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Abstract. Since metabolites cannot be predicted from the genome se-
quence, high-throughput de-novo identification of small molecules is high-
ly sought. Mass spectrometry (MS) in combination with a fragmentation
technique is commonly used for this task. Unfortunately, automated anal-
ysis of such data is in its infancy. Recently, fragmentation trees have been
proposed as an analysis tool for such data. Additional fragmentation
steps (MS™) reveal more information about the molecule.

We propose to use MS™ data for the computation of fragmentation trees,
and present the COLORFUL SUBTREE CLOSURE problem to formalize this
task: There, we search for a colorful subtree inside a vertex-colored graph,
such that the weight of the transitive closure of the subtree is maximal.
We give several negative results regarding the tractability and approx-
imability of this and related problems. We then present an exact dynamic
programming algorithm, which is parameterized by the number of col-
ors in the graph and is swift in practice. Evaluation of our method on
a dataset of 45 reference compounds showed that the quality of con-
structed fragmentation trees is improved by using MS™ instead of MS?
measurements.
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1 Introduction

The phenotype of an organism is strongly determined by the small chemical com-
pounds contained in its cells. These compounds are called metabolites; their mass
is typically below 1000 Da. Unlike biopolymers such as proteins and glycans, the
chemical structure of metabolites is not restricted. This results in a great vari-
ety and complexity in spite of their small size. Except for primary metabolites
directly involved in growth, development, and reproduction, most metabolites



2 K. Scheubert, F. Hufsky, F. Rasche, S. Bocker

remain unknown. Plants, filamentous fungi, and marine bacteria synthesize huge
numbers of secondary metabolites, and the number of metabolites in any higher
eukaryote is currently estimated between 4000 and 20000 [9]. Unlike for pro-
teins, the structure of metabolites usually cannot be deduced by using genomic
information, except for very few metabolite classes like polyketides.

Mass spectrometry (MS) is one of the key technologies for the identifica-
tion of small molecules. Identification is usually achieved by fragmenting the
molecule, and measuring masses of the resulting fragments. The fragmentation
mechanisms of electron ionization (EI) during gas chromatography MS (GC-
MS) are well described [12]. Unfortunately, only thermally stable and volatile
compounds can be analyzed by this technique. Liquid chromatography MS (LC-
MS) can be adapted to a wider array of (even thermally unstable) molecules,
including a range of secondary metabolites [9]. LC-MS uses the more gentle
electrospray ionization (ESI) and a selected compound is fragmented in a sec-
ond step using collision-induced dissociation (CID), resulting in MS? spectra.
Different from peptides where CID fragmentation is generally well understood,
this understanding is in its infancy for metabolites. The manual interpretation of
CID mass spectra is cumbersome and requires expert-knowledge. Even search-
ing spectral libraries is problematic, since CID mass spectra are limited in their
reproducibility on different instruments [14]. Additionally, compound libraries
to search against are vastly incomplete. For these reasons, automated de novo
interpretation of CID mass spectra is required as an important step towards the
identification of unknowns.

Multiple-stage mass spectrometry (MS™) allows to further fragment the prod-
ucts of the initial fragmentation step. To this end, fragments of the MS? frag-
mentation are selected as precursor ions, and subjected to another fragmentation
reaction. Several precursor ions can be selected successively. Selection can either
be performed automatically for a fixed number of precursor ions with maximal
intensity, or manually by selecting precursor ions. Fragments from MS? frag-
mentations can, in turn, again be selected as precursor ions, resulting in MS*
spectra. Typically, the quality of mass spectra is reduced with each additional
fragmentation reaction. Furthermore, measuring time is increased, reducing the
throughput of the instrument. Hence, for untargeted analysis by LC-MS, analysis
is usually limited to few additional fragmentation reactions beyond MS?2.

