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5 Decoy Databases and False Discovery

Rates

“[Back in 1915] Charlie Chaplin look-alike contest became a popular form of enter-
tainment. At these events, contestants would compete to see who could best imitate
the ‘tramp’ persona championed by Chaplin. [. . . ] According to entertainment
folklore, Chaplin himself once entered and lost one of these contests. [. . . ] Charlie
Chaplin did not come in second or third, he did not even make the finals.” (Mario
Cruz)

THE content of the following chapter is a little different from the rest of this book, as it deals
with statistics and stochastic of mass spectrometry analysis but not combinatorics. This

overview will be short and vastly incomplete: In fact, a complete textbook can be written about
the statistical analysis of peptide and protein MS, which has many similarities but also some
unique features compared to transcriptomics and microarray analysis, see e.g. Aaant [1]. The
reason to include this chapter are twofold: First, [TODO: THIS IS THE BASIC STUFF, AND
EVERYBODY SHOULD UNDERSTAND AT LEAST THIS]. Second, it must be understood that
computational MS only make sense in light of statistics: Computational MS is about “real data”
and, as such, full of inaccuracies, errors, misclassifications, and spurious signals. Usually, the
best way to deal with these problems is statistics. In the remainder of this book, we will often
indicate how to modify, say, a combinatorial algorithm so that results have “statistical meaning”.
Third, some ideas introduced in this chapter (decoy databases, p-values) can be reused in many
other areas of computational mass spectrometry.

5.1 Introduction and data

In the previous chapter, we have described how to match a measured spectrum to a reference
spectrum. Again, we focus on the task of identifying a peptide using MS/MS data, and just
note that the methods presented here can be applied to similar problems as well. We search
our measured spectrum against a database of reference peptide sequences, and we accept the
reference spectrum and, hence, the reference peptide with the highest score as being the correct
answer. This is called the best hit in the database, and the pair “measured spectrum” plus “best
hit peptide sequence” is usually referred to as peptide-spectrum match (PSM). But the truth
is that we often measure spectra that do not stem from peptides and proteins in the analyzed
sample: These might be spectra where metabolites, glycans, or lipids are recorded instead of
peptides; spectra that do not contain any real biomolecules but only “chemical noise”; or, spectra
where we have recorded impurities in sample preparation such as the infamous Keratin.1 For
these spectra, our method will also find a best hit, and this will be called a spurious hit in the
following.

1Keratin is the key structural material making up the outer layer of human skin.
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How can we differentiate true hits from spurious hits? Is a score of 120 a good score and,
hence, a true hit? We can compare it to other scores but maybe, all of our hits are spurious, and
all scores are bad scores. The most reasonable way to deal with this dilemma, is to estimate
the significance of a hit: Roughly speaking, this is the chance that a hit is spurious. We will
introduce to basic concepts on how to compute such significances, namely p-values and q-values.

In a proteomics experiment, we usually do not search for a single spectrum inside the peptide
database. Instead, proteomics experiments tend to produce thousands of spectra that all have
to be searched in the database, see Sec. 11. So, it is reasonable to process all of these spectra in
a batch, and then to assign how sure we are about the individual search results. This is made
use of in the decoy database strategy. As an example, assume that we have 10 000 spectra that
we want search in the peptide database. A possible outcome of our search might be that for
2 000 spectra, we do not assign any peptide; for 8 000 spectra we assign a peptide each, and
estimate about 400 of these assignments might be wrong; and for each spectrum, we also give
an individual assessment on the quality of the PSM, based on the complete batch of PSMs. In
the following, we describe how this can be calculated.

5.2 Decoy databases

We find it very hard to decide if a particular hit is true or spurious. Can we produce a PSM
that is necessarily a true hit? Only by changing the MS/MS spectrum, but but this would not
make much sense, as the MS/MS spectrum is the measured data we want to interpret. On the
other hand, can we produce a PSM that is necessarily spurious? This is much easier, as scoring
the measured spectrum against any random peptide sequence, can only result in a hit that is
necessarily spurious. In fact, there is a very small chance that the random peptide sequence is
the true sequence; we will come back to this later.

We will refer to the peptide database that we use for searching, as the target database. The
punchline of decoy database searching is: Create a second database, called decoy database,
which looks similar to the target database, but only contains peptides which cannot be part of
the sample. Combine both databases, and search in the combined database. Any PSM with a
peptide from the decoy database must be spurious.

