
Speedy Colorful Subtrees

W. Timothy J. White 1, Stephan Beyer 2, Kai Dührkop 1, Markus Chimani 2

and Sebastian Böcker 1

1Chair for Bioinformatics, Friedrich-Schiller-University, Jena, Germany,
{tim.white,kai.duehrkop,sebastian.boecker}@uni-jena.de

2Institute of Computer Science, University of Osnabrück, Germany,
{stephan.beyer,markus.chimani}@uni-osnabrueck.de

This is a preprint of the article: W. Timothy J. White, Stephan
Beyer, Kai Dührkop, Markus Chimani and Sebastian Böcker.

Speedy Colorful Subtrees. In Proc. of Computing and
Combinatorics Conference (COCOON 2015), volume 9198 of Lect

Notes Comput Sci, pages 310�322. Springer, Berlin, 2015.

Abstract. Fragmentation trees are a technique for identifying molecular
formulas and deriving some chemical properties of metabolites�small
organic molecules�solely from mass spectral data. Computing these
trees involves �nding exact solutions to the NP-hard Maximum

Colorful Subtree problem. Existing solvers struggle to solve the large
instances involved fast enough to keep up with instrument throughput,
and their performance remains a hindrance to adoption in practice.

We attack this problem on two fronts: by combining fast and e�ective
reduction algorithms with a strong integer linear program (ILP)
formulation of the problem, we achieve overall speedups of 9.4 fold
and 8.8 fold on two sets of real-world problems�without sacri�cing
optimality. Both approaches are, to our knowledge, the �rst of their
kind for this problem. We also evaluate the strategy of solving
global problem instances, instead of �rst subdividing them into many
candidate instances as has been done in the past. Software (C++
source for our reduction program and our CPLEX/Gurobi driver
program) available under LGPL at https://github.com/wtwhite/

speedy_colorful_subtrees/.

1 Introduction

Metabolites�small molecules involved in cellular reactions�provide a direct
functional signature of cellular state. Untargeted metabolomics aims to identify
all such compounds present in a biological or environmental sample, and the
predominant technology in use is mass spectrometry (MS). This remains a
challenging problem, in particular for the many compounds that cannot be found
in any spectral library [17, 18]. Here we consider tandem mass spectra (MS2),
which measure the masses and abundances of fragments of an isolated compound.



2 W.T.J. White, S. Beyer, K. Dührkop, M. Chimani, S. Böcker

A �rst step toward full structural elucidation of a compound is the
identi�cation of its molecular formula. While it is possible to derive the molecular
formula for a given exact mass, measurement inaccuracies have to be considered.
Even for high-accuracy instruments, when using an appropriate error range for
the mass measurement there may be thousands of possible molecular formulas
for a given mass [7]. Approaches for identifying the correct formula include
isotope pattern analysis [3], fragmentation pattern analysis [2], or a combination
of both [8, 9, 11, 12, 15].

Computation of fragmentation trees [12] is a highly powerful method for
fragmentation pattern analysis: In the 2013 CASMI (Critical Assessment of
Small Molecule Identi�cation) Challenge for identifying molecular formulas, a
combination of fragmentation tree and isotope pattern analysis was selected
�best automated tool� [6, 10]. In addition, fragmentation tree structure can
help to derive information about an unknown compound's structure [13, 16].
Peaks in the spectrum are annotated with molecular formulas by looking for
consistent explanations, using knowledge of possible fragmentation events and
their probabilities. This translates into �nding exact solutions to the NP-hard
Maximum Colorful Subtree (MCS) problem, described later. Unfortunately
the problem instances generated can contain over 100,000 edges, and the
performance of existing approaches cannot keep up with the throughput of the
MS instruments, sometimes limiting the method's appeal in practice. Heuristics
often fail to �nd the optimal solution, and a simple integer linear program (ILP)
has been identi�ed as the fastest exact method [14].

We attack this problem on two fronts: by combining fast and e�ective
reduction algorithms with facet-de�ning inequalities for the ILP formulation of
the problem, we achieve overall speedups of 9.4 fold and 8.8 fold on two sets of
real-world problems�without sacri�cing optimality. Both approaches are, to our
knowledge, the �rst of their kind for this problem. We also evaluate the strategy
of solving global problem instances, instead of �rst subdividing them into many
candidate instances as has been done in the past. Here, we will not evaluate the
quality of solutions, as these are identical for any exact method; also, we will
assume the edge weights of the MCS problem to be given [5].