In the past years some progress has been made in searching of spectral and
compound libraries using CID spectra [11,14,15], and there exist some pioneering
studies towards the automated analysis of such spectra [10,16,18]. Recently, a
method for de novo interpretation of metabolite MS? data has been developed [6,
17]. Tt helps to identify metabolite sum formulas and further to interpret the
fragmentation processes, resulting in hypothetical fragmentation trees. These
fragmentation trees can be compared to each other to identify compound classes
of unknowns [17]. In fact, applying this method of computing fragmentation
trees to MS"™ data is possible, but dependencies between different fragmentation
steps are not taken into account. For peptide sequencing, MS? spectra have been
used to increase the accuracy of de novo peptide sequencing algorithms [2].
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Here, we present a method for automated interpretation of MS™ data. We
adjust the fragmentation model for MS? data from [6] to MS™ data to reflect the
succession of fragmentation reactions. This results in the COLORFUL SUBTREE
CLOSURE problem that has to be solved in conjunction with the original MAXI-
MUM COLORFUL SUBTREE problem [6]. We show that the COLORFUL SUBTREE
CLOSURE problem is NP-hard, and present intractability results regarding the
approximability of this and the MAXIMUM COLORFUL SUBTREE problem. De-
spite these negative results, we present an exact algorithm for the combined
problem: This fixed-parameter algorithm, based on dynamic programming, has
a worst-case running time with exponential dependence only on the number of
peaks k in the spectrum. In application, we choose some fixed k' such as &’ = 15,
limit exact calculations to the &’ most intense peaks in the mass spectra and at-
tach the remaining peaks heuristically. We apply our algorithm to a set of 185
mass spectra from 45 compounds, and show that adding MS™ information to
the analysis improves quality of results but does not affect the running time in
comparison to the algorithm for MS? data from [6].

2 Constructing Fragmentation Trees from MS? and MS™
Data

Fragmentation of glycans and proteins is generally well understood, but this is
not the case for metabolites and small molecules. That makes it difficult both to
predict the fragmentation process, and to interpret metabolite MS data. Bocker
et al. [6] propose fragmentation trees to interpret MS? data: In a fragmenta-
tion tree nodes are annotated with molecular formulas of fragments, and edges
represent fragmentation reactions or neutral losses.

The algorithm to compute a fragmentation tree proceeds as follows [6]: Each
fragment peak is assigned one or more molecular formulas with mass sufficiently
close to the peak mass [5]. The resulting molecular formulas including the parent
molecular formula, are considered vertices of a directed acyclic graph (DAG).
We assume that the parent molecular formula is either given or can be calcu-
lated from isotope pattern analysis. Vertices in the graph are colored, such that
vertices that explain the same peak receive the same color. Edges represent neu-
tral losses, that is, fragments of the molecule that are not observed, as they
were not ionized. Two vertices u,v are linked by a directed edge if the molec-
ular formula of v is a sub-molecule of the molecular formula of u. Edges are
weighted, reflecting that some edges are more likely to represent true neutral
losses than others. Also, peak intensities and mass deviations are taken into ac-
count in these weights. Now, each subtree of the resulting graph corresponds to
a possible fragmentation tree. To avoid the case that one peak is explained by
more than one molecular formula, only colorful subtrees that use every color at
most once are considered. In practice, it is very rare that a peak is indeed created
by two different fragments, whereas our optimization principle without restric-
tion would always choose all explanations of a peak. Therefore, searching for a
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colorful subtree of maximum weight means searching for the best explanation of
the observed fragments:

Maximum Colorful Subtree problem. Given a vertex-colored DAG G =
(V, E) with colors C and weights w : E — R. Find the induced colorful subtree
T = (Vr, Er) of G of maximum weight w(T') :=>_ . w(e).

We now modify this problem to take into account MS™ data when con-
structing fragmentation trees. From the experimental data, we construct a DAG
G = (V, E) together with a vertex coloring ¢ : V' — C, called fragmentation
graph. Recall that the vertices of V' correspond to potential molecular formulas
of the fragments, colors C correspond to peaks in the mass spectra, and molecular
formulas corresponding to the same peak mass have the same color. In contrast
to the fragmentation graph where each edge indicates a direct succession, the
MS"™ data does not only hint to direct but also to indirect successions. So, in
the graph constructed from the MS™ data we also have to score the transitive
closure of the induced subtrees. The transitive closure Gt = (V, E1) of a DAG
G = (V, E) contains the edge (u,v) € E7 if and only if there is a directed path
in G from u to v. In case G is a tree, the transitive closure can be computed
in time O(|V|?) using Nuutila’s algorithm [13]. The MS™ data gives additional
information about the provenience of certain peaks/colors, but does not differ-
entiate between different explanations of these peaks via molecular formulas, so
we will score not edges but pairs of colors.