Now, some MS/MS spectra will result in hits to the decoy database, and can be excluded. But
still, there will be many hits to the target database which are spurious, too. We can increase
the size of the decoy database, to make it more likely that spurious hits in the decoy database
result. But in fact, this is not an option: If the decoy database gets too large, such as 100 times
the size of target database, it may happen that a MS/MS spectrum that truly belongs to some
peptide in the target database, just by chance looks more similar to another peptide in the decoy
database. But even for such a large decoy database, there will still be some spurious hits to the
target database. Also, this will significantly increase the size of the peptide database to search
in and, hence, result in highly increased running times for searching.

In the following, we want to use PSMs in the decoy database, to estimate spurious hits in
the target database. For this, we will use that fact that spectra in a proteomics experiment are
usually searched in batches, as described above. This allows us to estimate the significance of
one PSM, taking into account all other PSMs in the batch.

As stated above, the decoy database should look “reasonably similar” to the target database
while at the same time, all hits in the decoy database should be spurious. In detail, we want the
decoy database to meet the following three conditions:
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1. There is no overlap between the decoy database and the target database: That is, peptides
in the decoy database are not in the target database, and vice versa.

2. The true peptide is not in the decoy database, so that any hit in the decoy database is a
spurious hit.

3. A wrong hit in the target database is as probable as a hit in the decoy database.

In practice, it is not necessary that all three conditions are perfectly fulfilled: It is sufficient that
the number of exceptions to these conditions is so small, that is does not interfere significantly
with our calculations.

5.3 How to create a decoy database

Having talked so much about decoy databases, the first question that comes into mind, is: How
do we build one? Different methods for creating a peptide decoy database have been proposed
over the years. All start off from the target database either containing full protein sequences,
or peptide sequences that have been digested in silico, see Sec. 4.1. The most commonly used
methods to build a decoy databases are:

Inverted proteins. We invert all target proteins, that is, read them from right to left. Then, we
do in silico digestion to create the peptide decoy database.

Inverted peptides. We invert all target peptides, generated from the target proteins by in silico
digestion.

Pseudo-inverted peptides. We invert target peptides but keep the last character in place, so
s = s1 . . . sl−1sl gets sl−1 . . . s1sl .

Random iid. We use the target database to estimate the relative frequency of each amino acid.
We create a decoy database by, for each peptide of the target database, a random peptide
of the same length is created, randomly drawn with the amino acid frequencies estimated
above. Each character is drawn independently and with identical distribution (i.i.d.).

Markov chain. Instead of drawing the letters independently, we can learn a Markov chain from
the target database, and generate random peptides of identical length distribution as the
target database using this Markov chain.

Random iid plus. We learn two distributions from the peptide target database: One for all
letters but the last, one for only the last letter of each peptide. We then generate decoy
peptides according to these two distributions.

Markov model plus. Similar to Markov chain and Random iid plus.

The “inverted proteins” method inverts each protein in the target protein database, then digests
the resulting protein in silico to generate the decoy peptides. As we will see below, this method
of generating a decoy database has certain shortcomings, and we consider it here merely to
show that it is not adequate for what we have in mind. In contrast, the “inverted peptides”
and the “pseudo-inverted peptides” methods consider the target peptide database, and for every
peptide in there, we generate the corresponding decoy peptide. These first three methods are
deterministic, as one target database corresponds to exactly one decoy database.
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In contrast, the last four methods of building a decoy database are probabilistic: One target
database will result in different decoy databases, if we do the computations repeatedly. For
these probabilistic methods we first learn the stochastic model of amino acid distributions from
the sequences in the database. Then, for every peptide in the target database, we generate a
decoy peptide that has the same length as the target peptide, but is generated using the random
model.

Two important observations are that target database and decoy database contain exactly the
same number of peptides; and that the distribution of peptide lengths in the two databases is
identical. In fact, this last observation is not true for the “inverted proteins” decoy database, see
Exercise 5.1. Because of this, we will not further look into this method.