1.1 Fragmentation Trees Are Maximum Colorful Subtrees

Consider an MS2 spectrum containing k peaks p1, . . . , pk, having mass-to-charge
(m/z) ratios mi and peak intensities qi for 1 ≤ i ≤ k, listed in decreasing
m/z order. Following Böcker and Rasche [2], we use the Round-Robin algorithm
[1] to �nd all possible explanations of the parent peak�that is, all candidate
molecular formulas having m/z approximately equal to m1. Each such formula
becomes the 1-colored root vertex in a separate MCS instance graph. Within
each MCS instance, i-colored vertices are added for each possible explanation of
peak pi, for all 2 ≤ i ≤ k. Whenever the molecular formula of v is a subformula of
the formula of u, indicating that v could possibly be generated by fragmenting u,
we add a directed edge (u, v) and assign an edge weight (which may be positive,
negative or zero) according to a probabilistic model of fragmentation. Intuitively,



Speedy Colorful Subtrees 3

C22H23NO7
413.147

C22H21NO6
395.137

C22H12NO2
322.087

C19H14O5
322.084

C22H10NO
304.076

C19H12O4
304.074

C21H12NO
294.092

C18H14O4
294.089

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
el
at
iv
e
ab
un
da
nc
e

m/z
280 300 320 340 360 380 400 420

H2O

H2O

CO

C3H7NO

Fig. 1. Example MS2 spectrum and resulting MCS instance. Nodes (peak explanations)
show their molecular formulas and weights. Edges (fragmentation events) in the optimal
subtree are solid and labeled with their neutral losses. Edge weights not shown.

a rooted colorful subtree T in one of these graphs maps each peak to at most
one molecular formula in such a way that all formulas in T are consistent with
fragmentation of the candidate formula at the root, with the tree of highest total
weight corresponding to the best such explanation. By calculating the weights of
these optimal trees for all MCS instances and ranking them, the best candidate
formula for the spectrum can be determined. Fig. 1 shows an example.

The full version of this paper discusses a technique for solving a single global

MCS instance representing the entire problem, instead of multiple candidate

instances.

Formally, an instance of the MCS problem is given by (V,E,C,w, c, r) where
V is the set of vertices, E ( V 2 is the set of directed edges, C is the set of colors,
w : E → R is the weight function on edges, c : V → C is the function de�ning
colors for each vertex, and r ∈ V is a distinguished vertex called the root. The
graph (V,E) is acyclic, and there is a path from r to every v ∈ V .

A subgraph G′ ⊆ G is colorful i� all vertices in G′ have di�erent colors. The
weight of an edge e = (u, v) ∈ E is given by w(u, v), and we de�ne w(u, v) = −∞
when (u, v) /∈ E. We further extend this function to operate on any subgraph G′

in the usual way, by summing over all edges in G′. A subgraph X ⊆ G dominates

a subgraph Y ⊆ G i� w(X) ≥ w(Y ).

We would like to assign weights to both edges and vertices: the former
to re�ect the likelihood of the speci�c neutral loss in question; the latter to
capture peak-speci�c or explanation-speci�c information such as peak intensity,
mass deviation between measurement and prediction, and estimates of formula
plausibility. In order to represent a weight function w′ : V ∪ E → R on both
vertices and edges using a weight function w : E → R on edges only, we can
simply set w(u, v) := w′(u, v) + w′(v) for each (u, v) ∈ E, since every valid
subtree containing v must contain exactly one incoming edge (u, v).

Our goal is to �nd a maximum colorful r-rooted subtree T of G: that is,
among all subtrees rooted at r and in which at most one vertex of any given
color appears, a subtree having maximum total weight. This problem is NP-



4 W.T.J. White, S. Beyer, K. Dührkop, M. Chimani, S. Böcker

hard. It remains NP-hard even if G is a tree with unit edge weights [2], or if
color constraints are dropped [14].1

We say that a subgraph G′ is below a vertex u i� there is a path of zero or
more edges from u to every vertex in G′. We denote by Gu the unique maximal
subgraph of G below u. A color i is below u i� there exists a path from u to
a vertex of color i. Furthermore a color i is below a color i′ i� there exists an
i′-colored vertex u such that i is below u. A subtree T of a graph G is full in

G i� it is rooted at some vertex u of G, and every edge in G below u is in T .
We use the term �cost� to describe a (typically negative) quantity that is to be
added to a weight to produce another weight. We also declare a vertex to be an
ancestor of itself, and use the adjective strict to denote non-self ancestors.