To score the closure, let wt : C? — R be a weighting function for pairs of
colors. We define the transitive weight of an induced tree T' = (Vp, E7) with
transitive closure T+ = (Vp, Ef) as:

wh(T) = Z(M)EE; wt (c(u), ¢(v)) (1)

Again, we limit our search to colorful trees, where each color is used at most
once in the tree. Scoring the transitive closure of an induced colorful subtree, we
reach the following problem definition:

Colorful Subtree Closure problem. Given a vertex-colored DAG G = (V, E)
with colors C and transitive weights w* : C> — R. Find the induced colorful
subtree T of G of maximum weight w™ (7).

We will see in the next section that this is again a computationally hard
problem. But the problem we are interested in is even harder as it combines the
two above problems:

Combined Colorful Subtree problem. Given a vertex-colored DAG G =
(V, E) with colors C, edge weights w : £ — R, and transitive weights w™ :
C? — R. Find the induced colorful subtree T' of G of maximum weight w*(T) =
w(T) +wt(T).
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Fig. 1. Proof of Theorem 1: Example for the construction of G for ® = (21 VZzVx3) A
(TIVo2Vas) ATz VeaVT5) A (T2 Vas V).

3 Hardness Results

Fellows et al. [8] and Bécker and Rasche [6] independently showed that the MAXI-
MUM COLORFUL SUBTREE problem is NP-hard. It turns out that the COLORFUL
SUBTREE CLOSURE problem is NP-hard even for unit weights:

Theorem 1. The COLORFUL SUBTREE CLOSURE problem is NP-hard even if
the input graph is a binary tree with unit weights wr =

Proof. To prove NP-hardness we use a reduction from the NP-hard 3-SaT*
problem [3]:

3-SAT*. Given a Boolean expression in conjunctive normal form (CNF) con-
sisting of a set of length three clauses, where each variable occurs at most three
times in the clause set. Decide whether the expression is satisfiable.

Given an instance of 3-SAT* as a CNT formula @ = ¢ A- - -Ac,, over variables
Z1,...,T, we construct an instance of COLORFUL SUBTREE CLOSURE. Since
variables occurring only with one literal are trivial, we assume that the formula
contains both literals of each variable. We first construct a colorful binary tree
H with root vertex r and n leaves, that has height h := [log, n] and is a perfect
binary tree up to height A — 1. This tree uses p := n + 2" — 1 colors, namely
r1,...,7p. To each leaf 4, 1 < ¢ < n, we connect two vertices using the same
color x; and representing the different truth assignments for x;. One vertex in
the color x; represents x; = true, the other one x; = false. If a truth assignment
to x; satisfies clause c; we connect a vertex colored c; to the vertex in the color
x;, that corresponds to this truth assignment (Fig. 1). The resulting tree G
possesses n+ 2" —1+mn+m colors, namely rq, . .. yTps @1y vy TnyClye vy Cme The
tree is binary, since each variable occurs in at most three clauses and we assumed
that both literals are contained in the formula. Finally, we define unit weights
wt = 1.

The resulting tree G has as many leaves as there are literals in @, hence
the construction is polynomial. We claim that @ is satisfiable if and only if the
colorful subtree 7' of G with maximum transitive closure has score Z?;ll 20 +
nh 4+ n(h + 1) + m(h + 2). To prove the forward direction, assume a truth as-
signment ¢ that satisfies @. Define A C V(@) to be the subset of vertices in the
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colors z; that correspond to the assignment ¢. Then, for every 1 < j < m there
exists at least one vertex colored c¢; in the neighborhood of A. Add an arbitrary
representative of these vertices colored ¢; to the set B C V(G). The union of the
sets AUBU{ry,...,rp} forms a colorful subtree T' of G with transitive closure
that has score Z?;ll i28 +nh+n(h+1)+m(h+2), as Z?;ll i2¢ corresponds to
the score of the perfect binary tree up to height h — 1, nh is the additional score
from the leaves of H, n(h + 1) the additional score induced by the colors z; and
m(h + 2) the additional score induced by the colors ¢;. No colorful subtree with
higher score of the transitive closure can exist.

