Project1, there exist about 2 900 common metabolites
that are detectable in the human body, not accounting for secondary metabolites. Yet,
until recently less than 30 % have been identified. Similar is the situation for higher
eukaryotes: Up to 20 000 metabolites are currently estimated to remain uncharacterized
for any given organism [41]. This lack of information is mostly due to the high diversity
and variability encountered in the metabolome. Consequently, one of the key challenges
in metabolomics, analytical chemistry, and other related life sciences is to establish the
knowledge of metabolite identity.

As mentioned in the previous chapter, for a small scale application, a multitude of
various tools exists for the identification of small molecules. For a large scale analysis of
metabolomic data, the existing software solutions are mainly concern with the process-
ing and storage of the mass spectrometry (MS) data. One of the most recent examples
in this category is MeltDB [87], a web-based program for the preprocessing, annotation
and storage of datasets obtained from metabolomic experiments. Other recent solutions
include, e.g., TagFinder [78] and mzMine [69]. Whereas the focus of these packages is on
the preprocessing and annotation functionality, the compound identification is mainly
performed by mass spectral database lookup. Clearly, these methods are confined to
identifying metabolites and chemical compounds that have been included in some refer-
ence library. Unlike in evolved genomics and proteomics with a number of existing target
databases, the state-of-art in metabolomics is yet under very developmental stage with
the limited number of available databases [28]. Hence, de novo identification solutions
are highly sought. Moreover, the visualization tools often suffer from poor or no support
of computational methods, while the algorithmic tools are usually command line based
and require good understanding of the software environment [86,111].

We have developed a new java-based application SIRIUS (Sum formula Identification
by Ranking Isotope patterns Using mass Spectrometry), which aims at user-oriented
software framework for de novo identification of molecular formulas of metabolites us-
ing accurate mass spectrometry data. SIRIUS core comprises efficient algorithms for
generating all elemental compositions for a given mass and error, calculating isotope
patterns for all chemically relevant compositions, and matching and ranking the candi-
date molecules against the input spectrum. These computational methods in SIRIUS
are combined with a powerful graphical user interface for a fully featured analysis of MS
data. An extensive management system allows simplified data handling, and offers an
easy way to integrate new algorithms and data structures in the application. Through
a user-friendly interface, SIRIUS allows user (i) to import datasets in most known mass

1http://www.metabolomics.ca/

91

http://www.metabolomics.ca/

92 7. SIRIUS

spectrometry file formats, (ii) automatic recognition of molecular ion adducts available
in the input spectrum, (iii) handy visualization of identified molecular formulas and
their isotope patterns, (iv) customizable export of identification results to common file
formats. For the means of data post-processing, we provide basic functionality to search
for molecular formulas identified by the algorithm in NCBI PubChem database2.

The remainder of this chapter is organized as follows: we start by describing the sys-
tem architecture, and give some technical details on the used libraries. Then, we present
a basic application workflow and outline the cornerstones of the data and analysis prepa-
ration. We also give a brief overview of the existing mass spectrometry data formats,
and the file formats that are supported by SIRIUS. Finally, we present the application
functionalities for the analysis of algorithm results, including visualization, data export,
and searching for molecular formulas in external databases.

7.1 System Architecture

Similar to a typical three-tier application, SIRIUS structure consists of three layers: the
presentation layer, the functional or business logic layer, and the data layer. The pre-
sentation layer consists of the graphical user interface (GUI), and is responsible for the
data visualization and processing the user requests to the next, functional layer. The
functional logic layer includes the implementations of the algorithms and general utility
components, which can be used at all layers of application. The third layer comprises a
set of domain objects (DOs) that represent basic entities used in the problem domain,
for which the application is created. Domain objects are typically designed to be made
persistent in a database or flat files, and thus, have to be clearly distinguished from
the other types of data, such as user interface widgets or algorithm data structures.
Separating domain objects from the user interface and algorithms improves the applica-
tion scalability and performance. In Figure 7.1, a schematic illustration of the SIRIUS
architecture is depicted.

7.1.1 Domain Objects

Domain objects typically represent logical entities containing some important informa-
tion in the problem domain space [48]. As our problem domain is the identification
of sample molecules using mass spectrometry, the domain objects represent the corre-
sponding entities of this domain such as, e.g., chemical elements, compounds, peak lists
etc. The diagram of the structure of the domain objects is shown in Figure 7.2.

In general, domain objects should know how to copy and compare themselves to other
domain objects of the same type. This is of particular importance in the large scale
applications, as it keeps implementations error free and easily extendable. Since any do-
main object can contain references to other domain objects, the copying and comparison
of the whole hierarchical structures can become tedious and error prone. To overcome

2http://pubchem.ncbi.nlm.nih.gov/

http://pubchem.ncbi.nlm.nih.gov/

7.1 System Architecture 93

Presentation
layer

Functional
layer

Data layer

Domain
objects

Algorithms

GUI
Visualization

Web
Services

Import

Export

Persist

File

PubChem

DB

File

a) b)

Algorithms:

General Utility Components:

Component Manager

LoggingResource Manager

Desktop Manager

Main Frame Controller

Configuration

Domain Objects Factory

Equaling Hashing Cloning

Mass decomposition

Computing isotope patterns

Scoring candidate formulas

Figure 7.1: a) The three-tier architecture of the SIRIUS framework. b) Schematic rep-
resentation of the main SIRIUS components.

this difficulty, any domain object in SIRIUS extends the basic AbstractDomainObject
that takes the responsibility over the cloning and comparing functionality.
AbstractDomainObject has a default implementation of clone(), hashCode(), and

equals() methods using Java Reflection3. To obtain this built-in functionality, the
extending class has to only implement getClonePrototype() method and the cloning of
the collections. If some DO needs a specific implementation, the default behavior of these
methods can be overridden. Note that this design sets one important requirement on the
DOs structure: Domain objects need to form a directed acyclic graph (DAG), otherwise
the default implementations of clone(), hashCode(), and equals() will produce an
infinite recursion and end up with StackOverflowError exception.

All DOs instances have to be created using AbstractDomainObjectFactory. This
ensures that if the implementation of one DO needs to be changed, the other parts
of code can remain untouched as long as the new functionality implements the same
domain object interface. This behavior resembles the well known Abstract Factory design
pattern [48].

Keeping domain objects as simple as possible enhances the portability, and simplifies
their integration with the entities from other domains. Thus, domain objects in SIRIUS
are realized as Plain Old Java Objects (POJOs). Furthermore, each domain object
should have a DO interface that abstracts its implementation from other parts of the

3http://java.sun.com/docs/books/tutorial/reflect/

http://java.sun.com/docs/books/tutorial/reflect/

94 7. SIRIUS

Project

- name: String
- peaks: List
- msSettings:
MassSpectrometerSettings
- runs: List

Peak

- mass: double
- abundance: double

MassSpectrometerSettings

- massError: double
- massErrorUnits: String
- abundanceError: double
- modifications: List

MassSpectrometerModification

- ions: Set
- numberMolecules: int
- charge: int
- type: int
- ionMode: String

MultipleElement
- amount: int

Element

- symbol: String
- name: String
- valence: int
- isotopes:

IsotopeDistribution

ComposedElement

- sequence: String
- dbe: double
- elements: List

IsotopeDistribution

- nominalMass: int
- peaks: List

Run

- compounds: List
- project: Project
- algorithmSettings:

AlgorithmSettings

AlgorithmSettings

- alphabet: DecompositionAlphabet
- boundaries: AlphabetBoundaries
- blowup: double
- massPrecisionFull: double
- massPrecisionMin: double
- abundancePrecisionFull: double
- abundancePrecisionMin: double
- abundanceCorrection: double

Compound
- peaks: List
- modifiedCompounds: List

ModifiedCompound
- modification:
MassSpectrometerModification

- modifiedPeaks: List
- candidates: List

ScoredCompoundCandidate
- element: Element
- distribution: List
- scores: List<double>

DecompositionAlphabet

- elements: List

AlphabetBoundaries
- min: Map<String, Integer>
- max: Map<String, Integer>

*

1

*

1

*

1

* *

1 *

*

*

1*
1

*

*

*

*

1

*

*
1

1

*

1

1

1

1

1

1

1

*

1

*
extends extends

1

Figure 7.2: Overview of the structure of the domain objects in SIRIUS.

functional layer. The DO interfaces are used to make changes in the implementation
easier and faster. Therefore, all algorithms and GUI components should handle only
instances typed to these interfaces, not to the actual implementing classes.