Let n := |V |, m := |E|, and k := |C|. Let δ−(U) := {(v, u) | u ∈ U, v /∈ U},
δ+(U) := {(u, v) | u ∈ U, v /∈ U}, and δ(U) := δ−(U) ∪ δ+(U). When U = {u}
we dispense with the braces. We also de�ne Vi := {v ∈ V | c(v) = i}.

2 Data Reduction

Our data reduction rules seek to shrink an MCS instance X to a smaller instance
X ′ by deleting edges that are provably unnecessary�that is, edges that are
simultaneously absent from some optimal solution to X. Here we outline our
rules and their computationally e�cient implementations.

Vertex upper bounds. The following sections describe upper bounds U(·)
on the maximum-weight subtree rooted at some vertex u. Particular upper
bounds are named by subscripting U ; when just U with no subscript appears,
it means that any arbitrary upper bound can be substituted. Trivially we have
that U(u) ≥ 0 for all u, since the 0-weight tree containing just u and no edges
is a subtree rooted at u. A computationally useful property of all vertex upper
bounds is that they remain valid in the face of edge deletions, enabling reductions
to safely delete multiple edges in between bound updates.

Child upper bound. A simple upper bound Uχ(·) for a given vertex u can
be obtained by considering the upper bounds of u's children and the edges
leading from u to them. Speci�cally we may choose, among all u's outgoing
edges to i-colored children (u, v) ∈ δ+(u) ∩ δ−(Vi), either the edge (u, v) that
maximises w(u, v) + U(v) or no edge if this expression is negative. Summing
across colors i yields equation (1). This bound tends to become very loose for
vertices near the top of the graph, since high-weight edges near the bottom of
the graph will usually be visited by large numbers of paths. Nevertheless it is
capable of eliminating many edges near the bottom of the graph when applied
to the vertex upper bound reduction rule. It can be considerably strengthened

1 When edge weights are constrained to be nonnegative and color constraints are
dropped, all leaves will appear in some optimal solution and the problem reduces to
the polynomial-time-solvable maximum spanning tree problem.



Speedy Colorful Subtrees 5

by incorporating other vertex upper bounds, such as the Colorful Forest upper
bound.

Uχ(u) =
∑

i∈{c(v)|(u,v)∈E}

max
{
0, max

(u,v)∈E,
c(v)=i

(
w(u, v) + U(v)

)}
(1)

We calculate this bound in O(m log k) time and O(n+k) space using dynamic
programming.

Colorful Forest upper bound. We next describe an upper bound Uλ(·)
obtained by relaxing the subtree constraint. Consider a vertex u, and the
subgraph Gu below u. Suppose that for each color i below u we choose either
no edge, or some edge (v, v′) ∈ E(Gu) such that c(v′) = i. All colorful forests
in Gu may be generated by choosing incoming edges in this way, and this set of
subgraphs contains the set of all colorful subtrees rooted at u, so the problem
of �nding a maximum-weight colorful forest in Gu is a relaxation of the u-
rooted MCS problem. The optimal solution to the relaxed problem is easily
found by choosing, for each color i, the maximum-weight incoming edge when
this is positive and no edge otherwise, yielding an upper bound on the weight of
a colorful subtree rooted at u. This is given in equation (2).

Uλ(u) =
∑
i∈C

max
{
0, max

(v,v′)∈E(Gu),
c(v′)=i

w(v, v′)
}

(2)

Dynamic programming permits calculation in O(km) time and O(kn) space.

Strengthening the Colorful Forest bound. The Colorful Forest bound can
be strengthened by noticing that whenever the forest that it constructs fails to
be a tree, we can determine an upper bound on the cost that must be incurred
to transform it into one. This upper bound can be added to the weight of the
forest to produce a new, stronger vertex upper bound UΛ(·). Here we merely
mention that careful implementation allows this stronger bound to be computed
in the same time complexity as the original; for a full description, see the full
version of this paper.