To prove the backward direction assume there is a colorful subtree T' of G with
maximum transitive closure that has score Z;:ll i28+nh+n(h+1)+m(h+2).
Any optimal solution uses all colors from H, all colors x; and all colors c¢;. The
truth assignment corresponding to the vertices of T' colored x; satisfies @, as
for all 1 < j < m exactly one vertex colored c; is connected to these vertices,
otherwise T would not contain all colors. O

We now turn to the inapproximability of the above problems. Dondi et al. [7]
show that the MAXIMUM MOTIF problem, that is closely related to the MAXx-
IMUM COLORFUL SUBTREE problem, is APX-hard even if the input graph is a
binary tree. In fact, Proposition 8 in [7] implies that the MaAXxiMuM COLORFUL
SUBTREE problem is APX-hard for such trees. We infer that there exists no Poly-
nomial Time Approximation Scheme (PTAS) for the problem unless P = NP [1].
In Proposition 10 Dondi et al. [7] prove the even stronger result that there is
no constant-factor approximation for MAXIMUM LEVEL MOTIF problem, unless
P =NP.

Lemma 1. The MAXiMUM COLORFUL SUBTREE problem is APX-hard even if
the input graph is a binary tree with unit weights w = 1.

Lemma 2. The MAXIMUM COLORFUL SUBTREE problem has no constant-fac-
tor approzimation unless P = NP, even if the input graph is a tree with unit
weights w = 1.

We now concentrate on the COLORFUL SUBTREE CLOSURE problem. We
show that the problem is MAX SNP-hard even for unit weights, but we have
to drop the requirement that the tree is binary in this case. We infer the non-
existence of a PTAS unless P = NP [1].

Theorem 2. The COLORFUL SUBTREE CLOSURE problem is MAX SNP-hard
even if the input graph is a tree with unit weights wt = 1.

The construction used in the proof of Theorem 2 is very similar to that of
Theorem 1. We defer the details to the full version of the paper.

We infer that the COMBINED COLORFUL SUBTREE problem is computation-
ally hard and also hard to approximate, as it generalizes the above two problems.
Note that the input graphs in our application are transitive graphs, whereas we
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assume trees in our hardness proofs. One might argue that the problem is ac-
tually simpler for transitive graphs; but for a given tree T = (V, E) with unit
weights, its transitive closure G := T+ can be complemented with a binary
weighting w : Et — {0,1} such that w(e) = 1 if and only if e € E. So, the
COLORFUL SUBTREE PROBLEM remains hard for transitive input graphs. Also
note that the input graphs constructed from mass spectra, possess a topological
sorting that respects colors. Again, one might argue that the problem is actually
simpler for such graphs. It turns out that this is not the case, either: Dondi
et al. [7] show that the MAXIMUM MOTIF problem is APX-hard even for leveled
trees. All the trees constructed in our reductions are leveled, and all our results
are also valid on leveled trees. Similar to above, leveled trees can be encoded in
“color-sorted” graphs using binary weightings. Thus, the problems remain hard
for graphs with this property.

The MAaxiMuM COLORFUL SUBTREE problem becomes tractable if the input
graph is a colorful graph with non-negative edge weights. But the COLORFUL
SUBTREE CLOSURE problem remains hard, even in this case:

Theorem 3. The COLORFUL SUBTREE CLOSURE problem is MAX SNP-hard
even if the input graph is a colorful DAG with a single source and binary weights.

As we consider a colorful DAG, we can discard all colors and search for a
subtree with maximum transitive closure. The transitive closure need not to be
defined on colors, but can also be defined on vertices. So, each transitive edge
has individual 0/1 weight. We defer the proof of Theorem 3 to the full version
of the paper. This proof can be easily adapted to a DAG with maximal vertex
degree three.

Surprisingly, we can still find a swift and exact algorithm for the COLORFUL
SUBTREE CLOSURE problem, presented in the next section.