7.1.2 Functional Logic Layer

The functional or business logic layer consists of the algorithm implementations and gen-
eral utility components that can be used at all application layers, see Figure 7.1. Major
algorithm implementations in SIRIUS include (i) generating of all elemental decompo-
sitions for a given mass and error, (ii) computation of the molecule’s isotope pattern
for a given molecular formula, and (iii) scoring the theoretical isotope pattern against a
given measured peak list. Each implementation is clearly encapsulated from other parts
allowing the execution of any individual algorithm separately. As algorithms have been
described in detail in Chapter 4, here we omit further discussion on their implementa-
tions; more details can be found in the documentation to the application programming
interface (API) on the project web page4.

4http://bio.informatik.uni-jena.de/trac/sirius

http://bio.informatik.uni-jena.de/trac/sirius

7.1 System Architecture 95

SIRIUS components are the part of the central functional layer as they can be used
by the top and bottom application layers as well. They include Component Manager,
Configuration, Resource Manager, Logging and others, see Figure 7.1. Here, we give a
brief introduction to the several basic components, while the description of the remaining
units can be found in the associated API documentation.

Component Manager. Component Manager is the central component in the applica-
tion infrastructure. It is responsible for the creation and deletion of other general utility
components at the business logic layer and other layers as well. By keeping the references
to all existing components, it allows to statically obtain such reference at any level of
the application. This way, Component Manager acts as a “container” for all other com-
ponents. For example, if user is about to create a new domain object, the presentation
layer requests from the Component Manager the reference to the object factory of the
current domain, and performs an instantiation.

The initialization of the components in Component Manager is performed in two steps:
First, the basic components such as Logging and Configuration, are created. Then, the
remaining units are initialized, which by the creation can employ the functionality of the
basic components. For example, if any of the latter initializations fails, the error can be
traced back using the Logging component.

Other Utility Components. Configuration component can be used to store various
configuration values that are defined at application startup. For the initialization, the
component uses the contents of the application configuration XML file that contains a
list of configuration key-value pairs. After creation, clients can query the component for
the configuration values giving a corresponding key as a parameter for the query. This
way, any configuration parameter given at startup ,e.g., the current application version
can be retrieved from this component.

Clear and verbose logging is vital both for the development and maintenance phase
of any software. The logging responsibility in SIRIUS is handled by the special purpose
Logging component, which is built upon a widely used Log4j Library 1.2.145. Log4j
offers an extensive functionality for advanced and verbose logging at all application
levels. Similar to a typical logging framework, Logging component in SIRIUS divides
the log output to five different levels: DEBUG, INFO, WARNING, ERROR, FATAL. Note that
the debug level should be used sparingly, such that at least in production it is completely
left away from the actual file output. To make the logging available at the presentation
layer, a dedicated Log Panel exists that accumulates the log output and informs user
with notifications.

The component Resource Manager is used to obtain references to any external binary
resources such as images, sounds, videos etc. Each resource used in the application has
its entry in the resource map in Configuration. Using a relevant key, clients can query the
Resource Manager to provide a Uniform Resource Locator (URL) of the corresponding

5http://logging.apache.org/log4j/

http://logging.apache.org/log4j/

96 7. SIRIUS

resource. One of the basic examples of using the Resource Manager is to provide an icon
file to be shown in the presentation layer.

Another general utility component is a Biological Data Service, which provides any
biochemical data necessary for our analysis, such as the properties of the relevant chem-
ical elements that includes, e. g., a distribution of natural isotopes, and valences. Upon
the component creation, this information is initialized from the configuration XML file
using the XStream Library 1.2.26, which allows a simplified (de-)serialization of XML
files, and is used for this task throughout our application. To de-serialize any file into
the application, a Serialization Manager is used, which unmarshalls the contents of the
file available from the hard disk or class loader into the corresponding data structure.
Similar, a serialization of any object back to the XML file is performed.

7.1.3 Presentation Layer

The SIRIUS presentation layer consists of the graphical user interface (GUI), which is
based on the standard Java Swing Library7. SIRIUS employs a wide variety of other
Swing-based technologies that can be reused to keep a unified design and simplify the
integration of new functionalities. Here, we only outline several major aspects of the GUI
infrastructure; the remaining parts can be found in the associated API documentation.

Application Desktop. Frames and panels on the application desktop are arranged and
managed by the docking system of the VLDocking Framework 2.1.48. Using docking, the
application views can be arranged or docked on the desktop with respect to their respon-
sibility, allowing for a simple navigation and customization of the application desktop.
Docking of UI components at the SIRIUS application frame is handled by the Desktop
Manager component. Desktop Manager contains two desktops: a view desktop, which
corresponds to the full application frame, and a data desktop, which is a segment of the
view desktop, and displays the output of the algorithms. Correspondingly, all UI com-
ponents are divided in two categories: components that display the algorithm results are
grouped together on the data desktop, while the remaining units are spread around occu-
pying the remaining space, and can be toggled on or off depending on the user needs. In
Figure 7.4, a typical view of the SIRIUS main frame is shown: views containing the algo-
rithm output are tabbed together in the central pane, while other components are placed
on the boundaries, including Project Explorer (left), Properties View (left bottom),
and Log Panel (bottom). Such layout clearly separates the output of the computa-
tional methods from other information, allowing clear navigation and customization of
the application frame. Adding a new component to the desktop structure is as easy as
providing a component’s unique identifier, a group to which the component belongs, and
other supplementary information such as a title and icon.

6http://xstream.codehaus.org/
7http://java.sun.com/docs/books/tutorial/uiswing/
8http://www.vlsolutions.com/en/index.php

http://xstream.codehaus.org/
http://java.sun.com/docs/books/tutorial/uiswing/
http://www.vlsolutions.com/en/index.php

7.1 System Architecture 97

Dialogs and Panels. Dialogs and panels in SIRIUS are based on the JGoodies Forms
1.0.79, which provides a powerful and precise layout for the GUI components. To
keep a standardized look-and-feel, SIRIUS supplies the base classes DefaultDialog and
DefaultPanel, which can be extended by newly created GUI components. In addition,
UIUtils class provides a set of useful utility functions for the consistent GUI design,
including the creation of the default form builders, columns, rows, borders etc.

Wizards. For creation of new projects and analyses, SIRIUS employs Wizard dialogs
from the SwingLabs Wizard Project (version 0.992)10. An open-source Wizard API
offers a powerful framework for making the comprehensive wizards by coupling to-
gether several settings pages for entering the user input. Although wrapped together
for the wizard purposes, the input components in SIRIUS are fully decoupled from the
Wizard API itself, and can be reused in different from the wizard-based implementa-
tions. For example, handling of the algorithm specific parameters is performed on the
AlgorithmSettingsPanel, which is used both in a wizard-based creation of each par-
ticular analysis and for modifying the default algorithm settings globally.

Application Startup and Shutdown. SIRIUS startup is realized using Swing Appli-
cation Framework (SAF) 1.0311, which offers developers a rich set of elements typical
to any Swing-based application, such as lifecycle, session storage, threading and others.
SAF has already been successfully integrated in large scale applications for the anal-
ysis of phylogenetic [53] data. SIRIUS integrates several SAF features, including the
application lifecycle and session state functionality.

Each application has a well-defined life cycle, such as launching the application, start-
ing the GUI, and shutting down. Each stage has a corresponding method that our
application can extend or use the default SAF functionality. For example, SIRIUS over-
rides only two methods startup() and shutdown() from the SAF Application class to
provide the specific behavior to the corresponding lifecycle stages, whereas the remaining
work to successfully start and close the application is left to the underlying framework.
Upon startup, Application reads the configuration file with application settings that
include, e. g., an icon, title, screener, and launches the program. Upon shutdown, vari-
ous runtime properties of the application can be stored. These properties can be used
to store small amounts of client specific graphical configuration, including window size,
internal frame locations, and other graphical properties. To save this data locally and
restore by the next start, SIRIUS utilizes the session storage functionality of the SAF
ApplicationContext class.

After starting up SAF default functionally, SIRIUS performs a few more preparation
steps. First, a Component Manager is created, which performs the initialization of all
data layer components, general utilities components, and Desktop Manager. Then, Main
Frame Controller is initialized, which, in turn, setups the remaining UI widgets on the

9http://www.jgoodies.com/freeware/forms/
10https://wizard.dev.java.net/
11https://appframework.dev.java.net/

http://www.jgoodies.com/freeware/forms/
https://wizard.dev.java.net/
https://appframework.dev.java.net/

98 7. SIRIUS

main frame including an icon and main menu. Main Frame Controller is responsible
for handling all application events coming to the main view. This way, it functions as a
Controller in a Model-View-Controller (MVC) design pattern [44], which is one of the
cornerstones of any Swing-based application. Here, we omit further details about the
Main Frame Controller. The complete description of this and other components involved
in the application startup can be found in the associated API documentation.

Finally, the application desktop is shown, indicating the readiness of application to
receive and handle user requests. For a “quick start” example, SIRIUS provides some
demo data from the datasets described in Section 4.4. Once this data is uploaded, a
few demo projects become available for submission to the identification algorithm. A
detailed survey to the typical application workflow is the topic of the next section.