Anchor lower bound. Given that a vertex u is in the solution T , what is
a lower bound La(u, v) on the cost of forcing in a given vertex v? Here we
assume that T does not already contain a c(v)-colored vertex, and only consider
attaching v to a vertex in T by a single edge.

If v is a child of u, then clearly w(u, v) is a possibility. Regardless, it may still
be possible to attach v to a strict ancestor of u. Speci�cally, since the �anchor�
vertex u is in T by assumption, either u = r or one of the parents of u is also in
T . Therefore to form a lower bound, we have the option of attaching v to u if
this is possible, or to the worst of u's parents, recursively:

La(u, v) =

{
max

{
w(u, v),min(p,u)∈E La(p, v)

}
, u 6= r

w(r, v), u = r



6 W.T.J. White, S. Beyer, K. Dührkop, M. Chimani, S. Böcker

recalling that we de�ne w(u, v) = −∞ whenever (u, v) /∈ E. (La(u, v) will
produce −∞ i� there is some path from r to u that contains no vertex with
an edge to v.)

La(·, ·) can be computed via dynamic programming in O(n2) time and space.
It is also helpful to de�ne La′(u, v) := min(p,u)∈E La(p, v). This variant of

La(·, ·) excludes any direct edge from u to v from consideration.

Slide lower bound. Suppose we have a solution T which contains a vertex u.
We want to calculate a lower bound Ls(u, v) on the cost of changing T into a
new solution T ′ by replacing u with another given vertex v of the same color
as u. We call this the Slide lower bound because in the usual representation of
fragmentation graphs, vertices of the same color occupy the same row, so forcing
v into and u out of T is akin to horizontally sliding the endpoint of an edge
in T from u to v. Such a modi�cation may in general completely change the
vertices and edges in the tree below u, subject to the important restriction that
it respects color usage: that is, it only ever transforms a subtree Tu into a subtree
T ′v such that c(T ′v) ⊆ c(Tu). This re�ects the fact that we cannot safely insert
vertices of new colors, because these colors may already be in use by other parts
of the solution. The full version of this paper describes how to compute Ls(u, v)
by dynamic programming in O(mnk) time and space, where nk is the maximum
number of vertices of any color.

Vertex Upper Bound rule. If for some edge (u, v) we have that w(u, v) +
U(v) ≤ 0, then clearly any solution containing (u, v) is dominated by a solution
in which (u, v) and any subtree below it have been deleted, implying that (u, v)
can be safely deleted. Applying this rule before other rules removes certain
uninteresting special cases from consideration.

Slide rule. Whenever two edges exist from a vertex u to distinct vertices v and
v′ of the same color, there is an opportunity to apply the Slide reduction rule. If

w(u, v′)− w(u, v) + Ls(v, v
′) > 0 (3)

holds then any solution T containing (u, v) can be improved by sliding (u, v) to
(u, v′). This rule can be strengthened by replacing the �rst term with La(u, v

′),
which a�ords us the chance to connect v′ to an ancestor of u. We may then
usefully allow v′ = v to eliminate edges (u, v) that can always be replaced with
a better edge (a, v), where a is a strict ancestor of u.2

Dominating Path rule. The idea behind the Slide rule can be taken further:
instead of trying to replace an edge (u, v) with another single edge from an
ancestor of u to a vertex of the same color as v, we can replace it with a chain of

2 The full version of this paper discusses a subtlety regarding �oating-point arithmetic
and comparisons for equality.



Speedy Colorful Subtrees 7

d edges connecting vertices v1, . . . , vd+1, with the starting point v1 an ancestor
of u and the endpoint vd+1 obeying c(vd+1) = c(v) as before. However we must
now pay a price for forcing in each internal vertex vj for all 2 ≤ j ≤ d in
this chain, because the solution may already contain some di�erent vertex of
color c(vj) that needs to be dealt with. This can be done for each such internal
vertex by using the Slide lower bound. Suppose the path we wish to force in
contains some i-colored vertex x, but the solution already contains a con�icting
vertex�an i-colored vertex y 6= x. The solution can be patched up by deleting
the incoming edge to y and sliding any subtree below y so that it appears below
x for a total cost of Ls(y, x)−w(p, y), where p is y's parent in the solution. Since
we do not know, for any color i, which i-colored vertex (if any) is already in
the solution, we must take the worst case over all i-colored vertices and all their
possible incoming edges:

Lforce(x) = min
y∈Vc(x)

(
Ls(y, x)− max

(p,y)∈E
w(p, y)

)
(4)

It is now possible to state a recursion to calculate an upper bound on the cost
to force in a given vertex x, assuming that a vertex u is already in the solution:

f(u, x) = min
{
0, α, α+ Lforce(x)

}
(5)

α = max
{
La(u, x), max

p, (p,x)∈E

(
f(u, p) + w(p, x)

)}
(6)

We now have that an edge (u, v) can be deleted if there exists an edge (x, z)
such that c(z) = c(v) and w(x, z) + f(u, x) + Ls(v, z) > w(u, v). f(u, x) can be
calculated in O(n) space because its �rst argument never varies during recursion.

Two further reduction rules, the Implied Edge rule and the Color Combining
rule, are described in the full version of this paper.

3 Integer Linear Programming

Rauf et al. [14] surveyed di�erent methods to obtain optimal solutions of the
MCS problem, including an integer linear program (ILP). We extend this to
obtain a strictly stronger LP relaxation, and solve the resulting ILP using the
cutting plane method.

The ILP of Rauf et al. [14] is equivalent to

max
∑

(u,v)∈E

w(u, v)xe (7a)

s. t.
∑

e∈δ−(Vi)

xe ≤ 1 ∀i ∈ C, (7b)

∑
e∈δ−(v)

xe ≥ x(v,u) ∀(v, u) ∈ E, v 6= r (7c)

xe ∈ {0, 1} ∀e ∈ E (7d)



8 W.T.J. White, S. Beyer, K. Dührkop, M. Chimani, S. Böcker

where xe is assigned 1 i� the directed edge e is included in the solution. For
each v ∈ V \ {r} their formulation also includes a constraint

∑
e∈δ−(v) xe ≤ 1,

but these constraints are redundant due to the colorful forest constraints (7b),
which ensure that every color is contained in the solution at most once and that
there is at most one incoming directed edge for each vertex. The connectivity

constraints (7c) say that for each non-root vertex of V , there may only be
outgoing directed edges if there is an incoming directed edge. Note that the
ILP has a linear number of constraints and variables, so its linear relaxation can
be solved as-is without separation.

In this paper, we add the constraints∑
e∈δ−(Vi)

xe ≤
∑

f∈δ−(S)

xf ∀i ∈ C ∀S ⊆ V, Vi ⊆ S (8)

that prohibit splits and joins of fractional values. The constraints are valid for
the ILP since they only forbid the case where the left-hand side is 1 and the
right-hand side is 0, which could only happen if the result is not connected.
However, the constraints make the LP relaxation strictly stronger, as can be
seen in Fig. 2: in Fig. 2(b) the incoming value of v1 is 0.5 and the incoming value
of v3 is 1 which is forbidden by (8) for S = {v1, v2, v3} and i = c(v3).

We �rst solve the LP for a subset of the constraints. Then, we solve the
separation problem: we search (8) for one or more violated constraints, add them
to the LP, and re-solve, iterating the process until there are no further violated
constraints. Here, the separation problem can be answered by �nding, for each
i ∈ C, a minimum r-Vi-cut in the solution network (V,E, x) and testing if it is less
than

∑
e∈δ−(Vi)

xe. Although (8) contains an exponential number of constraints,
the separation problem can be solved in polynomial time using a Maximum Flow
algorithm, and only a small number of iterations are typically needed to �nd a
feasible LP solution.

Theorem 1. (7b) and (8) provide facet-de�ning inequalities of the problem

polytope and are the only necessary ones.

The proof is given in the full version of this paper. Although just these
inequalities su�ce for correctness, we also keep (7c) for evaluation in practice
because they do not need to be separated.