4 An Exact Algorithm for the Combined Colorful
Subtree Problem

Several heuristics for the simpler MAXIMUM COLORFUL SUBTREE problem have
been evaluated both regarding quality of scores [6] and quality of fragmentation
tree [17]. Results of using only the heuristics were of appalling quality, so we
refrain from using only heuristics to solve the COMBINED COLORFUL SUBTREE
problem. Furthermore, no constant-factor approximation can exist, unless P =
NP. But despite the hardness of the problem, we will now present an exact
algorithm with reasonable running time in applications. The algorithm is fixed-
parameter tractable with respect to the number of colors k = |C/|, and uses
dynamic programming to find the optimum. Note that in application, we can
choose k arbitrarily, see below. Let n := |V| and m := |E| be the number of
vertices and edges in the input graph G = (V, E), respectively.
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Let W*(v,.S) be the maximum score w*(T) of a colorful subtree with root v
using colors S C C. Then W*(v, S) can be calculated as

W (u, S\ {c(v)}) +w(v, u)

+ '
< Y B D SR C(ONC)
W*(v,S) = max €S\ {e(v)} (2)
W*(v,S1) + W*(v, S2)

max
(S1,S2):S1NSa={c(v)}
S1US>=S

where, obviously, we have to exclude the cases S1 = {c(v)} and Sy = {c(v)}
from the computation of the second maximum. We initialize W*(v, {¢(v)}) = 0,
and set the weight of nonexistent edges to —oo. To prove the correctness of
recurrence (2), we note that we only have to differentiate three cases: A subtree
root v can have no children, one child, or two or more children. The case of no
children, that is v is a leaf, is covered by the initialization. If v has one child w,
we add the score of the tree rooted in u, the score of the new edge (v,u), and
scores of all new transitive edges. This is done in the first line of the recurrence.
If v has two or more children, we can “glue together” two trees rooted in v,
where we arbitrarily distribute the children of v and the colors of S to the two
trees.

We now analyze the running time of recurrence (2). Extending a tree by a
single vertex takes O(2Fm) time, as we can calculate the sum in constant time
by going over the 2¥ partitions in a reasonable order. Gluing together two trees,
the k colors are partitioned into three groups: those not contained in S, elements
of Sy, and elements of Sy. There are 3* possibilities to perform this partition, so
running time is O(3*n). This results in a total running time of O(3*n + 2*¥m).
Running time can be improved to O*(2*) using subset convolutions and the
Mébius transform [4], but this is of theoretical interest only. In comparison to the
algorithm presented in [6], the worst-case running time is not affected by scoring
the transitive closure. The necessary space is O(2¥n). In our implementation,
we only iterate over defined values in W*: An entry is not defined if there exists
no subtree rooted in v using exactly the colors in S. This algorithm engineering
technique does not improve worst-case running times and memory consumption,
but greatly improves them in practice. To decrease memory consumption, we
use hash maps instead of arrays.

Unfortunately, the above method is limited by its memory and time con-
sumption. In application, exact calculations are limited to k' < k colors for
some moderate k', such as k' = 15. These colors correspond to the k' most in-
tense peaks in the mass spectra, as these contribute most to our scoring. The
remaining peaks are added in descending intensity order by a greedy heuristic:
For each vertex v with an unassigned color, we try to attach v to every vertex u
of the tree constructed so far, where some or all of the children of u in the tree
may become children of v. We omit the technical details, and just note that our
heuristic is inspired by Kruskal’s algorithm for computing a maximum spanning
tree.
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Fig. 2. Scoring of the transitive closure referring to the three cases. A dashed peak is
not occurring in the spectrum drawn but in another one (typically the MS? spectrum).
A connection pr — p; indicates that p; is a fragment of p, while a connection pr = p;
indicates that peak p; is unlikely to be a fragment of py.

5 Scoring

Particularly in fragmentation spectra, the charge of metabolites is mostly +1,
so we may assume that m/z and mass are equal. Note that our calculations are
not limited to a charge of one, though.

The transitive closure score w™ is defined using the MS™ data. Recall that
this score is defined for peaks or, equivalently, colors. In detail, we score three
cases, see Fig. 2:

— A spectrum with parent peak p; and peak p; indicates that the fragment
corresponding to p; has evolved from the fragment corresponding to pi. To
reward this, we increase the transitive score of the tree by o7 > 0 if the
fragment corresponding to pj is a direct or indirect ancestor of the fragment
corresponding to p;, see Fig. 2(a).

— Given a spectrum that contains peak p; but not peak pi, and mass p; <
mass pg. This indicates that the fragment corresponding to p; has not evolved
from the fragment corresponding to pi. To penalize this, we add o9 < 0 to
the score if the fragment corresponding to py is a direct or indirect ancestor
of the fragment corresponding to p;, see Fig. 2(b).