7.2 Application Workflow

A typical SIRIUS workflow includes the following steps: preparing the input data for
the analysis, setting up and running the algorithm, and analyzing the algorithm results.
In this section, we discuss each of these steps in more detail.

7.2.1 Preparing Input Data

A project is a root object in the hierarchy of the SIRIUS domain, and serves as a
“portfolio” for the input and output data of the algorithm analysis. Originated from the
laboratory experiment, the input for the computational analysis includes the processed
MS data in the form of peak lists, and settings of the mass spectrometer on which this
data has been obtained. Instrument settings include a mass, an abundance error, and a
set of molecular ion adducts typical for this instrument.

In an initial step, the input data has to be added to the project. For an upload of the
peak lists only, user can perform a dedicated Import Data task from the pop-up or file
menu, which reads the MS data from file(s) and adds it to one of the available projects.
Alternatively, the input peak lists and machine settings can be entered manually12 in a
new project or analysis wizard. The corresponding tasks are, again, available from the
pop-up or file menu. After initialization, the input peak list and machine settings can
be reused for multiple analyses within the same project.

To import mass spectrometry data, SIRIUS employs the ProteomeCommons.org IO
Framew̃ork 6.21 [38], which allows reading most of the available MS data formats. In
the remainder of this section, we give a short overview of the existing file formats, and
provide recommendations upon conversion of the raw data to file formats supported by
SIRIUS.

Supported Mass Spectrometry Data Formats. Following the variety of commercial
and custom-build mass spectrometers, a multitude of different MS data formats exists.

12For the peak lists, the file(s) upload is also available.

7.2 Application Workflow 99

All available file formats can be divided into three groups: binary data, plain text, and
more recent XML-based format.

The raw data obtained from a mass spectrometer is stored in a vendor binary file
format. Several well known binary formats include raw/Xcalibur (Thermo Electron),
wiff/Analyst (ABI and MDS Sciex), raw/MassLynx (Waters), and baf (Bruker). Before
computational analysis, MS spectra has to be extracted from raw data to ASCII or XML
data formats. A number of various conversion tools are available for vendor specific file
formats13. Alternatively, the raw data can be converted into a network Common Data
Form (netCDF), a binary data format, which is widely used for saving experimental data
including MS data14.

Typical examples of the plain text format are mgf (MASCOT), dta (SEQUEST), and
pkl (ProteinLynx, Micromass). While saving low resolution or low volume MS data in
plain text can be a plausible solution, as far as high resolution or chromatography MS
data is concerned, the usage of ASCII format becomes impractical due to the huge file
size. Moreover, plain text files do not contain precursor scans, thus, lacking valuable
information for comprehensive computational analysis.

More recently, an open XML file format mzXML [95] has been introduced for stor-
ing data generated by mass spectrometry runs, and has been quickly supplied with a
number of tools to convert manufacturer formats, such as Mascot Distiller15, ReAdW,
mzBrucker, and others16. However, mzXML has not been designed to contain biological
descriptive information. About the same time, the mzData format [90] has been devel-
oped with the primary concern of encapsulating the peak lists from raw data, and the
durable archiving of the extracted data in public repositories. As the existence of two
separate formats for essentially the same purpose has been causing considerable confu-
sion and extra programming support, it has been decided to create a new format unifying
mzXML and mzDATA. In June 2009, a joined mzML 1.1.0 format was released under
the guidance of the HUPO Proteomics Standards Initiative (PSI)17, which addresses the
problem of standardizing mass spectrometry-related data formats and vocabulary.

As the importing functionality in our application basically extends the ProteomeCom-
mons.org IO Framework, SIRIUS can read all mass spectrometry formats that are sup-
ported by this library18. A more detailed list of existing file formats and conversion
utilities can be found on the web19.

7.2.2 Analysis Preparation and Parameter Input

After importing the input data, the next step of the SIRIUS application workflow is to
set up a new analysis run. To achieve this, user can start a new analysis wizard on the
selected project. If no project with relevant data exists, a wizard for the creation of a
13http://sashimi.sourceforge.org
14http://www.unidata.ucar.edu/software/netcdf/
15http://www.matrixscience.com/distiller.html
16http://tools.proteomecenter.org/software.php
17http://www.psidev.info
18http://www.proteomecommons.org/current/531/
19http://www.proteomecommons.org,http://tools.proteomecenter.org/software.php

http://sashimi.sourceforge.org
http://www.unidata.ucar.edu/software/netcdf/
http://www.matrixscience.com/distiller.html
http://tools.proteomecenter.org/software.php
http://www.psidev.info
http://www.proteomecommons.org/current/531/
http://www.proteomecommons.org
http://tools.proteomecenter.org/software.php

100 7. SIRIUS

new project can be invoked, which also includes the analysis setup. Preparation of a
new algorithm run includes the following steps: setting up the algorithm parameters,
extracting isotope patterns from the input peak list, and validating the list of compounds
for the subsequent computational analysis.

Algorithm Parameters. Algorithm parameters include the settings for the mass decom-
position algorithm, such as a blowup factor and alphabet (see Section 3.2 on page 31),
and for scoring of the isotope patterns (see Section 4.3 on page 44). Furthermore, the
user can specify bounds on the minimal and maximal amount of elements in the candi-
date molecule. Often in de novo interpretations of MS data, a partial tag or other sample
preparation information can suggest such constraints. Providing the lower and upper
bounds on the number of elements restricts the search space to only relevant candidate
molecules and can significantly speed up the search, see Section 6.1.2 on page 72.

SIRIUS provides the user with reasonable default values for the algorithm parameters.
To customize the preferences to his own needs, user can open the Preferences dialog
and modify the algorithm settings globally, see Figure 7.3. The applied changes will be
saved in the user local workspace and automatically reloaded in any subsequent wizard.

Extracting and Validating Isotope Patterns. To extract isotope patterns, the input
peak list is parsed and divided into signal groups related to different compounds. A peak
list can also contain several signal groups belonging to the same compound, modified
by different molecular ion adducts. Typical ion adducts, such as [M + H]+ and [M +
Na]+, are provided as a part of the default MS instrument settings, and can be further
customized. Identifying modifications is done by calculating mass differences between
monoisotopic peak masses. In view of the small number of adducts, we apply a simple
exhaustive search to find all matching mass differences. If there is no prior knowledge on
the source of modification, the user can manually assign one or more adduct types to an
isotope pattern. Moreover, if an automatic arrangement of individual peaks to isotope
patterns has failed, each peak can be manually assigned to a proper signal group using
a simple drag-and-drop.

After grouping isotope patterns to compounds, one or more compounds of interest can
be selected for the subsequent identification analysis. Before executing the algorithm, the
results on the approximate number of candidates for each compound can be previewed.
To obtain these estimates, we use Equation (3.4) to compute the approximate number
of decompositions for a given mass, error, and alphabet. If the approximate number of
solutions exceeds a certain customizable threshold, the user receives a notification and
can modify the input before submitting it to the algorithm.

After creation, the analysis is added to the corresponding project, and is shown as
its child node in the Project Explorer, see the left pane in Figure 7.4. For the visual
inspection of entered data, the contents of each node can be viewed in the Properties
view, see the left bottom window in Figure 7.4.

7.2 Application Workflow 101

Figure 7.3: The SIRIUS preferences dialog.

7.2.3 Analyzing Algorithm Results

The output of the algorithm is a list of candidate molecular formulas for each compound.
Candidates are ranked with respect to the score that reflects the probability that this
candidate is a true molecular formula for the analyzed compound, see Section 4.3. In the
results view, molecular formulas are listed in the summary table, sorted in decreasing
order of likelihoods. To view an entry in more detail, the user can select and compare
several theoretical and measured isotope patterns visually.The visual comparison of iso-
tope patterns is realized using an open-source JFreeChart Library 1.0.520, which offers
an extensive set of functions to create professional quality charts. SIRIUS extends this
rich functionality, e.g., for printing or zooming in the chart for detailed examination of
the differences between isotope patterns.

Another possibility to analyze the results of the algorithm is to export them to the user
workspace in the form of PDF reports, and open for further evaluation using the default
system or user specified editor. Furthermore, the algorithm results can be exported

20http://www.jfree.org/jfreechart/

http://www.jfree.org/jfreechart/

102 7. SIRIUS

Figure 7.4: The SIRIUS main frame.

into machine–readable file formats such as plain text and XML documents, that can be
further used as an input in a larger algorithmic pipeline.

Querying Post-processed Data. The candidate molecular formulas can be queried in
an open-access NCBI PubChem database to obtain any information available for the
compound with a given molecular formula. The retrieved information can facilitate in
further verification or structure elucidation steps.

