

k-means Clustering

Parameterized algorithms and FPT

- we want to find exact solutions for NP-hard problems (approximations are no good for bioinformatics)
- problem size n, parameter k (much smaller than n)

 idea: accept combinatorial explosion, but limit it to a rather small parameter k

Preliminaries: Parameter *k*

- parameter k is certain feature of the instance (size of the solution, deviation from triviality, ...)
- we often assume that parameter *k* is given
- answers of our algorithm: either "no solution" or a solution with parameter k' ≤ k
- this is no major difficulty: call the algorithm repeatedly for k = 1,2,3,... until a solution is found
- running time (super-)exponential in k, so the last program call dominates the running time

Preliminaries: Bounded search trees

- complete binary tree of height k has 2k leaves
- equival. formulation: we reduce our initial parameter k to zero
- what if we reduce k by other values than one?
- branching vector (1,2)
 with branching
 number 1.62
- tree size O(1.62^k)

Cluster Editing Problem

- represent objects as vertices of an undirected graph
- connect similar objects by an edge
- cluster vertices into disjoint union of cliques
- unfortunately, our input data contains errors...

Cluster Editing Problem

- our task: find smallest set of edge modifications so that graph becomes disjoint union of cliques
- NP complete problem, also APX hard
- efficient parameterized algorithms for

k = number of edge modifications

- fastest known algorithm running time $O(1.92^k + n^3)$
- fastest implemented alg. running time $O(2.27^k + n^3)$

Conflict triples

- a conflict triple is an induced path of length two
- easy to see: a graph is a disjoint union of cliques iff it contains no conflict triples
- FPT idea: find a conflict triple, branch to resolve it

Going weighted

- we give every edge and non-edge an insertion or deletion cost
- transform unweighted instance into weighted instance by assigning cost one to all edges and non-edges

Going weighted

- we assume that all edges and non-edge have arbitrary integer costs
- find set of edge modifications of minimal total weight k
- no edges with cost zero allowed in the input

- if we know that a certain edge has to be part of an optimal solution, we can set it to permanent
- in any solution, uw is an edge iff vw is an edge

 if we know that a certain edge has to be part of an optimal solution, we can merge it

• both edges present or absent: add costs

- both edges present or absent: add costs
- merge edge and non-edge: subtract smaller cost
- immediately decrease *k* by smaller cost

Edge branching strategy

- let vuw be a conflict triple such that uv is an edge
- branch into two cases:
 - 1. delete uv and set it to forbidden
 - 2. set *uv* to permanent and merge it

Running time analysis

- we want to show that in both cases of edge branching, we decrease parameter k by at least one
- then, the search tree has size $O(2^k)$

- removing edge uv generates cost one
- merging uv either removes en en ever reserts a non-edge vw, whatev in a signed
- in both cost one
-so, the breaking vector is (1,1) and we are done!

Zero edges

- merging edge uv may generate an edge of zero weight, if costs of uw and vw are equal
- for finding conflict triples, we count zero-edges as being non-existing
- but at a later stage, merging this zero-edge generates no cost!

Bookkeeping

- simple solution: whenever we generate a zero-edge,
 - we only count the merge operation to cost ½, and
 - we "put away" cost ½ for later use
- now, "destroying" a zero-edge also costs ½
- so, edge branching has branching vector $(1,\frac{1}{2})$ and the search tree has size $O(2.62^k)$

...can we do better than that?

Edge branching revisited

- unless the weighted instance is a clique, or a clique with a single zero-edge (and, hence, solved)...
- we choose that edge uv such that branching on uv (delete, merge) leads to minimal branching number
- we can always find an edge that is part of two conflict triples, where zero-edges count as non-existing
- then, branching on uv has branching vector $(1,2\cdot\frac{1}{2}) = (1,1)$ and search tree size $O(2^k)$

We can solve (integer weighted) Cluster Editing in running time $O(2^k + n^3)$.

Refined edge branching

- If there is an edge with branching vector (1, 3/2) or better then we branch on this edge.
- If there is an edge xy and a vertex z in G_w such that x,y,z form a triangle, and if there exist two additional vertices v_1,v_2 such that for both v_1,v_2 one of the following conditions holds (where x and y may be exchanged):
 - xv_i is an edge and yv_i is a non-edge
 - xv_i is a zero-edge and yv_i is a zero-edge
 - xv_i is a zero-edge and yv_i is a non-edge, and zv_i is an edge or a zero-edge
 - xv_i is an edge and yv_i is a zero-edge, and zv_i is a non-edge or a zero-edge

Then branch on xy.

We can solve (integer weighted) Cluster Editing in running time $O(1.82^k + n^3)$.

Running times, artificial data

number vertices	40	50	60	70	80
average # edit	116	183	263	352	459
2.42 ^k no merging	31min	5 h		days	
3 ^k with merging	29 s	8 min	27 h	58 h*	19 d*
edge branching	3 s	18 s	6 h	18 h	14 h

Running times, artificial data

number vertices	40	50	60	70	80		
average # edit	116	183	263	352	459		
2.42^k no merging	31min	5 h		days			
3 ^k with merging	29 s	8 min	27 h	58 h*	19 d*		
edge branching	3 s	18 s	6 h	18 h	14 h		
with data reduction	1 s	2 s	32 s	43 s	23 s		
ILP with data red.	seconds						

S. Böcker, S. Briesemeister, G. W. Klau. Exact Algorithms for Cluster Editing: Evaluation and Experiments. *Algorithmica* 2009.

Solve instances with thousands of vertices and k > 10000.

Parameterized algorithm vs. ILP

Bioinformatik und Genomforschung – Clustering Microarrays

Looking at Christmas trees in the nucleolus

Ulrich Scheer, Bangying Xia, Hilde Merkert, Dieter Weisenberger Chromosoma (1997) 105:470-480

Sebastian Böcker

Bioinformatik und Genomforschung – Clustering Microarrays