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Elementary, my dear Watson: 

Fingerprint search in molecular 

structure databases

Sebastian Böcker
Friedrich-Schiller-Universität Jena
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We are talking about small molecules



Metabolites: Why care?

• metabolites closest to phenotype

• majority of drugs derived from natural 

products (that is, metabolites)

• vast majority of medical biomarker assays 

target metabolites

• vast majority of (plant, animal and human) 

diseases have a non-genetic cause
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Stolen from a talk by David Wishart
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A simple question

• Given the tandem mass spectrum of a compound, 

can we find it – in a molecular structure database?

1. nicotine

2. AC1MEJ3

3. 2-Butanone

4. Propanedinitrile

5. …

molecular structure

database

tandem 

mass spectrum 



Why is this so complicated?

• SEQUEST: Searching peptide sequence databases since 1994

• but metabolites are different
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proteins/peptides metabolites

molecules are… structurally similar highly diverse

genome information 

tells you…
everything but PTMs (almost) nothing

molecules fragment… at one fixed energy
some need 0 eV,

some 80 eV

fragmentation is… “easily” predictable pretty involved



The classic: rule-

based prediction
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Rule-based prediction
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[Hill, …, Grant,

Anal Chem 2008]



MetFrag: 

combinatorial 

fragmentation
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MetFrag (Neumann group)
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use explained peaks

to compute some score

[Wolf, …, Neumann,

BMC Bioinf 2010]



MetFrag web interface
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Competitive 

Fragmentation 

Modelling
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Competitive fragmentation modelling
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[Allen, Greiner, Wishart, Metabolomics 2014]



FingerID: 

predicting 

fingerprints
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Molecular fingerprints

• when are two molecules “similar”?

• encode presence/absence of substructures in binary vector

• different types: MACCS, FP1 – FP4, PubChem, …

• used for: virtual screening, estimating chemical similarity, …
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Can you predict the 

molecular fingerprint of 

an unknown compound 

directly from the 

tandem MS data?
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FingerID (Rousu group)
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[Heinonen, …, Rousu, 

Bioinformatics 2012]



Precision, Recall, F-score
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FingerID (Rousu group)
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F-score from

0.49 to 0.67

F-score from

0.49 to 0.67



Our method
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1st step
Fragmentation 

trees
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CH2N2C4H4O2H2OH3N

CH2O2 CH2NO C2H3NO CH5N

H2
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Our fragmentation trees

• tandem MS, multiple MS not required

• fully automated method

• best explains experimental data

• combinatorial optimization
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MSn not

required

MSn not

required
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Our fragmentation trees

• Böcker and Rasche, 

Bioinf 2008

• Rasche et al., Anal 

Chem 2011

• Dührkop and Böcker, 

unpublished

• White et al., 

unpublished
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Our fragmentation trees

• Böcker and Rasche, 

Bioinf 2008

• Rasche et al., Anal 

Chem 2011

• Dührkop and Böcker, 

unpublished

• White et al., 

unpublished



Molecular formula prediction
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Molecular formulas with isotope patterns
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CASMI challenge 2013

• Critical Assessment of Small Molecule Identification, 

http://www.casmi-contest.org

• we got 12 out of 14 molecular formulas correct

• 2nd place, winner manually analyzed the challenges

• we were the only contestants that did not search 

PubChem, but instead considered all possible 

molecular formulas
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2nd step

Fingerprints
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Machine Learning
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Support Vector Machines

• separate cats and dogs via features (weight, height, …)

• map features so that linear separation is possible
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cats
cats

embed into 

high-dim. space



Use fragmentation trees as input

FT structure kernels

• nodes binary

• nodes intensity

• loss binary

• loss count

• loss intensity

• root loss binary

• root loss intensity

• common path 

counting

• common paths of 

length 2

• common paths with 

peak scores

• common subtree 

counting

Sebastian Böcker Chair for Bioinformatics, Friedrich-Schiller-University Jena 30

[Shen et al.,

ISMB 2014]



One example: Common Path Counting kernel
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1st fragmentation 

tree

2nd fragmentation

tree
4 common paths

• tree kernels measure the structural similarity of two 

fragmentation trees

H
2
O

H
2
O



Multiple kernel learning

• combine predictions of all 12 kernels into one new kernel

• ALIGNF: Learn weights by comparing kernels to target kernel
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Was it all worth it?
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FT structure kernels

• nodes binary

• nodes intensity

• loss binary

• loss count

• loss intensity

• root loss binary

• root loss intensity

• common path 

counting

• common paths of 

length 2

• common paths with 

peak scores

• common subtree 

counting

Use fragmentation trees as input
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[Shen et al.,

ISMB 2014]

F-score from

0.64 to 0.73

F-score from

0.64 to 0.73



3rd step
Searching PubChem
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molecular structure

database



Searching a molecular structure database

• retrieve all compounds with correct molecular formula

• for each compound in the database, we know its structure

and, hence, we know its correct molecular fingerprint

• compare predicted fingerprint to those of all candidates

• simplest score is unit costs

• rank candidates according to score
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predicted fingerprint 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0

candidate 1853 0 0 0 0 0 1 0 1 1 0 0 1 0 1 0 0 0 0 1 0 0

differences: 4 � � � � � � � � � � � � � � � � � � � � �

rank 1st 2nd 3rd 4th …

candidate 765 2271 1853 61 …

differences 1 3 4 7 …



Evaluation setup

• “Evaluation is the process of judging something or someone 

based on a set of standards.”

• retrieve all compounds with correct molecular formula

• for each compound in the

evaluation dataset, we know 

its correct molecular structure

• at what position do we find 

the correct answer? (TOP-k)

• we only evaluate plain structures

(no stereochemistry etc)
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Intermission: WWW search engines
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Training and cross validation data

• GnPS database (UCSD, San Diego)

• Forensic database (Agilent Technologies)

• QTOF MS instruments

• ≈ 2800 + 2200 = 5000 compounds

• tandem mass spectra (CID) at different frag. energies

• mass accuracy usually 10 ppm or better

• used to train and evaluate: 10x cross validation



Where to search: molecular structure databases

• full PubChem: more than

50 million compounds
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molecular structure

database

• PubChem compounds that 

have a citation in PubMed

• plus HMDB, Knapsack, ChEBI, 

METLIN, contaminants

• total 400 000 compounds



Conclusion

• searching in molecular structure dbs using tandem MS data 

has become an option

• for the complete PubChem dataset (40 million structures) our 

method currently reaches 35% hits (correct IDs)

Sebastian Böcker Chair for Bioinformatics, Friedrich-Schiller-University Jena 41

• better kernels, better scores, better search results

• significances: False Discovery Rates, q-values, p-values

• and much more to come…

Outlook
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Credits

Thank you for your attention!

Thank you

• GNPS db,

Pieter Dorrestein

• Agilent 

Technologies

Funding

• Deutsche 

Forschungs-

gemeinschaft

Kai Dührkop

Marvin Meusel

Huibin Shen
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