PubChem Compound and Substance databases belong to the NCBI Entrez cross-
database search system21, which provides a set of tools, Entrez Programming Utilities
(eUtils), for the retrieval of Entrez data outside of the regular web query interface. The
NCBI eUtils Web Service22 provides developers an access to eUtils via SOAP protocol.
For the short introduction to Web Services, see Section 6.1.2.

For any NCBI Entrez database, a simple search query for one or more molecular
formulas can be created using a corresponding database client. SIRIUS employs a sim-
ple strategy to search for the compound information: First, the PubChem Compound
database is queried, which contains a chemical structural information. If no match is
found, then the PubChem Substance database is searched on the chemical description
of the compound. Moreover, the latter can contain the information on the compound

21http://www.ncbi.nlm.nih.gov/sites/gquery
22http://www.ncbi.nlm.nih.gov/entrez/query/static/esoap_help.html

http://www.ncbi.nlm.nih.gov/sites/gquery
http://www.ncbi.nlm.nih.gov/entrez/query/static/esoap_help.html

7.3 Summary 103

Figure 7.5: Query results to the NCBI PubChem Database.

biological activity. Upon retrieval, the results on putative compounds are shown in the
dedicated view, see Figure 7.5. Displayed information include a molecule’s name, a
Compound ID (CID) or Substance ID (SID), a chemical structure, and other compound
properties.

7.3 Summary

We have presented SIRIUS, a new java-based software framework for de novo identifi-
cation of molecular formulas of metabolites using high-resolution mass spectra. SIRIUS
employes recently developed, efficient computational methods, and combines them with a
powerful graphical user interface for the comprehensive analysis of MS data. Well-defined
infrastructure of our application provides a simple way to integrate new computation
and visualization functionalities in the framework.

As the focus of our application lies on the computational analysis of MS data, SIRIUS

104 7. SIRIUS

currently supports the export of the analysis results as flat files only. However, after
continuous usage of the application, the amount of analyzed data inevitably grows, and
saving this information by means of flat files soon becomes impractical. Therefore, we are
currently performing further developments to add a database support to our application
for the local storage and reuse of the user specific project and analysis data.

Moreover, for execution of particularly memory consuming tasks and for non-interac-
tive uses, we are planning to extend SIRIUS to run in the batch processing mode. For
efficient memory usage, any input/output or computationally intensive tasks should be
executed in a background thread. As our application constantly handles algorithmically
intensive problems, we would like to enhance current SIRIUS implementations with the
rich threading functionality of the Swing Application Framework for starting, stopping,
and monitoring the progress of background tasks.

SIRIUS is freely available for download at the project website23. SIRIUS distributions
for various operating systems include Unix/Linux, Windows and Mac OS. Alternatively,
the user can deploy and execute the application over the network using Java Web Start24.
To run SIRIUS, a Java Runtime Environment (JRE), version 1.5 or newer, is required.
Regarding hardware requirements, we recommend at least 256 MB, or better 512 MB of
free memory.

To facilitate in further collaborative development, we provide a SIRIUS Trac25, an ex-
tensive bug and issue tracking system, which makes the application development process
transparent for the end users, and provides means for an immediate feedback. Follow-
ing the SIRIUS Trac, one can (i) examine the list of changes on SIRIUS over the time
line, (ii) learn more about our future plans and milestones looking at the road map,
(iii) report a problem or suggestion by creating a new ticket using the guest login, and
(iv) view tickets on their resolution state. Finally, SIRIUS Trac includes a complete
API documentation and a detailed user manual for the guidance to all nuances of the
application usage.

23http://bio.informatik.uni-jena.de/sirius/
24http://java.sun.com/products/javawebstart/
25http://bio.informatik.uni-jena.de/trac/sirius

http://bio.informatik.uni-jena.de/sirius/
http://java.sun.com/products/javawebstart/
http://bio.informatik.uni-jena.de/trac/sirius

8 Conclusion

In this thesis, we have discussed several algorithms and applications for identification of
sample molecules using high resolution mass spectrometry data.

After the completion of a multitude of various genomes, the bioinformatics research has
progressed by focusing on the study of different functional levels of biological systems
including transcriptome, proteome, and metabolome. These studies allow an under-
standing of living organisms at the molecular system level, and provide an insight into
the complex functioning of biological systems.

With the major advances in MS instrumentation, an era of “precision” proteomics
has been recently announced [81]. This implies a routine high-throughput acquisition
of very accurate MS data, such as of several parts-per-million (ppm) mass measurement
accuracy. For metabolomics, this accurate information can greatly facilitate in resolving
its major challenge – the identification of metabolites, whose majority remains unknown
to date. So far, this bottleneck has prevented metabolomics to unroll its full potential
in life science. With regards to human health alone, great benefits of metabolomic in-
vestigations can be expected: Recent experimental studies have shown the potential of
metabolomics to provide new biomarkers indicative of human disease [2]. However, in
contrast to the emerging fields of genomics and proteomics, the progress in metabolomics
regarding the number of existing computational methods, and applications for the analy-
sis of MS data is far from satisfying. Due to the enormous complexity and high dynamics
of the metabolome, the number of available metabolomics databases is limited [28]. Con-
sequently, de novo identification solutions are highly sought.

We have presented an algorithm that employs accurate isotopic abundances for iden-
tifying the molecular formula of metabolites. Revealing the molecular formula is a
crucial step in identifying a metabolite, as it greatly reduces the search space of possible
molecular structures that can be further examined for automatic structure elucidation
of molecules. We have proposed the notion of an isotope pattern, and presented methods
for the efficient computation of isotope patterns, which is important for the analysis of
larger molecules where the search space increases rapidly. We have evaluated our method
on several datasets obtained from different MS techniques, and achieved results of ex-
cellent quality: For orthogonal time-of-flight mass spectrometry, we correctly identified
molecular formulas for more than 90 % of the molecules with masses up to 1 000 Da;
in other cases the search space was reduced to only a few candidates. Regarding the
performance of our method, it is time and memory efficient and can be executed on a
common desktop computer.

Next, we presented an algorithm to generate all solutions of a multi-dimensional equal-
ity constrained integer knapsack problem. This problem arises in the context of finding
all amino acid sequences of a peptide with given molecular formula. The results both

105

106 8. Conclusion

on simulated and experimental data demonstrate a superior performance of our mixed
matrix approach which is about two orders of magnitude faster than the second-best
approach.

Based on the implementations of our algorithms, we have developed several application
tools that can be used for a small scale analysis of MS data. We have created Decomp,
a web-based application for decomposition of integer and real-valued masses over an
arbitrary alphabet. Decomp can be applied both for the interpretation of real-valued MS
data and for solving instances of the Money Changing Problem. We have demonstrated
the applicability of our software as a part of another algorithm, called CompNovo, for
de novo peptide sequencing using tandem mass spectra. We also have created Rdisop, a
R/Bioconductor package for analysis of small sample molecules using an accurate isotope
pattern information.

Finally, we have developed the java-based software framework SIRIUS, which imple-
ments all the presented algorithms for identification of molecular formulas of metabolites,
and combines them with an easy-to-use graphical user interface for the comprehensive
analysis of MS data. A refined application structure provides a simple way to integrate
new computation and visualization methods to the framework. A rich set of SIRIUS
post-processing functionalities, including visualization of isotope patterns, customizable
data export, and searching for molecular formulas in biological databases, is the essential
part of our software allowing an efficient interpretation of the algorithm results.

Future Work. Although the results computed by our algorithms have achieved a re-
markable quality, there are still some unsolved problems.

The current version of our algorithm uses information from only one molecular ion
adduct per compound. Combining information from several signal groups belonging to
the same compound (if they exist), could improve identification rates. Since measured
data from different ion adducts of the same compound could be of different quality,
our evaluation shows that a simple intersection of candidate lists makes results worse.
Instead, a more refined approach is needed. We want to develop a probabilistic model
which takes into account the quality of measurements when combining data from multiple
adducts. This data can originate from multiply charged ions, so far ignored by our
algorithm, but upon inclusion, can potentially improve the identification accuracy.

As a more theoretical aspect, one open problem is to improve the approximation of
the number of decompositions over an alphabet with a considerable number of elements,
such as the 20 standard amino acids. This can be achieved by deriving further coefficients
of the polynomial in Equation (3.7) but is far from trivial (Takao Komatsu, personal
communication).

Regarding our mixed matrix approach for the inference of amino acid composition
from a given molecular formula, this work has just started and has further applications
beyond the field of proteomics. We are currently conducting evaluations of our method
to compare its performance to other related algorithms such as the one proposed in [93],
that solve the general case of a system of linear Diophantine equations with negative
coefficients. Improving existing solutions for the general linear Diophantine systems can

107

have further implications, e.g, for decomposing complex chemical reactions in analytical
chemistry.

