Python: Data Structures

Kai Diihrkop

Lehrstuhl fuer Bioinformatik
Friedrich-Schiller-Universitaet Jena
kai.duehrkopQuni-jena.de

11.-15. August 2014

Overview

® sequence

m string
m list
m tuple

m set
m dict

2/16 Data Structures

Sequence

Looping

m A sequence is an iterable collection with random access.
m slicing: seq[from:to+1]

a = [3 , 100, 1234]
alo] #’spam’

al[-2] #100

al1:-1] #[’eggs’, 100]

al:2] #[’spam’,’eggs ’]

Data Structures

Sequence

m A list is a mutable sequence of objects.

Useful list methods

a = [23,42,] #define list
a.append (x) #append to list
a.pop (i) #remove index i
a.sort () #sort list
a.reverse () #reverse list

See also

http://docs.python.org/2/tutorial/datastructures.
html#more-on-lists

Data Structures

http://docs.python.org/2/tutorial/datastructures.html#more-on-lists
http://docs.python.org/2/tutorial/datastructures.html#more-on-lists

Sequence

m del is convenient for deleting from lists

Deleting from lists

del al[O0] #tdelete first element
del a[2:4] #delete index 2 and 3
del al:] #clear list

5/16 Data Structures

Sequence Lt
q Tu

Looping

m A tuple is an immutable sequence of objects.

m defining a tuple is called "tuple packing’

Tuple packing

t = (23, 42,) #tuple (23,42,°fo0’)

t = 23, 42, #tuple (23,42,°foo0’)

t = 23, (42,) #nested t. (23,(42,°’foo0’))
t = O #empty tuple

t = 42, #tuple (42)

6/16 Data Structures

List
Tuple
Looping

Sequence

m sequence unpacking is the reverse operation to tuple packing

m tuple packing + seq. unpacking allows tight coding

Sequence unpacking

X, y, z = t #t must be a sequence
#with 3 objects

Tuple packing + sequence unpacking

X, y, z =1, 2, 3
a, b =Db, a # swap to variables

Data Structures

List
Tuple
Looping

Sequence

Sequence looping

#loop over elements
for v in seq:
print v

#loop over sorted elements
for v in sorted(seq):
print v

#loop in reversed order

for v in reversed(seq):
print v

m sorted and reversed do not change the original sequence!

8/16 Data Structures

List
Tuple
Looping

Sequence

Sequence looping + Tuple unpacking

xs = [(1, 2, 3), (4, 5, 6), (7,8,9)]
#loop over elements
for a,b,c in xs:

print a+b+c

Data Structures

List
Tuple
Looping

Sequence

Sequence looping

#loop over elements with indices
for i, v in enumerate(seq):
print i, v

#looping two sequences at once
for x, y in zip(a,b):
print x, y

Data Structures

Operations

Looping

m A set is an unordered collection with no duplicate elements.

Set operations

set([1,2,1,2,3]) #elements: [1,2,3]

s = {5, 4, 2} # alternative syntax

a | b #union: elem. in a or b

a & b #intersect: elem. a and b

a - b #difference: elem. in a but not in Db
a "~ b #complement: elem. a or b but not both

11/16 Data Structures

Operations

Looping

Set looping

#loop over elements
for v in set:
print v

#loop over sorted elements
for v in sorted(set):
print v

Data Structures

Definition
Looping

Dictionary

m A dict is a key-value mapping.

m any immutable object can be key

Definition and random access

d = { : 42, 23: } #key: ’foo’, val: 42
#key: 23, val: ’bar’

d = dict(foo=42, bar=23) #works only with
#string keys
dl] #42

13/16 Data Structures

Definition
Looping
Dictionary

Dict looping

#loop over keys and random access to values
for k in d.keys():
print k, d[k]

#d.keys () is not necessary...
for k in d:
print k, dl[k]

#loop over key-value pairs

for k, v in d.iteritems ():
print k, v

14/16 Data Structures

Collection functions

len and in are defined for all collections
len([1,2,3]) #=> 3
len(set ((1,2))) #=> 2

5 in (1,2,3,4,5) #=> True
not in dict(a=1, b=2, c=3) #=> False
9 in [1,2,3] #=> False

del is defined for all mutable collections

d = dict(a=1, b=2)
del d[]

15/16 Data Structures

Take home messages

list: mutable sequence

tuple: immutable sequence

|
|
m set: mathematical set operations
m dict: map

|

looping: for v in a

16/16 Data Structures

	Overview
	Sequence
	List
	Tuple
	Looping

	Set
	Operations
	Looping

	Dictionary
	Definition
	Looping