4 Results and Discussion

We tested the performance of our reductions and ILP improvements on a spectral
dataset containing 1232 compounds that appear in the KEGG http://www.

kegg.jp metabolite database. From this we selected hard instances where the
�classic� ILP from Rauf et al. [14]�previously being the fastest exact method
for the MCS problem�showed poor running times. We computed fragmentation
graphs for each compound and built two datasets for evaluation:



Speedy Colorful Subtrees 9

r

v1

v2
v3

−3

2
2

2

(a) the input graph, each
vertex has a di�erent color

r

v1

v2
v3

0.5

0.5
0.5

0.5

(b) optimal solution of LP
relaxation of (7) with
objective value 1.5

r

v1

v2
v3

1

1
1

(c) optimal solution of LP
relaxation of (7)∧(8) with
objective value 1

Fig. 2. An example showing that the LP relaxation of (7) including (8) is strictly
stronger than without (8).

� graphs100: A set containing the 10 hardest candidate instances as well as a
random sample of a further 90 hard candidate instances. We use this dataset
to measure the performance of our reductions and ILP improvements.

� fmm1: A set of 20 hard global instances, comprising 86358 candidate
instances in total. We use this dataset to compare the heretofore typical
strategy of solving all candidate MCS instances separately, to solving a single
global instance. Results for this dataset are given in the full version of this
paper.

Rauf et al. [14] found that 95% of MCS instances could be solved by ILP in
under 5 seconds, while some took up to 5.6 minutes. To this end, it is su�cient
to consider the hard instances in our comparison. The full version of this paper
describes both the datasets and our results in more detail.

We implemented our reductions in ft_reduce, a C++ program that
understands a simple language for describing the sequence of reductions to
perform, a�ording �exibility in testing di�erent orders and combinations of
reductions. We selected three representative reduction scripts to analyse:

� R1 computes vertex upper bounds using both the Child bound and the
Colorful Forest bound, and then applies the Vertex Upper Bound rule.

� R2 does the same, but uses the strengthened Colorful Forest bound.
� R3 applies R2 and then all remaining reduction rules.

Each script iterates until no more edges can be removed. The full version of this
paper gives the complete scripts.

We implemented our new ILP formulation using a C++ driver program
linked with CPLEX 12.6.0 (http://www.ibm.com/software/integration/
optimization/cplex-optimization-studio/). Our new facet-de�ning cuts
can be turned on or o� using a command-line argument. In the remainder, we call
the solver with these cuts turned on �CPLEX+Cuts�, and the solver with them
turned o� �CPLEX� or �stock CPLEX�. For the separation of the split-and-join
constraints, we use the Maximum Flow code by Cherkassky and Goldberg [4]. We
also performed tests using Gurobi 5.5.0 (http://www.gurobi.com/), although
we were not able to implement the cuts e�ciently using its callback framework.



10 W.T.J. White, S. Beyer, K. Dührkop, M. Chimani, S. Böcker

0

50

100

150

200

250

#
ed

g
es

/1
0
0
0

# edges after R3

edges R3 R2

edges R2 R1

edges R1 unreduced

0

2000

4000

6000

8000

10000

12000

R
u
n
n
in

g
ti

m
e

(s
)

CPLEX CPLEX + Cuts Gurobi

Solver

Reduce instances

Solve original instances

Solve R1 instances

Solve R2 instances

Solve R3 instances

Fig. 3. Left: Comparing unreduced and reduced instance sizes for each graphs100
instance. The bottom bar in each stack gives the number of edges after R3 reduction;
higher bars correspond to weaker reductions, with the entire stack indicating the
unreduced instance size. Right: Running time evaluation for all graphs100 instances.
Each column shows the total elapsed time needed to solve all 100 instances, with
reduction time broken out as a black bar at the top.

All computational experiments were performed on a cluster of four 12-CPU
2.4GHz E5645 Linux machines with 48GB RAM each. All reductions and all
ILP solver runs for the graphs100 dataset ran to completion with a RAM limit
of 4GB and a time limit of 2 hours in place. For the fmm1 dataset, the memory
limit was increased from 4GB to 12GB, but some instances failed to run to
completion in the 2 hour limit. Our reduction program is single-threaded, and
ILP solvers were operated in single-threaded mode. All time measurements are
in elapsed (wallclock) seconds, and exclude time spent on I/O.

4.1 Results for graphs100 Dataset

Fig. 3 (left) shows the e�ectiveness of our reductions in shrinking the graphs100
problem instances. Every R1 or R2 reduction removed at least 11.6% of the
edges, and every R3 reduction removed at least 35.4%, with the average
reductions being 62.4%, 64.3% and 70.4% for R1, R2 and R3, respectively.
Many instances produced much larger reductions, and it is clear from Fig. 3
(left) that reduced instance size is only very weakly correlated with original
instance size.