Why are the three assumptions that we posed at the beginning of this section, all realized
for the six remaining methods? First, we take a look at Assumption 1. In application, this
assumption is easy to check: Simply generate the decoy database, and search for overlap. But
there are also some theoretical considerations telling us that this overlap can be neglected: We
may assume that peptides we search for have some minimal length such as ten amino acids, as
other peptides are rather uninformative in application. But there are about 2010 = 1.024 ·1013

peptides of that length — ignoring that we cannot differentiate between leucine and isoleucine,
plus that the last position of a peptide is more restricted. If peptides are generated by a random
process, than the chance of a peptide being in both databases is negligible, even if there are
thousands of peptides of length ten in the target and decoy database. This same arguments
carry over to decoy databases made by reversing peptides or proteins, as there is no biological
explanation of reversing an amino acid sequence and, so, these decoy databases are “close to
random”. For longer peptides, chances of an “overlap peptide” further decrease at an exponential
rate.

What about Assumption 2? If the true peptide is in the decoy database then, by Assumption 1,
it is not in the target database. This means that we have scored a lucky hit: We were searching
in a database of chicken proteins and just by chance, the true peptide (which is not from chicken)
happens to be in the decoy database. But the amino acid sequences in the decoy database are
sort of random, so the chance to find exact the one we have in the sample is really low and can
be ignored.

That this assumption holds, the databases have to be same size. We can check this by deleting
the best hit in the target database out of the bag of spectra.

There is a problem with the stochastic methods for generating the decoy database, that is the
larger, the smaller the target database: It is possible that we have never observed the amino
acid, say, alanine in our target database. It is very unlikely that alanine should truly be absent
from all proteins and peptides of the organism that we are looking at; it is much more likely that
our database is simply “too small”. This problem less pronounced for the “random iid” method,
slightly pronounced for the “random iid plus” method, and strongly pronounced for the “markov
chain” method, see also below.

Luckily, there is [TODO: PASS OP!]

While all but one methods for creating a decoy database are easily understandable, The last
one is slightly more complex: How do you learn a Markov chain from the sequence database?
We do not want to go into the details of Markov theory, but only recall the most important facts.
A Markov chain is a series of random variables X0, X1, X2, . . . with the Markov property, namely

P
(
Xn+1 = xn+1 : X0 = x0, X1 = x1, . . . , Xn = xn

)=P(
Xn+1 = xn+1 : Xn = xn

)
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In fact, the Markov chain that we want to come up with, is a particularly simple one: It is
time-homogeneous, so

P
(
Xn+1 = y : Xn = x

)=P(
X1 = y : X0 = x

)
;

and, it is irreducible so that we can get from any state to any state. In addition, our state space
is finite, namely the alphabet Σ of amino acids. Such a Markov model can be described via an
initial distribution π0 :Σ→ [0,1] and a transition matrix P = (pi, j) with pi, j =P(X1 = j : X0 = i).

5.4 Using the decoy database: False Discovery Rates

We generate a grand database from the target database and the decoy database and look for the
bag of measured spectra (at least 1000) in it. This is different from determining p-values, which
can be identified for a single spectrum. Here we need a bag of spectra and we can only make a
statement about the entirety of spectra.

For each spectrum we estimate the best hit in the grand database and sort the hits by their
scores. We get hits from the real and from the decoy database.

Example 5.1. Search in the real database and the decoy database. The results are sorted by
score.

peptide # score database peptide # score database
37 128.1 target 18 92.0 target

124 122.8 target 69 90.7 decoy
12 121.2 target 72 89.9 target

950 103.1 target 174 87.3 decoy
730 102.3 target 111 86.5 decoy
217 96.4 target 750 86.4 target
918 94.8 target 828 84.2 target
333 94.3 decoy 830 82.3 target
212 93.5 target 13 82.2 target

4 93.4 target 522 80.9 decoy

Among the best n = 10 hits in Example 5.1 is only one false positive hit in the decoy database.
With Assumption 3 there is also one wrong hit in the real database. So the number of false
positives (FP) is two times the number of hits in the decoy database. So in the given Example 5.1
we expect FP = 2. The number of true positives (TP) is TP = n−FP.

There are two possibilities to measure the quality of our identification. The precision

precision = TP
TP +FP

(5.1)

and the False Discovery Rate (FDR)

FDR = FP
TP +FP

(5.2)

If we choose a score threshold of 93.4 in the given Example 5.1 with n = 10 the FDR = 20%
and the precision = 80%. If we choose a score threshold of 80.9 the FDR = 50%.