Several practical aspects regarding our future work on the SIRIUS software should be
noted. SIRIUS is a growing software project, and since its introduction has been subject
to continuous improvement. In release 0.7, called SIRIUS starburst, a novel algorithm
for de novo analysis of metabolites using tandem mass spectra [21] has been integrated,
which employs the fragmentation information from several medium-quality mass spectra
of the same compound, and searches for the most probable molecular formula that
can cause the observed fragmentation pattern. In the future SIRIUS releases, we plan
to integrate other related algorithms such as the one presented in [22], to establish a
software platform for the comprehensive analysis of metabolites from MS data of various
types such as single and tandem mass spectra, fragmentation trees, and others.

Another important aspect of our future work is to evaluate the performance of SIRIUS
as an identification tool. We have started addressing this issue by including the func-
tionality to search for compounds in the NCBI PubChem database in the current version
of SIRIUS. In future releases, we plan to extend this feature towards fully automated
searching for molecular formulas in various databases.

We hope that this work is a first step towards the development of efficient compu-
tational methods and applications for further discovery and comprehensive analysis of
unknown sample molecules in all species including humans.

Bibliography

[1] K. Aardal and A. K. Lenstra. Hard equality constrained integer knapsacks. In Proc.
of Integer Programming and Combinatorial Optimization (IPCO 2002), volume
2337 of Lect. Notes Comput. Sc., pages 350–366. Springer, 2002.

[2] B. L. Ackermann, J. E. Hale, and K. L. Duffin. The role of mass spectrometry in
biomarker discovery and measurement. Curr. Drug Metab., 7:525–539, 2006.

[3] R. Aebersold and M. Mann. Mass spectrometry-based proteomics. Nature,
422:198–207, 2003.

[4] G. Audi, A. Wapstra, and C. Thibault. The AME2003 atomic mass evaluation
(ii): Tables, graphs, and references. Nucl. Phys. A, 729:129–336, 2003.

[5] V. Bafna and N. Edwards. SCOPE: A probabilistic model for scoring tandem mass
spectra against a peptide database. Bioinformatics, 17:S13–S21, 2001.

[6] N. Bandeira, J. Ng, D. Meluzzi, R. G. Linington, P. Dorrestein, and P. A. Pevzner.
De novo sequencing of nonribosomal peptides. In Proc. of Research in Computa-
tional Molecular Biology (RECOMB 2008), volume 4955 of Lect. Notes Comput.
Sc., pages 181–195. Springer, 2008.

[7] C. Bartels. Fast algorithm for peptide sequencing by mass spectrometry. Biomed.
Environ. Mass Spectrom., 19:363–368, 1990.

[8] J. Baumbach. Coryneregnet 4.0 = a reference database for corynebacterial gene
regulatory networks. BMC Bioinformatics, 8, 2007.

[9] M. Beck, I. M. Gessel, and T. Komatsu. The polynomial part of a restricted
partition function related to the Frobenius problem. Electron. J. Comb., 8(1):N7,
2001.

[10] M. W. Bern and D. Goldberg. EigenMS: De novo analysis of peptide tandem mass
spectra by spectral graph partitioning. In Proc. of Research in Computational
Molecular Biology (RECOMB 2005), volume 3500 of Lect. Notes Comput. Sc.,
pages 357–372. Springer, 2005.

[11] M. J. Bertrand, P. Thibault, M. J. Evans, and D. Zidarov. Determination of
the empirical formula of peptides by fast atom bombardment mass spectrometry.
Biomed. Environ. Mass Spectrom., 14(6):249–256, 1987.

109

110 Bibliography

[12] A. Bertsch, A. Leinenbach, A. Pervukhin, M. Lubeck, R. Hartmer, C. Baessmann,
Y. A. Elnakady, R. Müller, S. Böcker, C. G. Huber, and O. Kohlbacher. De novo
peptide sequencing by tandem mass spectrometry using complementary collision-
induced dissociation and electron transfer dissociation. Electrophoresis, Jul 2009.
Accepted for publication.

[13] R. Bino, R. Hall, O. Fiehn, J. Kopka, K. Saito, J. Draper, B. Nikolau, P. Mendes,
U. Roessner-Tunali, M. Beale, R. Trethewey, B. Lange, E. Wurtele, and L. Sum-
ner. Potential of metabolomics as a functional genomics tool. Trends Plant Sci.,
9(9):418–425, 2004.

[14] S. Böcker. Sequencing from compomers: The puzzle. Theory Comput. Syst.,
39(3):455–471, 2006.

[15] S. Böcker, M. Letzel, Zs. Lipták, and A. Pervukhin. Decomposing metabolomic
isotope patterns. In Proc. of Workshop on Algorithms in Bioinformatics (WABI
2006), volume 4175 of Lect. Notes Comput. Sc., pages 12–23. Springer, 2006.

[16] S. Böcker, M. Letzel, Zs. Lipták, and A. Pervukhin. SIRIUS: Decomposing isotope
patterns for metabolite identification. Bioinformatics, 25(2):218–224, 2009.

[17] S. Böcker, Z. Lipták, M. Martin, A. Pervukhin, and H. Sudek. DECOMP—from
interpreting mass spectrometry peaks to solving the Money Changing Problem.
Bioinformatics, 24(4):591–593, 2008.

[18] S. Böcker and Zs. Lipták. Efficient mass decomposition. In L. M. Liebrock, editor,
Proc. of ACM Symposium on Applied Computing (ACM SAC 2005), pages 151–
157, Santa Fe, USA, 2005. ACM Press.

[19] S. Böcker and Zs. Lipták. A fast and simple algorithm for the Money Changing
Problem. Algorithmica, 48(4):413–432, 2007.

[20] S. Böcker and A. Pervukhin. Inferring peptide composition from molecular for-
mulas. In Proc. of Computing and Combinatorics Conference (COCOON 2009),
volume 5609 of Lect. Notes Comput. Sc., pages 277–286. Springer, 2009.

[21] S. Böcker and F. Rasche. Towards de novo identification of metabolites by ana-
lyzing tandem mass spectra. Bioinformatics, 24:I49–I55, 2008. Proc. of European
Conference on Computational Biology (ECCB 2008).

[22] S. Böcker, F. Rasche, and T. Steijger. Annotating fragmentation patterns. In
Proc. of Workshop on Algorithms in Bioinformatics (WABI 2009), volume 5724
of Lect. Notes Comput. Sc., pages 13–24. Springer, 2009.

[23] D. C. Chamrad, G. Körting, K. Stühler, H. E. Meyer, J. Klose, and M. Blüggel.
Evaluation of algorithms for protein identification from sequence databases using
mass spectrometry data. Proteomics, 4:619–628, 2004.

Bibliography 111

[24] T. Chen, M.-Y. Kao, M. Tepel, J. Rush, and G. M. Church. A dynamic program-
ming approach to de novo peptide sequencing via tandem mass spectrometry. J.
Comput. Biol., 8(3):325–337, 2001.

[25] K. R. Clauser, P. Baker, and A. L. Burlingame. Role of accurate mass measurement
(+/- 10 ppm) in protein identification strategies employing MS or MS/MS and
database searching. Anal. Chem., 71(14):2871–2882, Jul 1999.

[26] V. Danč́ık, T. A. Addona, K. R. Clauser, J. E. Vath, and P. A. Pevzner. De novo
peptide sequencing via tandem mass spectrometry: A graph-theoretical approach.
J. Comput. Biol., 6(3/4):327–342, 1999.

[27] R. Datta and M. Bern. Spectrum fusion: Using multiple mass spectra for de novo
peptide sequencing. In Proc. of Research in Computational Molecular Biology (RE-
COMB 2008), volume 4955 of Lect. Notes Comput. Sc., pages 140–153. Springer,
2008.

[28] K. Dettmer, P. A. Aronov, and B. D. Hammock. Mass spectrometry-based
metabolomics. Mass Spectrom Rev., 26(1):51–78, 2007.

[29] E. W. Deutsch, H. Lam, and R. Aebersold. Data analysis and bioinformatics tools
for tandem mass spectrometry in proteomics. Physiological Genomics, 33:18–25,
March 2008.

[30] P. A. DiMaggio and C. A. Floudas. De novo peptide identification via tandem
mass spectrometry and integer linear optimization. Anal. Chem., 79(4):1433–1446,
2007.

[31] Q. Ding, L. Xiao, S. Xiong, Y. Jia, H. Que, Y. Guo, and S. Liu. Unmatched
masses in peptide mass fingerprints caused by cross-contamination: An updated
statistical result. Proteomics, 3:1313–1317, 2003.

[32] B. Domon and R. Aebersold. Mass spectrometry and protein analysis. Science,
312:212–217, February 2006.

[33] P. Du, W. A. Kibbe, and S. Lin. Improved peak detection in mass spectrum by
incorporating continuous wavelet transform-based pattern matching. Bioinformat-
ics, 22:2059–2065, 2006.