Fig. 3 (right) compares the performance of various combinations of reduction
scripts and ILP solvers. Two e�ects are immediately apparent: using the
strengthened ILP formulation improves average solution times for CPLEX by at
least a factor of 4; and applying either the R1 or R2 reduction script produces
anywhere from a 30.9% decrease (from unreduced to R2 on stock CPLEX)



Speedy Colorful Subtrees 11

to a 57.6% decrease (from unreduced to R1 on CPLEX+Cuts). We note with
particular interest that applying both techniques is substantially more e�ective
than would be expected by performing each separately: assuming their e�ects
on running time to be independent, we would expect that both performing an
R1 reduction and changing from stock CPLEX to CPLEX+Cuts would result in
instances taking on average 0.69109∗0.25065 = 0.173 times as long to solve, but
in fact we �nd that they take only 0.106 times as long�a relative improvement
of 38.7%, representing a 9.42-fold overall reduction in execution time.

In the other direction, we observe that both stock CPLEX and CPLEX+Cuts
take slightly longer to solve the R2 instances than the R1 instances, despite the
fact that every R2 instance's edge set is a strict subset of the corresponding R1
instance's edge set, having on average 5.1% fewer edges. We can only surmise
that the additional edges removed by using the strengthened Colorful Forest
bound destroyed some structure sought by CPLEX's various heuristics.

The more expensive R3 reductions are a net improvement for the stock
CPLEX and Gurobi solvers, but result in an overall slowdown for CPLEX+Cuts.

The highest memory usage on any unreduced instance was 1166MB, 1199MB
and 956MB for stock CPLEX, CPLEX+Cuts and Gurobi, respectively. On
reduced instances these �gures dropped to 853MB, 498MB and 640MB. The
highest memory usage by our ft_reduce program was 15MB, 15MB and 31MB
for R1, R2 and R3 reductions, respectively.

5 Conclusion

We have presented two highly e�ective techniques for accelerating the optimal
solution of MCS instances, thereby bringing practical de novo identi�cation
of metabolite molecular formulas a step closer to reality. The two methods
complement each other admirably: applying both yields a larger speedup than
the product of the speedups obtained by applying each separately. Based on our
experiments with two real-world datasets, we �nd that it is essentially always
advantageous to use our strengthened ILP formulation and to apply our simple
reductions, and frequently advantageous to apply our more complex ones.

The lion's share of the improvement in running times comes from
our new, facet-de�ning cutting planes for ILP solvers. ILP solvers have
demonstrated e�ectiveness across a wide range of hard optimization problems,
and we anticipate that they will remain the dominant approach to solving
MCS problems. At the same time, the problem reductions we present o�er
immediately-available speedups (and, often, memory usage reductions) not only
for ILP formulations but for any exact or heuristic solution method, such as
the �brute force� algorithm of Böcker and Rasche [2] or the Tree Completion
heuristic of Rauf et al. [14].

We noted above that the use of fragmentation trees goes beyond the
determination of molecular formulas [13]: see for instance Shen et al. [16] where
fragmentation trees are used in conjunction with machine learning to search
a molecular structure database using fragmentation spectra. In this analysis



12 W.T.J. White, S. Beyer, K. Dührkop, M. Chimani, S. Böcker

pipeline, computing fragmentation trees accounts for more than 90% of the
total running time. To this end, faster methods for this task are highly sought.

Bibliography

[1] Böcker, S. and Lipták, Zs. (2007). A fast and simple algorithm for the Money
Changing Problem. Algorithmica, 48(4), 413�432.

[2] Böcker, S. and Rasche, F. (2008). Towards de novo identi�cation of metabolites
by analyzing tandem mass spectra. Bioinformatics, 24, I49�I55. Proc. of European
Conference on Computational Biology (ECCB 2008).

[3] Böcker, S., Letzel, M., Lipták, Zs., and Pervukhin, A. (2009). SIRIUS: Decomposing
isotope patterns for metabolite identi�cation. Bioinformatics, 25(2), 218�224.