In practice we choose the FDR at first (e.g. 5%) and look for the minimum score threshold (the
maximum n) with a FDR lower the given FDR threshold. We accept all hits in the real database
with score ≥ score threshold, so we get a list of reliable identifications with only for example 5%
of the identifications in this list are probably wrong.
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5.5 Individual False Discovery Rates: q-values and relatives

As mentioned in Sec. 5.4 we only make a statement about the list of reliable identifications, but
we want to know the quality of each single hit.

There are three possible solutions: q-values, Posterior Error Probability (PEP) and p-values.
The q-value for a single hit “spectrum ↔ peptide” is the smallest FDR with the hit in the list

of reliable identifications. Note that the q-value of a hit depends also on the other identifications.
With this definition to assign the q-values, the values get inexact for small q ∼ 0.1%.

The PEP is the probability of the incorrectness of a hit. This estimation is very extensive,
the parametric distribution of the scores is needed as model and much statistic and stochastic
has to be done.

The p-values got a disadvantage: If there are many spectra in a grand database, some
hits get small p-values accidentally. But the p-values are really estimated for each measured
spectrum and they do not change if some measured spectra are removed.

5.6 Further reading and other approaches

Our presentation of decoy databases follows [68]. Regarding generating the decoy database, the
authors do not consider the idea of learning the last letter of the peptide individually, for the
random and Markov Model decoy database.

Sashimi project hosts the Trans-Proteomic Pipeline (TPP), see Keller et al. [129]. [TODO:
CITATION CORRECT?] ProHits Liu et al. [149].

5.7 Exercises

5.1 Assume that we build a decoy database using the “inverted proteins” method. Explain
why we cannot guarantee that the decoy database contain exactly the same number of
peptides; or, that the distribution of peptide lengths in the two databases is identical. One
protein does the trick.

5.2 Given a target database of proteins{
TVKQDEGHRWTL,YPPNKCRRDHIKVRAA,DDCDKPKMN,FIKTTSRQPRVYYC,

MNMQKWAWAKFIFIRVW
}
,

build the corresponding peptide decoy databases for methods “inverted proteins”, “inverted
peptides”, and “pseudo-inverted peptides”.

5.3 For the target database from the previous exercise, build the “random iid” and “random
iid plus” models with pseudocounts.

5.4 For the target database from Exercise 5.2, build the “markov chain” model of order 2 with
pseudocounts.
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“The grand assertion is that you must see the world through probability and that
probability is the only guide you need.” (Dennis Lindley)

THERE is some text missing here. [TODO: PASS OP!]

6.1 Introduction and data

[TODO: WHAT ABOUT [74]?]

6.2 A naïve approach for estimating p-values

There exist two direct approaches for assigning a p-value to a score (the “true” score): These
are based either on randomizing the data (bootstrapping, resampling), or on randomizing the
reference. We will go for the second possibility, as there is no reasonable method known to
randomize mass spectrometry data.

Assume that our measured spectrum M ′ (the data) was scored highest against reference spec-
trum M∗ from the database, and reached score score(M∗,M ′) (the true score). To randomize
the reference, we have to sample a large number of random reference objects, score each random
object against the data, and count the number of times this score is larger or equal to the true
score. In detail, let Ω be the space of reference spectra. Randomly choose a reference spectrum
M ∈ Ω and score the reference spectrum against the measured spectrum M ′, computing the
score score(M ,M ′). Repeat this between 1000 and 1000000 times, to get reasonable p-values.
Count the number of random reference spectra M with score(M ,M ′) ≥ score(M∗,M ′). Divide
by the number of repetitions, to compute an empirical p-value.

What is a reasonable background model, that is, a reasonable set Ω of reference spectra to
chose from? In the old days of computational mass spectrometry, some people proposed to
use mass spectra with random peak masses as Ω: Simply draw peak masses at random, for
example, uniformly distributed the interval [0, M] where M is the parent mass of the measured
spectrum. Here, the number of peaks may be chosen as the average number of peaks of a
reference spectra database. Unfortunately, this is a very bad background model: Due to the
experimental setup, most of the measured mass spectra will actually correspond to some peptide,
even though it might not be recorded in the database. Peptide fragmentation spectra have a
particular structure that is not covered using randomized peaks. Even if our database hit is
spurious, it might share some peaks with the measured spectrum, possibly because a few amino
acids at the start or end of the peptide agree with the measured peptide we are searching for. In
contrast, randomizing peak masses will make it unlikely to find any peaks that actually match.
In total, we will grossly overestimate the actual p-value. This stays true if peak masses are
drawn with respect to some empirical distribution computed from, say, a reference database:
Peak masses in a peptide fragmentation spectrum are highly correlated, and independently
drawing peaks neglects these dependencies.
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In MS/MS a peptide has a parent mass M, so peptide strings with the same parent mass are
chosen and the reference spectra are generated from them.