— Given two spectra with different collision energies and two peaks p; and
p; with mass p; < mass pg. If the spectrum with higher collision energy
contains only pi but the spectrum with lower collision energy contains both
peaks, the fragment corresponding to p; has probably not evolved from the
fragment corresponding to pi. To penalize this case, we add o3 < 0 to the
score if the fragment corresponding to py is a direct or indirect ancestor of
the fragment corresponding to p;, see Fig. 2(c).

In all cases, 01, 09, and o3 are not used to score edges of the fragmentation tree
but instead, edges of the transitive closure of the tree. Two peaks are identified
to correspond to the same fragment if their masses differ in less than 0.1 Da. For
each fragment only the peak with maximum intensity is taken into account for
further calculations.

The scoring scheme of the fragmentation graph is the same as introduced
in [6], taking the following properties into account: peak intensities, mass de-
viation between explanation and peak, chemical properties, collision energies
and neutral losses. First, every peak is given a base score of b, b > 0. To score
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the mass deviation we evaluate the logarithmized Gaussian probability density
function with SD ¢ at the measuring error value. Further we use the density
function of the normal distribution with mean 0.59 and SD 0.56 to score the
hetero atom to carbon ratio of the decompositions. Due to the collision energies
of the different spectra, some peaks cannot represent fragments of other peaks.
A fragment appearing at lower collision energy than its predecessor is penalized
with log(), @ < 1. If there is no spectrum containing both, neither containing
none of the peaks we add only a penalty of log(5), o < 8 < 1. Common neutral
losses are rewarded with log(), v > 1, while radical neutral losses are penalized

by log(8), § < 1, and large neutral losses by log(1 — %) In addition
to the scoring from [6], we use an extension that takes into account rare neutral
losses: If a rare neutral loss occurs in a fragmentation step we penalize it by
adding log(n),n < 1. We also penalize neutral losses that consists carbon or
only nitrogen atoms by adding log(e), e < 1. In contrast, radical losses are not
penalized, since they sometimes occur in fragmentation reactions. Due to space
constraints, we defer a list of all rare neutral losses and radical losses to the full

version of the paper.

6 Results

To evaluate our work we implemented the algorithm in Java 1.6. As test data
we used 185 mass spectra of 45 compounds, mostly representing plant secondary
metabolites. The 185 mass spectra are composed of 45 MS? spectra, 128 MS?
spectra and twelve MS* spectra (unpublished). All spectra were measured on
a Thermo Scientific Orbitrap XL instrument, we omit the experimental details.
Peak picking was performed using the Xcalibur software supplied with the instru-
ment. The data set was analyzed with the following options: For decomposing
peak masses we use a relative error of 20 ppm and the standard alphabet contain-
ing carbon (C), hydrogen (H), nitrogen (N), oxygen (O), phosphorus (P), and
sulfur (S). For the construction of the fragmentation graph, we use the collision
energy scoring parameters a = 0.1, 5 = 0.8, the neutral loss scoring parameters
~=10,5 =103, e = 107, n = 1073, the intensity scoring parameter A = 0.1,
the base score b = 0 and the standard deviation of the mass error o = 20/3 as
described in [6,17]. We can identify the molecular formulas of the compounds
from isotope pattern analysis and by calculating the fragmentation trees for all
candidate molecular formulas [17]. In this paper, we assume that this task has
been solved beforehand, and that all molecular formulas are known.

Comparing Trees. We evaluate the impact of using MS™ instead of MS? data, as
well as the influence of scoring parameters o1, 02, o3 from Sec. 5, using pairwise
tree comparison. In each fragmentation tree, vertices are implicitly labeled by
molecular formulas of the corresponding fragments. We limit our comparison to
those fragments that appear in both trees, and discard orphan fragments. We
distinguish four cases:
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— A fragment is identically placed, if its parent fragments are identical in both
trees.

— A fragment is pulled up, if its parent fragment in the second tree is one of
its predecessors in the first tree (and the fragment is not identically placed).

— A fragment is pulled down, if its parent fragment in the first tree is one of its
predecessors in the second tree (and the fragment is not identically placed).

— A fragment is regrafted, if it is not identically placed, pulled up or pulled
down.