[34] I. Eidhammer, K. Flikka, L. Martens, and S.-O. Mikalsen. Computational Methods
for Mass Spectrometry Proteomics. Wiley, 2007.

[35] T. Ejaz, S. Rahmann, and J. Stoye. Online abelian pattern matching. Technical re-
port, Bielefeld University, Technische Fakultät der Universität Bielefeld, Abteilung
Informationstechnik, Postfach 10 01 31, 33501 Bielefeld, Germany, January 2008.

[36] J. E. Elias, F. D. Gibbons, O. D. King, F. P. Roth, and S. P. Gygi. Intensity-based
protein identification by machine learning from a library of tandem mass spectra.
Nat. Biotechnol., 22(2):214–219, 2004.

112 Bibliography

[37] J. K. Eng, A. L. McCormack, and J. R. Yates III. An approach to correlate tandem
mass spectral data of peptides with amino acid sequences in a protein database.
J. Am. Soc. Mass Spectr., 5:976–989, 1994.

[38] J. Falkner, J. Falkner, and P. Andrews. Proteomecommons.org io framework:
reading and writing multiple proteomics data formats. Bioinformatics, 23:262–
263, 2007.

[39] J. Fenn, M. Mann, C. Meng, S. Wong, and C. Whitehouse. Electrospray ionisation
for mass spectrometry of large biomolecules. Science, 246:64–71, 1989.

[40] D. Fenyö and R. C. Beavis. A method for assessing the statistical significance
of mass spectrometry-based protein identifications using general scoring schemes.
Anal. Chem., 75(4):768–774, 2003.

[41] A. R. Fernie, R. N. Trethewey, A. J. Krotzky, and L. Willmitzer. Metabolite
profiling: from diagnostics to systems biology. Nat. Rev. Mol. Cell Biol., 5(9):763–
769, 2004.

[42] O. Fiehn. Metabolomics–the link between genotypes and phenotypes. Plant Mol.
Biol., 48(1-2):155–171, 2002.

[43] B. Fischer, V. Roth, F. Roos, J. Grossmann, S. Baginsky, P. Widmayer, W. Gruis-
sem, and J. M. Buhmann. NovoHMM: a hidden Markov model for de novo peptide
sequencing. Anal. Chem., 77(22):7265–7273, 2005.

[44] M. Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley, 2002.

[45] A. Frank and P. Pevzner. PepNovo: de novo peptide sequencing via probabilistic
network modeling. Anal. Chem., 15:964–973, 2005.

[46] A. M. Frank, M. M. Savitski, M. N. Nielsen, R. A. Zubarev, and P. A. Pevzner.
De novo peptide sequencing and identification with precision mass spectrometry.
J. Proteome Res., 6(1):114–123, September 2007.

[47] A. Fürst, J.-T. Clerc, and E. Pretsch. A computer program for the computation
of the molecular formula. Chemom. Intell. Lab. Syst., 5:329–334, 1989.

[48] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1994.

[49] L. Y. Geer, S. P. Markey, J. A. Kowalak, L. Wagner, M. Xu, D. M. Maynard,
X. Yang, W. Shi, and S. H. Bryant. Open mass spectrometry search algorithm. J.
Proteome Res., 3:958–964, 2004.

[50] R. C. Gentleman, V. J. Carey, D. M. B., B. Bolstad, M. Dettling, S. Dudoit,
B. Ellis, L. Gautier, Y. Ge, J. Gentry, K. Hornik, T. Hothorn, W. Huber, S. Iacus,
R. Irizarry, F. Leisch, C. Li, M. Maechler, A. J. Rossini, G. Sawitzki, C. Smith,

Bibliography 113

G. Smyth, L. Tierney, J. Y. H. Yang, and J. Zhang. BioConductor: Open soft-
ware development for computational biology and bioinformatics. Genome Biology,
5:R80, 2004.

[51] P. Gilmore and R. Gomory. Multi-stage cutting stock problems of two and more
dimensions. Oper. Res., 13(1):94–120, 1965.

[52] A. H. Grange, M. C. Zumwalt, and G. W. Sovocool. Determination of ion and
neutral loss compositions and deconvolution of product ion mass spectra using
an orthogonal acceleration time-of-flight mass spectrometer and an ion correlation
program. Rapid Commun. Mass Spectrom., 20(2):89–102, 2006.

[53] T. Griebel, M. Brinkmeyer, and S. Böcker. EPoS: a modular software framework
for phylogenetic analysis. Bioinformatics, 24(20):2399–2400, 2008.

[54] J. Gross. Mass Spectrometry: A textbook. Springer, Berlin, 2004.

[55] W. Haas, B. K. Faherty, S. A. Gerber, J. E. Elias, S. A. Beausoleil, C. E. Bakalarski,
X. Li, J. Ville, and S. P. Gygi. Optimization and use of peptide mass measurement
accuracy in shotgun proteomics. Molecular & Cellular Proteomics, 5.7:1326–1337,
2006.

[56] M. Hardman and A. A. Makarov. Interfacing the orbitrap mass analyzer to an
electrospray ion source. Anal. Chem., 75(7):1699–1705, 2003.

[57] G. G. Harrigan and R. Goodacre, editors. Metabolic Profiling: Its Role in
Biomarker Discovery and Gene Function Analysis. Springer, 2003.

[58] F. He, C. L. Hendrickson, and A. G. Marshall. Baseline mass resolution of peptide
isobars: A record for molecular mass resolution. Anal. Chem., 73(3):647–650,
2001.

[59] W. J. Henzel, T. M. Billeci, J. T. Stults, S. C. Wong, C. Grimley, and C. Watanabe.
Identifying proteins from two-dimensional gels by molecular mass searching of
peptide fragments in protein sequence databases. Proc. Natl. Acad. Sci. U.S.A.,
90(11):5011–5015, 1993.

[60] W. J. Henzel, C. Watanabe, and J. T. Stults. Protein identification: The origins
of peptide mass fingerprints. J. Am. Soc. Mass Spectr., 14(9):931–942, 2003.

[61] F. Hillenkamp, M. Karas, R. Beavis, and B. Chait. Matrix-assisted laser desorp-
tion/ionization mass spectrometry of biopolymers. Anal. Chem., 63:1193A–1203A,
1991.

[62] D. H. Horn, R. A. Zubarev, and F. W. McLafferty. Automated reduction and
interpretation of high resolution electrospray mass spectra of large molecules. J.
Am. Soc. Mass Spectr., 11:320–332, 2000.

114 Bibliography

[63] C. S. Hsu. Diophantine approach to isotopic abundance calculations. Anal. Chem.,
56(8):1356–1361, 1984.

[64] Y. Iijima, Y. Nakamura, Y. Ogata, K. Tanaka, N. Sakurai, K. Suda, T. Suzuki,
H. Suzuki, K. Okazaki, M. Kitayama, S. Kanaya, K. Aoki, and D. Shibata. Metabo-
lite annotations based on the integration of mass spectral information. Plant J.,
54(5):949–962, Jun 2008.

[65] P. Jones, R. G. Côté, L. Martens, A. F. Quinn, C. F. Taylor, W. Derache, H. Her-
mjakob, and R. Apweiler. PRIDE: a public repository of protein and peptide
identifications for the proteomics community. Nucleic Acids Res., 34(Database-
Issue):659–663, 2006.

[66] M. Kanehisa, S. Goto, M. Hattori, K. F. Aoki-Kinoshita, M. Itoh, S. Kawashima,
T. Katayama, M. Araki, and M. Hirakawa. From genomics to chemical genomics:
new developments in KEGG. Nucleic Acids Res., 34:D354–D357, 2006.

[67] E. A. Kapp, F. Schütz, L. M. Connolly, J. A. Chakel, J. E. Meza, C. A. Miller,
D. Fenyo, J. K. Eng, J. N. Adkins, G. S. Omenn, and R. J. Simpson. An evaluation,
comparison, and accurate benchmarking of several publicly available ms/ms search
algorithms: Sensitivity and specificity analysis. Proteomics, 5:3475–3490, 2005.

[68] M. Karas and F. Hillenkamp. Laser desorption ionization of proteins with molec-
ular masses exceeding 10,000 Daltons. Anal. Chem., 60:2299–2301, 1988.

[69] M. Katajamaa, J. Miettinen, and M. Oresic. Mzmine: toolbox for processing and
visualization of mass spectrometry based molecular profile data. Bioinformatics,
22(5):634–636, 2006.

[70] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, 2004.

[71] S. Kim, N. Gupta, and P. A. Pevzner. Spectral probabilities and generating func-
tions of tandem mass spectra: a strike against decoy databases. J. Proteome Res.,
7(8):3354–3363, 2008.