Randomly draw a string with mass M: Problem is very similar to counting compomers.
[TODO: PASS OP!]

But we are interested in very small significances, so there is a huge difference between 10−5

and 10−10.

6.3 Parametric Distribution

In this approach it has to be established why the scores follow a known distribution and their
parameters have to be estimated.

BLAST (Basic Local Alignment Search Tool) is used to compute heuristically a local alignment
of DNA or protein sequences and the score x is converted to a significance. What is the likelihood
to get a score ≥ x with a random sequence in a random database (of given length) and how many
sequences in the database are expected with score ≥ x (expectation value E)? The score of the
best alignment of two random sequences follows the extreme value distribution, but this so
called Karlin-Altschul statistic works not for sequences with gaps. But extensive simulations
show, that the distribution of the score of alignments with gaps nearly equals the distribution
of the score of alignments without gaps. The parameters of the extreme value distribution were
also determined by simulations.

Note that scores are normally distributed in none of the cases relevant here. This means that
we cannot evaluate results by reporting the “number of standard deviations above the mean,”
as this implicitly assumes scores to be normally distributed. As the true distribution of scores is
usually highly skewed and asymmetric, assuming a normal distribution will result in misleading
or usually even wrong conclusions drawn from the data.

The distribution of the scores for the detected spectrum versus 1000 reference spectra has
to be identified for 100 measured spectra and compared to known distributions. Now the
parameter of the distribution have to be estimated. These result from the moments of the
distribution: expectation value, variance, skew, . . . .

Distribution parameters mean variance skew
Normal µ,σ µ σ2 0
Exponential λ> 0 1

λ
1
λ2 2

Gamma k > 0, θ > 0 kθ kθ2 2/
p

k
Extreme value µ, β> 0 µ+0.577β 1

6π
2β2 −1.140

Table 6.1: Mean and central moments of parametric distributions

These moments can be estimated Let x1, . . . , xn be the scores for a detected spectrum versus n
reference spectra. The estimator for the expectation value is

µ̂= 1
n

n∑
i=1

xi (6.1)

Given a measured spectrum with parent mass M. 100 to 1000 reference sequences with
parent mass M have to be generated. For each random reference sequence the reference
spectrum has to be generated and aligned with the detected spectrum to get a score. From these
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100 to 1000 score values the moments can be estimated and the parameters of the distribution
can be calculated. Now for each reference sequence in the database a score can be computed, by
simulating the reference spectrum and aligning with the detected spectrum. Let S be the score
of the best database hit. The likelihood that this score results accidentally for the calculated
parametric distribution can be computed (by erf for the normal distribution). Note that the
parameters of the distribution have to be calculated only ones for each measured spectrum.

Here are some examples of parametric distributions that have been proposed, for the scoring
introduced in the respective papers, over the last years:

year tool reference proposed distribution
2003 PepProbe Sadygov and Yates III [199] Hypergeometric distribution
2003 X!Tandem Fenyö and Beavis [74] Gumbel distribution
2004 OMSSA Geer et al. [90] Poisson distribution
2007 RAId_DbS Alves et al. [2] [TODO: CUSTOM?] distribution
2008 Crux Park et al. [183] Weibull distribution

6.4 Exact computations using generating functions

We now turn to a method for exact computation of p-values, which has been suggested by Kim,
Gupta, and Pevzner [133]. The authors present their method using the mathematical formalism
of generating functions. Generating functions allow us to do involved mathematical tricks such
as multiplication, division, or taking the derivative of the functions, which usually are infinite
series. None of this is required here, so we will use a simpler mathematical formalism based on
random variables and the convolution of distributions.