[4] Cherkassky, B. and Goldberg, A. (1997). On implementing push-relabel method
for the maximum �ow problem. Algorithmica, 19, 390�410.

[5] Dührkop, K. and Böcker, S. (2014). Fragmentation trees reloaded. In Proc.
of Research in Computational Molecular Biology (RECOMB 2015). Accepted for
publication.

[6] Dührkop, K., Hufsky, F., and Böcker, S. (2014). Molecular formula identi�cation
using isotope pattern analysis and calculation of fragmentation trees.Mass Spectrom,
3(special issue 2), S0037.

[7] Kind, T. and Fiehn, O. (2006). Metabolomic database annotations via query of
elemental compositions: Mass accuracy is insu�cient even at less than 1 ppm. BMC
Bioinformatics, 7(1), 234.

[8] Menikarachchi, L. C., Cawley, S., Hill, D. W., Hall, L. M., Hall, L., Lai, S., Wilder,
J., and Grant, D. F. (2012). MolFind: A software package enabling HPLC/MS-based
identi�cation of unknown chemical structures. Anal Chem, 84(21), 9388�9394.

[9] Meringer, M., Reinker, S., Zhang, J., and Muller, A. (2011). MS/MS data improves
automated determination of molecular formulas by mass spectrometry. MATCH-
Commun Math Co, 65, 259�290.

[10] Nishioka, T., Kasama, T., Kinumi, T., Makabe, H., Matsuda, F., Miura, D.,
Miyashita, M., Nakamura, T., Tanaka, K., and Yamamoto, A. (2014). Winners of
CASMI2013: Automated tools and challenge data. Mass Spectrom, 3(special issue
2), S0039.

[11] Pluskal, T., Uehara, T., and Yanagida, M. (2012). Highly accurate chemical for-
mula prediction tool utilizing high-resolution mass spectra, MS/MS fragmentation,
heuristic rules, and isotope pattern matching. Anal Chem, 84(10), 4396�4403.

[12] Rasche, F., Svato², A., Maddula, R. K., Böttcher, C., and Böcker, S. (2011).
Computing fragmentation trees from tandem mass spectrometry data. Anal Chem,
83(4), 1243�1251.

[13] Rasche, F., Scheubert, K., Hufsky, F., Zichner, T., Kai, M., Svato², A., and Böcker,
S. (2012). Identifying the unknowns by aligning fragmentation trees. Anal Chem,
84(7), 3417�3426.

[14] Rauf, I., Rasche, F., Nicolas, F., and Böcker, S. (2013). Finding maximum colorful
subtrees in practice. J Comput Biol , 20(4), 1�11.

[15] Rojas-Chertó, M., Kasper, P. T., Willighagen, E. L., Vreeken, R. J., Hankemeier,
T., and Reijmers, T. H. (2011). Elemental composition determination based on MSn.
Bioinformatics, 27, 2376�2383.

[16] Shen, H., Dührkop, K., Böcker, S., and Rousu, J. (2014). Metabolite identi�cation
through multiple kernel learning on fragmentation trees. Bioinformatics, 30(12),
i157�i164. Proc. of Intelligent Systems for Molecular Biology (ISMB 2014).



Speedy Colorful Subtrees 13

[17] Tautenhahn, R., Cho, K., Uritboonthai, W., Zhu, Z., Patti, G. J., and Siuzdak, G.
(2012). An accelerated work�ow for untargeted metabolomics using the METLIN
database. Nat Biotechnol , 30(9), 826�828.

[18] Wishart, D. S., Knox, C., Guo, A. C., Eisner, R., Young, N., Gautam, B., Hau,
D. D., Psychogios, N., Dong, E., Bouatra, S., Mandal, R., Sinelnikov, I., Xia, J.,
Jia, L., Cruz, J. A., Lim, E., Sobsey, C. A., Shrivastava, S., Huang, P., Liu, P.,
Fang, L., Peng, J., Fradette, R., Cheng, D., Tzur, D., Clements, M., Lewis, A.,
Souza, A. D., Zuniga, A., Dawe, M., Xiong, Y., Clive, D., Greiner, R., Nazyrova,
A., Shaykhutdinov, R., Li, L., Vogel, H. J., and Forsythe, I. (2009). HMDB: A
knowledgebase for the human metabolome. Nucleic Acids Res, 37, D603�D610.