[72] T. Kind and O. Fiehn. Metabolomic database annotations via query of elemen-
tal compositions: Mass accuracy is insufficient even at less than 1 ppm. BMC
Bioinformatics, 7(1):234, Apr 2006.

[73] T. Kind and O. Fiehn. Seven golden rules for heuristic filtering of molecular
formulas obtained by accurate mass spectrometry. BMC Bioinformatics, 8:105,
2007.

[74] T. Komatsu. On the number of solutions of the diophantine equation of frobenius
- general case. Mathematical Communications, 8:195–206, 2003.

[75] H. Kubinyi. Calculation of isotope distributions in mass spectrometry: A trivial
solution for a non-trivial problem. Anal. Chim. Acta, 247:107–119, 1991.

Bibliography 115

[76] E. Lange, C. Gröpl, K. Reinert, O. Kohlbacher, and A. Hildebrandt. High-accuracy
peak picking of proteomics data using wavelet techniques. In Proc. of Pacific
Symposium on Biocomputing (PSB 2006), pages 243–254, 2006.

[77] Zs. Lipták. Strings in Proteomics and Transcriptomics. Algorithmic and Combi-
natorial Questions in Mass Spectrometry and EST Clustering. PhD thesis, Uni-
versität Bielefeld, Bielefeld, Germany, May 2005.

[78] A. Luedemann, K. Strassburg, A. Erban, and J. Kopka. TagFinder for the quanti-
tative analysis of gas chromatography–mass spectrometry (GC-MS)-based metabo-
lite profiling experiments. Bioinformatics, 24(5):732–737, Mar 2008.

[79] G. S. Lueker. Two NP-complete problems in nonnegative integer programming.
Technical Report TR-178, Department of Electrical Engineering, Princeton Uni-
versity, March 1975.

[80] M. Mann, P. Hojrup, and P. Roepstorff. Use of mass spectrometric molecular
weight information to identify proteins in sequence databases. Biol. Mass Spec-
trom., 22(6):338–345, 1993.

[81] M. Mann and N. L. Kelleher. Precision proteomics: The case for high resolution
and high mass accuracy. PNAS, 105(47):18132–18138, November 2008.

[82] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Imple-
mentations. John Wiley & Sons, Chichester, 1990.

[83] L. McHugh and J. W. Arthur. Computational methods for protein identification
from mass spectrometry data. PLoS Comput. Biol., 4(2):e12, February 2008.

[84] J. S. Morris, K. R. Coombes, J. Koomen, K. A. Baggerly, and R. Kobayashi.
Feature extraction and quantificatioon for mass spectrometry in biomedical appli-
cations using the mean spectrum. Bioinformatics, 21(9):1764–1775, 2005.

[85] A. I. Nesvizhskii, O. Vitek, and R. Aebersold. Analysis and validation of proteomic
data generated by tandem mass spectrometry. Nature Methods, 4(10):787–797,
September 2007.

[86] S. Neumann, A. Pervukhin, and S. Böcker. Mass decomposition with the Rdisop
package, October 13 2007. Part of BioConductor 2.2.

[87] H. Neuweger, S. P. Albaum, M. Dondrup, M. Persicke, T. Watt, K. Niehaus,
J. Stoye, and A. Goesmann. MeltDB: a software platform for the analysis and
integration of metabolomics experiment data. Bioinformatics, 24(23):2726–2732,
2008.

[88] S. Ojanperä, A. Pelander, M. Pelzing, I. Krebs, E. Vuori, and I. Ojanperä. Iso-
topic pattern and accurate mass determination in urine drug screening by liquid
chromatography/time-of-flight mass spectrometry. Rapid Commun. Mass Spec-
trom., 20(7):1161–1167, 2006.

116 Bibliography

[89] J. V. Olsen, L. M. F. de Godoy, G. Li, B. Macek, P. Mortensen, R. Pesch,
A. Makarov, O. Lange, S. Horning, and M. Mann. Parts per million mass ac-
curacy on an orbitrap mass spectrometer via lock mass injection into a c-trap.
Molecular & Cellular Proteomics, 4:2010–2021, 2006.

[90] S. Orchard, L. Montechi-Palazzi, E. W. Deutsch, P.-A. Binz, A. R. Jones, N. Paton,
A. Pizarro, D. M. Creasy, J. Wojcik, and H. Hermjakob. Five years of progress in
the standardization of proteomics data 4th annual spring workshop of the hupo-
proteomics standards initiative. Proteomics, 7:3436–3440, 2007.

[91] P. M. Palagi, P. Hernandez, D. Walther, and R. D. Appel. Proteome informatics i:
Bioinformatics tools for processing experimental data. Proteomics, 6:5435–5444,
2006.

[92] T. Palzkill. Proteomics. Kluver Academic Publishers, 2002.

[93] D. Papp and B. Vizvári. Effective solution of linear diophantine equation systems
with an application in chemistry. J. Math. Chem., 39(1):15–31, 2006.

[94] D. J. Pappin, P. Hojrup, and A. Bleasby. Rapid identification of proteins by
peptide-mass fingerprinting. Curr. Biol., 3(6):327–332, 1993.

[95] P. G. A. Pedrioli, J. K. Eng, R. Hubley, M. Vogelzang, E. W. Deutsch, B. Raught,
B. Pratt, E. Nilsson, R. H. Angeletti, R. Apweiler, K. Cheung, C. E. Costello,
H. Hermjakob, S. Huang, R. K. Julian, E. Kapp, M. E. McComb, S. G. Oliver,
G. Omenn, N. W. Paton, R. Simpson, R. Smith, C. F. Taylor, W. Zhu, and
R. Aebersold. A common open representation of mass spectrometry data and its
application to proteomics research. Nat. Biotechnol., 22(11):1459–66, 2004.

[96] V. Pellegrin. Molecular formulas of organic compounds: the nitrogen rule and
degree of unsaturation. J. Chem. Educ., 60(8):626–633, 1983.

[97] D. N. Perkins, D. J. Pappin, D. M. Creasy, and J. S. Cottrell. Probability-based
protein identification by searching sequence databases using mass spectrometry
data. Electrophoresis, 20(18):3551–3567, 1999.

[98] S. Pillai, V. Silventoinen, K. Kallio, M. Senger, S. Sobhany, J. Tate, S. Velankar,
A. Golovin, K. Henrick, P. Rice, P. Stoehr, and R. Lopez. Soap-based services
provided by the european bioinformatics institute. Nucleic Acids Res., 33(Web
Sever issue):W25–W28, 2005.

[99] S. C. Pomerantz, J. A. Kowalak, and J. A. McCloskey. Determination of oligonu-
cleotide composition from mass spectromectrically measured molecular weight. J.
Am. Soc. Mass Spectrom., 4:204–209, 1993.

[100] A. L. Rockwood and S. L. Van Orden. Ultrahigh-speed calculation of isotope
distributions. Anal. Chem., 68:2027–2030, 1996.

Bibliography 117

[101] A. L. Rockwood, J. R. Van Orman, and D. V. Dearden. Isotopic compositions
and accurate masses of single isotopic peaks. J. Am. Soc. Mass Spectr., 15:12–21,
2004.

[102] S. Rogers, R. A. Scheltema, M. Girolami, and R. Breitling. Probabilistic assign-
ment of formulas to mass peaks in metabolomics experiments. Bioinformatics,
25(4):512–518, 2009.

[103] M. S. Sabatine, E. Liu, D. A. Morrow, E. Heller, R. McCarroll, R. Wiegand,
G. F. Berriz, F. P. Roth, and R. E. Gerszten. Metabolomic identification of novel
biomarkers of myocardial ischemia. Circulation, 112:3868–3865, 2005.

[104] A. Salomaa. Counting (scattered) subwords. B. Euro. Assoc. Theo. Comp. Sci.,
81:165–179, 2003.

[105] M. M. Savitski, M. L. Nielsen, F. Kjeldsen, and R. A. Zubarev. Proteomics-grade
de novo sequencing approach. J. Proteome Res., 4:2348–2354, 2005.

[106] S. Schneiker, O. Perlova, O. Kaiser, K. Gerth, A. Alici, M. O. Altmeyer, D. Bar-
tels, T. Bekel, S. Beyer, E. Bode, H. B. Bode, C. J. Bolten, J. V. Choudhuri,
S. Doss, Y. A. Elnakady, B. Frank, L. Gaigalat, A. Goesmann, C. Groeger,
F. Gross, L. Jelsbak, L. Jelsbak, J. Kalinowski, C. Kegler, T. Knauber, S. Koni-
etzny, M. Kopp, L. Krause, D. Krug, B. Linke, T. Mahmud, R. Martinez-Arias,
A. C. McHardy, M. Merai, F. Meyer, S. Mormann, J. Munöz-Dorado, J. Perez,
S. Pradella, S. Rachid, G. Raddatz, F. Rosenau, C. Rückert, F. Sasse, M. Scharfe,
S. C. Schuster, G. Suen, A. Treuner-Lange, G. J. Velicer, F.-J. Vorhölter, K. J.
Weissman, R. D. Welch, S. C. Wenzel, D. E. Whitworth, S. Wilhelm, C. Wittmann,
H. Blöcker, A. Pöhler, and R. Müller. Complete genome sequence of the myxobac-
terium sorangium cellulosum. Nat. Biotechnol., 25(11):1281–1289, 2007.