Assume that you are given an ideal die. You will model this stochastically using a discrete
random variable X : Ω→ {1, . . . ,6} where Ω denotes the sample space (everything that might
happen). The probability that a particular value x ∈ {1, . . . ,6} is reached, is P(X = x) = 1

6 , and
zero everywhere else. Assume that we have a second die with random variable Y , and we want
to model the sum of these two dice. One can easily see that the sum of the dice, X +Y , has
distribution

P(X +Y = x)= ∑
y=1,...,6

P(X = x− y) ·P(Y = y). (6.2)

This can be generalized beyond dice: For two random variables X ,Y :Ω→N we have

P(X +Y = x)= ∑
y=0,...,x

P(X = x− y) ·P(Y = y). (6.3)

and if both random variables have finite support (that is, only a finite set of numbers has
probability strictly greater than zero) then this is actually a finite sum.

It is now simple to actually compute these probabilities for X +Y : Let PX [0. . . xmax] be the
array with PX [x] = P(X = x) and

∑
x=0,...,xmax PX [x] = 1, and PY [0. . . ymax] analogously. Then, we

can compute PY+X [0. . . xmax + ymax] as

PY+X [x]← ∑
x=0,...,ymax

PX [x− y] ·PY [y] (6.4)

where we assume PX [x]= 0 for x < 0 and x > xmax.
This is all the mathematics that we need in this section. We again over-simplify our problem

slightly, to improve readability. To this end, assume that
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6.5 Posterior error probabilities

PeptideProphet: Keller et al., Anal. Chem., 2002; Choi et al., J. Proteome Res., 2008
Compute a discriminant score for each PSM (reported by another tool) using multiple features.

Bundle PSMs and draw the histogram of scores. Fit the histogram into two distributions (one
for false and one for true) using Expectation-Maximization algorithm.

Pros Returns more PSMs Can use of extra features unavailable to database search tools (e.g.
distribution of correct PSMs).

Cons Unclear how to determine the two distributions Different distributions are used de-
pending on the database search tools. Discriminant scores are not perfectly normalized. Cannot
be used as a stand- alone tool. Requires large number of PSMs Inappropriate low-throughput
experiments.

6.6 Further reading and other approaches

The problem of wrongly assuming a score distribution to be normal by reporting the “number of
standard deviation above the mean,” has already been pointed out by Waterman and Vingron
[231] for pairwise sequence alignments.

Sampling random strings of a fixed parent mass was proposed by Lu and Chen [151].

81



DRAFT

Bibliography

[1] A. Aaant. I need a title, quick. [TODO: REPLACE WITH A REAL CITATION], 2101.

[2] G. Alves, A. Y. Ogurtsov and Y.-K. Yu. RAId_DbS: peptide identification using database
searches with realistic statistics. Biol. Direct., 2:25, 2007.

[3] S. Andreotti, G. W. Klau and K. Reinert. Antilope – a lagrangian relaxation approach to
the de novo peptide sequencing problem. IEEE/ACM Trans. Comput. Biol. Bioinform.,
2011. To appear, doi:10.1109/TCBB.2011.59.

[4] R. Apweiler, H. Hermjakob and N. Sharon. On the frequency of protein glycosylation, as
deduced from analysis of the SWISS-PROT database. Biochim. Biophys. Acta, 1473(1):
4–8, 1999.

[5] G. Audi, A. Wapstra and C. Thibault. The AME2003 atomic mass evaluation (ii): Tables,
graphs, and references. Nucl. Phys. A, 729:129–336, 2003.

[6] J.-M. Autebert, J. Berstel and L. Boasson. Context-free languages and pushdown au-
tomata. In G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages,
volume 1, pages 111–174. Springer, 1997.

[7] V. Bafna and N. Edwards. SCOPE: A probabilistic model for scoring tandem mass spectra
against a peptide database. Bioinformatics, 17:S13–S21, 2001.

[8] D. A. Barkauskas and D. M. Rocke. A general-purpose baseline estimation algorithm for
spectroscopic data. Anal. Chim. Acta, 657(2):191–197, 2010.

[9] C. Bartels. Fast algorithm for peptide sequencing by mass spectrometry. Biomed. Environ.
Mass Spectrom., 19:363–368, 1990.

[10] J. M. S. Bartlett and D. Stirling. A short history of the polymerase chain reaction. Methods
Mol. Biol., 226:3–6, 2003.