The obvious way to evaluate our method would be to compare our results
against some gold standard. Unfortunately, such gold standard is not available
for our study. Rasche et al. [17] have evaluated the method from [6] by expert
annotation of MS? fragmentation trees for a subset of the compounds used in
this paper. Unfortunately, the input data (that is, fragments observed in the MS?
and MS™ mode of the instrument) differ strongly. Hence, a comparison against
these expert-annotated fragmentation trees is impossible.

As mentioned in Sec. 4 the exact algorithm is memory and time consuming.
So, we use the exact algorithm for only the & most intense peaks, and attach
the remaining peaks using a greedy heuristic. We find that decreasing &’ from
20 to 15, has a comparatively small effect on the computed fragmentation trees:
97.1% of the fragments were identically placed, 0.4% were pulled up, 0.6% were
pulled down, and only 1.9% were regrafted. On the other hand, average running
time per compound was decreased from 30.8 min to 3.97 s. In the remainder
of this section, we set &’ = 15 and use only the 15 most intensive peaks for
exact computations. Choosing a moderate ¥’ = 15 has a much stronger effect
here, than it was observed for the MAXIMUM COLORFUL SUBTREE problem [6],
where constructed fragmentation trees were practically identical for k¥’ = 15 and
k' = 20. We attribute this to the transitive scoring, which appears to be harder
to grasp by the heuristic.

To show the effect of evaluating MS™ data, we individually varied the three
score parameters, and compared the resulting trees to the trees constructed

total changes ~ --------o pull ups ——-—-—- regrafts = - ---- pull downs

=
o

changes in %

oON & O ®

Fig. 3. Percentage of pull ups, pull downs, regrafted fragments, and total changed
fragments when varying score parameters o1, o2, and os. Left: Varying o1 with oo =0
and o2 = 0 fixed. Middle: Varying o2 with o1 = 0 and o3 = 0 fixed. Right: Varying o3
with o1 = 0 and o2 = 0 fixed.
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without scoring the transitive closure, see Fig. 3. As oy increases, the fraction
of changes in the trees (pull ups, pull downs and regrafts) converges to about
14%. A similar behavior is observed as o9, 03 are decreased. The main difference
between the bonus score o7 and the penalty scores o and o3 is that increasing
o1 results in more pull downs than pull ups, while decreasing penalty scores
09,03 produces more pull ups than pull downs. This can be explained as follows:
Reward scores can rather be realized if fragments are inserted deep, that is, far
from the root. In contrast, negative penalty scores are avoided if the fragments
are inserted “shallow”, that is, close to the root. So, o1 > 0 tends to deepen the
trees, whereas 09,03 < 0 tends to broaden the trees.

Based on the above analysis, we decided to use the following parameter val-
ues: k' = 15, 01 = 3, 0o = —0.5, and 03 = —0.5. We choose a large o1 as the
underlying MS™ observation is a clear signal that some fragment should be placed
as a successor of another fragment. In comparison, the MS™ reasoning behind
o9 and o3 is somewhat weaker, so we choose smaller absolute values for these
parameters that less influence the trees. The crucial comparison is now between
the fragmentation trees computed without scoring the transitive closure and the
fragmentation trees computed with the above scores. As we have only one MS?
spectrum per compound and one spectrum contains too few peaks to calculate a
reasonable tree, we transform the MS™ data to “pseudo-MS?” data by merging
all fragmentation spectra of a compound into one. This simulates MS? spectra
with different collision energies. By merging all spectra into one, we loose all in-
formation about dependencies between peaks/colors. This is implicitly achieved
by setting o1, 09,03 = 0. Between these trees 76.21% of the fragments are iden-
tically connected, 4.90% are pull ups, 1.79% pull downs and 17.11% regrafted
fragments. Hence, almost one quarter of all fragments are changed due to the
information from MS” data.