[107] J. Senior. Partitions and their representative graphs. Am. J. Math., 73(3):663–689,
1951.

[108] M. W. Senko, C. L. Hendrickson, and M. R. Emmet. External accumulation of
ions for enhanced electrospray ionization fourier transform ion cyclotron resonance
mass spectrometry. JASMS, 8:970–976, 1997.

[109] I. Shadforth, D. Crowther, and C. Bessant. Protein and peptide identification
algorithms using ms for use in high-throughput, automated pipelines. Proteomics,
5:4082–4095, 2005.

[110] G. Siuzdak. Mass Spectrometry for Biotechnology. Academic Press, 1996.

[111] C. A. Smith, E. J. Want, G. O’Maille, R. Abagyan, and G. Siuzdak. XCMS:
Processing mass spectrometry data for metabolite profiling using nonlinear peak
alignment, matching, and identification. Anal. Chem., 78(3):779–787, Feb 2006.

118 Bibliography

[112] R. D. Smith, G. A. Anderson, M. S. Lipton, L. Pasa-Tolic, Y. Shen, T. P. Conrads,
T. D. Veenstra, and H. R. Udseth. An accurate mass tag strategy for quantitative
and high-throughput proteome measurements. Proteomics, 2:513–523, 2002. Issue
5.

[113] A. P. Snyder. Interpreting Protein Mass Spectra: A Comprehensive Resource.
Oxford University Press, 2000.

[114] M. D. Soffer. The molecular formula generalized in terms of cyclic elements of
structure. Science, 127(3303):880, April 1958.

[115] B. Spengler. De novo sequencing, peptide composition analysis, and composition-
based sequencing: A new strategy employing accurate mass determination by
fourier transform ion cyclotron resonance mass spectrometry. J. Am. Soc. Mass
Spectrom., 15(5):703–714, 2004.

[116] M. Sturm, A. Bertsch, C. Gröpl, A. Hildebrandt, R. Hussong, E. Lange, N. Pfeifer,
O. Schulz-Trieglaff, A. Zerck, K. Reinert, and O. Kohlbacher. Openms - an open-
source software framework for mass spectrometry. BMC Bioinformatics, 9:163,
2008.

[117] J. E. P. Syka, J. J. Coon, M. J. Schroeder, J. Shabanowitz, and D. F. Hunt. Peptide
and protein sequence analysis by electron transfer dissociation mass spectrometry.
Proc. Natl. Acad. Sci. U.S.A., 101(26):9528–9533, 2004.

[118] S. Tanner, S. H. Payne, S. Dasari, Z. Shen, P. A. Wilmarth, L. L. David, W. F.
Loomis, S. P. Briggs, and V. Bafna. Accurate annotation of peptide modifications
through unrestrictive database search. J. Proteome Res., 7:170–181, 2008.

[119] S. Tanner, H. Shu, A. Frank, L.-C. Wang, E. Zandi, M. Mumby, P. A. Pevzner,
and V. Bafna. Inspect: Identification of posttranslationally modified peptides from
tandem mass spectra. Anal. Chem., 77:4626–4639, 2005.

[120] R. Tautenhahn, C. Böttcher, and S. Neumann. Annotation of lc/esi-ms mass sig-
nals. In Proc. of Conference on Bioinformatics Research and Development (BIRD
2007), volume 4414 of Lect. Notes Comput. Sc. Springer, 2007.

[121] J. A. Taylor and R. S. Johnson. Sequence database searches via de novo pep-
tide sequencing by tandem mass spectrometry. Rapid Commun. Mass Spectrom.,
11:1067–1075, 1997.

[122] J. A. Taylor and R. S. Johnson. Implementation and uses of automated de novo
peptide sequencing by tandem mass spectrometry. Anal. Chem., 73:2594–2604,
2001.

[123] J. van Lint and R. Wilson. A Course in Combinatorics. Cambridge University
Press, 2001.

Bibliography 119

[124] S. M. Watkins and J. B. German. Toward the implementation of metabolomic
assessments of human health and nutrition. Curr. Opin. Biotechnol., 13(5):512–
516, October 2002.

[125] J. T. Watson and O. D. Sparkman. Introduction to Mass Spectrometry: Instru-
mentation, Applications, and Strategies for Data Interpretation. Wiley, 2007.

[126] C. Whitehouse, R. Dreyer, M. Yamashita, and J. Fenn. Electrospray interface for
liquid chromatographs and mass spectrometers. Anal. Chem., 57:675–679, 1985.

[127] H. Wilf. generatingfunctionology. Academic Press, 1990.

[128] C. Yang, Z. He, and W. Yu. Comparison of public peak detection algorithms for
maldi mass spectrometry data analysis. BMC Bioinformatics, 10(4), 2009.

[129] J. R. Yates III, J. K. Eng, A. L. McCormack, and D. Schieltz. Method to correlate
tandem mass spectra of modified peptides to amino acid sequences in the protein
database. Anal. Chem., 67(8):1426–1436, 1995.

[130] J. R. Yates III, S. Speicher, P. R. Griffin, and T. Hunkapillar. Peptide mass
maps: A highly informative approach to protein identification. Anal. Biochem.,
214:397–408, 1993.

[131] J. A. Yergey. A general approach to calculating isotopic distributions for mass
spectrometry. Int. J. Mass Spectrom. Ion Phys., 52(2–3):337–349, 1983.

[132] J. Zhang, W. Gao, J. Cai, S. He, R. Zeng, and R. Chen. Predicting molecular for-
mulas of fragment ions with isotope patterns in tandem mass spectra. IEEE/ACM
Trans. Comput. Biol. Bioinform., 2(3):217–230, 2005.

[133] N. Zhang, R. Aebersold, and B. Schwikowski. ProbID: a probabilistic algorithm to
identify peptides through sequence database searching using tandem mass spectral
data. Proteomics, 2(10):1406–1412, Oct 2002.

[134] W. Zhang and B. T. Chait. ProFound: an expert system for protein identification
using mass spectrometric peptide mapping information. Anal. Chem., 72(11):2482–
2489, 2000.

[135] Z. Zhang. De novo peptide sequencing based on a divide-and-conquer algorithm
and peptide tandem spectrum simulation. Anal. Chem., 76:6374–6383, 2004.

[136] R. A. Zubarev, N. L. Kelleher, and F. W. McLafferty. Electron capture dissocia-
tion of multiply charged protein cations. a nonergodic process. J Am Chem Soc,
120:3265–3266, 1998.

	Introduction
	Structure of the Thesis

	Biological Background
	Atoms and Molecules
	Proteomics
	Metabolomics
	Mass Spectrometry
	Instrumentation
	Experimental Workflow

	Mass Spectrometry Data Analysis
	Types of Mass Spectrometric Analysis
	Computational Problems
	Protein Identification using Databases

	Decomposition Algorithms
	Integer Mass Decomposition
	Definitions and Problems
	Enumerating Integer Decompositions

	Decomposing Real-valued Masses
	Approximating Number of Decompositions

	Molecular Formula Identification of Metabolites
	Isotope Patterns
	Isotope Species
	Isotopic Distributions

	Computing Isotope Patterns
	Folding Isotopic Distributions
	Folding Peak Masses

	Scoring Candidate Molecules
	Estimating Probabilities of Peak Masses
	Estimating Probabilities of Peak Intensities

	Experimental Results
	Identification Rates

	Deriving Peptide Compositions
	Peptide Molecular Formula Decomposition Problem
	Related Problems and Solutions
	Multi-dimensional Integer Knapsack

	Generating Decomposition Matrices and a Mixed Matrix Approach
	Experimental Results
	Selecting Good Decomposition Matrices
	Comparison with Other Methods

	Summary
	Best Six Matrix Pairs

	Application Tools and Cases
	DECOMP
	Introduction
	Implementation and Use

	Application Case with CompNovo
	Existing Approaches for De Novo Peptide Sequencing by Tandem MS
	Algorithm Overview
	Experimental Results

	Rdisop
	Introduction
	Implementation and Use

	SIRIUS
	System Architecture
	Domain Objects
	Functional Logic Layer
	Presentation Layer

	Application Workflow
	Preparing Input Data
	Analysis Preparation and Parameter Input
	Analyzing Algorithm Results

	Summary

	Conclusion