[11] C. Bauer, R. Cramer and J. Schuchhardt. Evaluation of peak-picking algorithms for
protein mass spectrometry. Methods Mol. Biol., 696:341–352, 2011.

[12] M. Beck, I. M. Gessel and T. Komatsu. The polynomial part of a restricted partition
function related to the Frobenius problem. Electron. J. Comb., 8(1):N7, 2001.

[13] D. E. Beihoffer, J. Hendry, A. Nijenhuis and S. Wagon. Faster algorithms for Frobenius
numbers. Electron. J. Comb., 12:R27, 2005.

[14] C. Benecke, T. Grüner, A. Kerber, R. Laue and T. Wieland. MOLecular Structure
GENeration with MOLGEN, new features and future developments. Anal. Chim. Acta,
314:141–147, 1995.

177



DRAFT

Bibliography

[15] G. Benson. Composition alignment. In Proc. of Workshop on Algorithms in Bioinformatics
(WABI 2003), volume 2812 of Lect. Notes Comput. Sc., pages 447–461. Springer, 2003.

[16] M. W. Bern and D. Goldberg. EigenMS: De novo analysis of peptide tandem mass spectra
by spectral graph partitioning. In Proc. of Research in Computational Molecular Biology
(RECOMB 2005), volume 3500 of Lect. Notes Comput. Sc., pages 357–372. Springer, 2005.

[17] M. W. Bern and D. Goldberg. De novo analysis of peptide tandem mass spectra by spectral
graph partitioning. J. Comput. Biol., 13(2):364–378, 2006.

[18] A. Bertsch, A. Leinenbach, A. Pervukhin, M. Lubeck, R. Hartmer, C. Baessmann, Y. A.
Elnakady, R. Müller, S. Böcker, C. G. Huber, and O. Kohlbacher. De novo peptide
sequencing by tandem MS using complementary CID and electron transfer dissociation.
Electrophoresis, 30(21):3736–3747, 2009.

[19] K. Biemann, C. Cone and B. R. Webster. Computer-aided interpretation of high-resolution
mass spectra. II. Amino acid sequence of peptides. J. Am. Chem. Soc., 88(11):2597–2598,
1966.

[20] K. Biemann, C. Cone, B. R. Webster and G. P. Arsenault. Determination of the amino
acid sequence in oligopeptides by computer interpretation of their high-resolution mass
spectra. J. Am. Chem. Soc., 88(23):5598–5606, 1966.

[21] A. Björklund, T. Husfeldt, P. Kaski and M. Koivisto. Fourier meets Möbius: fast subset
convolution. In Proc. of ACM Symposium on Theory of Computing (STOC 2007), pages
67–74. ACM Press New York, 2007.

[22] N. Blow. Glycobiology: A spoonful of sugar. Nature, 457(7229):617–620, 2009.

[23] S. Böcker. Sequencing from compomers: Using mass spectrometry for DNA de-novo
sequencing of 200+ nt. J. Comput. Biol., 11(6):1110–1134, 2004.

[24] S. Böcker and Zs. Lipták. A fast and simple algorithm for the Money Changing Problem.
Algorithmica, 48(4):413–432, 2007.

[25] S. Böcker and V. Mäkinen. Combinatorial approaches for mass spectra recalibration.
IEEE/ACM Trans. Comput. Biol. Bioinform., 5(1):91–100, 2008.

[26] S. Böcker and F. Rasche. Towards de novo identification of metabolites by analyzing
tandem mass spectra. Bioinformatics, 24:I49–I55, 2008. Proc. of European Conference
on Computational Biology (ECCB 2008).

[27] S. Böcker, M. Letzel, Zs. Lipták and A. Pervukhin. Decomposing metabolomic isotope
patterns. In Proc. of Workshop on Algorithms in Bioinformatics (WABI 2006), volume
4175 of Lect. Notes Comput. Sc., pages 12–23. Springer, 2006.

[28] S. Böcker, B. Kehr and F. Rasche. Determination of glycan structure from tandem mass
spectra. In Proc. of Computing and Combinatorics Conference (COCOON 2009), volume
5609 of Lect. Notes Comput. Sc., pages 258–267. Springer, 2009.