We cannot evaluate whether these changed neutral losses are true or false and,
hence, whether MS” fragmentation trees are truly better than the MS? trees. But
we will now show an example where the MS™ tree agrees well with the observed
MS™ data: To this end, we consider the fragmentation trees of Phenylalanine,
with and without scoring the transitive closure, see Fig. 4. The two fragmentation
trees are almost identical, with the single exception of fragment C,Hg at 93.1 Da:
This fragment is connected to CyHyO, at 149.0 Da in the MS? tree, and to
CgH (N at 120.1 Da in the MS™ tree. In the MS? interpretation, the neutral loss
C,0, is explained as two common neutral losses CO and, hence, it is preferred
over the neutral loss CHN (hydrogen cyanide). Using MS™ data, we can resolve
this: the peak at 93.1 Da does occur in the MS? spectrum with parent peak at
120.1 Da, therefore C,Hq at 93.1 Da probably resulted (directly or indirectly) as
a fragment of CgH )N at 120.1 Da. This is rewarded by our algorithm, adding
01 = +3 to the score of the modified tree. The fact that the peak at 107.0 Da is
missing in the MS? spectrum with parent peak at 120.1 Da, does not change the
score: In the MS? analysis, fragment C,H,O cannot be a successor of CgH;,N
at 120.1 Da, nor are 91.1 Da, 93.1 Da, or 103.1 Da assumed to be its successor.
Another example where the MS” tree agrees well with the observed MS™ data
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Fig. 4. Left: Fragmentation trees of phenylalanine. Solid edges are neutral losses
present in both trees, the red dotted (green dashed) edge is present in the MS? (or
MS™) tree only, respectively. Right: MS? spectrum of the parent peak (top) and MS?
spectrum of the 120.1 Da fragment (bottom). Dashed peaks are not contained in the
particular spectrum.

is tryptophan. Due to space constraints, we defer the details of this analysis to
the full version of the paper.

As shown in Sec. 3, the theoretical worst case running time of our algorithm
is identical with that of the MAXIMUM COLORFUL SUBTREE algorithm in [6]. We
investigated whether this also holds in application. Running times were measured
on an Intel Core 2 Duo, 2.4 GHz with 4 GB memory, with parameter k' = 15.
We find that total running times of the algorithm, with and without using MS™
data, are practically identical: Average running time is about 3.8 s, and the
maximal running time for one compound was 17.6 s. We omit further details.

7 Conclusion

In this paper, we have presented a framework for computing metabolite fragmen-
tation trees using MS™ data. Our fragmentation model results in the COMBINED
COLORFUL SUBTREE problem, a conjunction of the MAXIMUM COLORFUL SUB-
TREE problem and the COLORFUL SUBTREE CLOSURE problem. Both problems
are NP-hard, and no PTAS can exist for either problem. The latter problem
remains MAX SNP-hard even if the input graph is colorful.

We have presented an exact dynamic programming algorithm for the Cowm-
BINED COLORFUL SUBTREE problem, showing that the problem is fixed-parame-
ter tractable with respect to the parameter “number of colors”. We have intro-
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duced a scoring scheme based on the dependencies between the different fragmen-
tation steps. To reduce memory and time requirements, we limit exact computa-
tions to the &’ < k most intense peaks in the spectrum. Although the COMBINED
COLORFUL SUBTREE problem is computationally hard, the resulting algorithm
is fast in practice.

For our application, the score of the transitive closure w* : C2 — R is defined
on pairs of colors. From the theoretical standpoint, one can modify the problem
such that the score wT : BT — R is defined on edges of the transitive closure
of the fragmentation graph G = (V| E). In this case, our algorithm from Sec. 4
cannot be used, and it remains an open problem whether this modified version
of the COLORFUL SUBTREE CLOSURE problem is fixed-parameter tractable with
respect to the number of colors. Clearly, the problem is in FPT for unit weights.

We have seen that using additional information from MS™ data does change
the computed fragmentation trees. In our experiments, one quarter of fragments
were differently inserted when including MS™ information. As our scoring scheme
is “chemically reasonable”, we argue that the trees are actually improved using
MS™ data. Unfortunately, MS™ is less suited for high-throughput measurements,
as individual measurements are more time-consuming. On the other hand, for
about three quarters of the fragments, trees remain identical between MS? and
MS”. Thus, calculating fragmentation trees from MS? data extracts valuable
information concealed in these spectra and results in largely reasonable trees.

In the future, we want to increase the speed and decrease the memory con-
sumption of our exact algorithm. Also, we want to use MS™ fragmentation trees
to fine-tune the scoring parameters for computing MS? fragmentation trees. The
next step of the analysis pipeline is a method for automated comparison of frag-
mentation trees.
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