[29] S. Böcker, M. Letzel, Zs. Lipták and A. Pervukhin. SIRIUS: Decomposing isotope patterns
for metabolite identification. Bioinformatics, 25(2):218–224, 2009.

178



DRAFT

Bibliography

[30] S. Böcker, F. Rasche and T. Steijger. Annotating fragmentation patterns. In Proc. of
Workshop on Algorithms in Bioinformatics (WABI 2009), volume 5724 of Lect. Notes
Comput. Sc., pages 13–24. Springer, 2009.

[31] A. Brauer and J. E. Shockley. On a problem of Frobenius. J. Reine Angew. Math., 211:
215–220, 1962.

[32] R. Breitling, A. R. Pitt and M. P. Barrett. Precision mapping of the metabolome. Trends
Biotechnol., 24(12):543–548, 2006.

[33] K. Q. Brown. Geometric transforms for fast geometric algorithms. Report cmucs-80-101,
Dept. Comput. Sci., Carnegie-Mellon Univ., Pittsburgh, USA, 1980.

[34] S. Cappadona, P. Nanni, M. Benevento, F. Levander, P. Versura, A. Roda, S. Cerutti, and
L. Pattini. Improved label-free LC-MS analysis by wavelet-based noise rejection. J Biomed
Biotechnol, 2010:131505, 2010.

[35] A. Ceroni, K. Maass, H. Geyer, R. Geyer, A. Dell and S. M. Haslam. GlycoWorkbench: a
tool for the computer-assisted annotation of mass spectra of glycans. J. Proteome Res., 7
(4):1650–1659, 2008.

[36] D. C. Chamrad, G. Körting, K. Stühler, H. E. Meyer, J. Klose and M. Blüggel. Evaluation
of algorithms for protein identification from sequence databases using mass spectrometry
data. Proteomics, 4:619–628, 2004.

[37] S. Chattopadhyay and P. Das. The K-dense corridor problems. Pattern Recogn. Lett., 11
(7):463–469, 1990.

[38] E. Check. Proteomics and cancer: Running before we can walk? Nature, 429:496–497,
2004.

[39] T. Chen, M.-Y. Kao, M. Tepel, J. Rush and G. M. Church. A dynamic programming
approach to de novo peptide sequencing via tandem mass spectrometry. J. Comput. Biol.,
8(3):325–337, 2001. Preliminary version in Proc. of Symposium on Discrete Algorithms
(SODA 2000), Association for Computing Machinery, 2000, 389–398.

[40] W. L. Chen. Chemoinformatics: past, present, and future. J. Chem. Inf. Model., 46(6):
2230–2255, 2006.

[41] F. Y. Chin, C. A. Wang and F. L. Wang. Maximum stabbing line in 2D plane. In Proc.
of Conf. on Computing and Combinatorics (COCOON 1999), volume 1627 of Lect. Notes
Comput. Sc., pages 379–388. Springer, 1999.

[42] H. H. Chou, H. Takematsu, S. Diaz, J. Iber, E. Nickerson, K. L. Wright, E. A. Muchmore,
D. L. Nelson, S. T. Warren, and A. Varki. A mutation in human CMP-sialic acid
hydroxylase occurred after the Homo-Pan divergence. Proc. Natl. Acad. Sci. U. S. A.,
95(20):11751–11756, 1998.

[43] Y. Chu and T. Liu. On the shortest arborescence of a directed graph. Sci. Sinica, 14:
1396–1400, 1965.

179



DRAFT

Bibliography

[44] K. R. Clauser, P. Baker and A. L. Burlingame. Role of accurate mass measurement (+/− 10
ppm) in protein identification strategies employing MS or MS/MS and database searching.
Anal. Chem., 71(14):2871–2882, 1999.

[45] C. A. Cooper, E. Gasteiger and N. H. Packer. GlycoMod – a software tool for determining
glycosylation compositions from mass spectrometric data. Proteomics, 1(2):340–349, 2001.

[46] C. A. Cooper, H. J. Joshi, M. J. Harrison, M. R. Wilkins and N. H. Packer. GlycoSuiteDB: a
curated relational database of glycoprotein glycan structures and their biological sources.
2003 update. Nucleic Acids Res., 31(1):511–513, 2003.

[47] R. Craig and R. C. Beavis. Tandem: matching proteins with tandem mass spectra.
Bioinformatics, 20(9):1466–1467, 2004.
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