6. Übung zur Vorlesung "Einführung in die Bioinformatik I, 2. Teil"

Sommersemester 2017

Prof. Sebastian Böcker, Marcus Ludwig, Emanuel Barth, Maximilian Collatz

Ausgabe: 11. Mai 2017, Abgabe: 18. Mai 2017 zu Beginn der Übung

- Aufgabe 1 (5 Punkte): Beweisen Sie formal die Äquivalenz der folgenden Aussagen über einen ungerichteten Graphen G = (V, E):
 - 1. G ist ein Baum, d.h. zwischen zwei beliebigen Knoten gibt es genau einen Pfad.
 - 2.~G ist zusammenhängend und kreisfrei.
- Aufgabe 2 (6 Punkte): Zeichnen Sie alle phylogenetischen Wurzelbäume mit vier Objekten A, B, C, D. Beachten Sie, dass die Bäume nicht unbedingt binär (voll aufgelöst) sein müssen. Wie viele phylogenetische Wurzelbäume gibt es? Zwei Bäume seien benachbart, wenn der eine aus dem anderen durch Kontraktion¹ genau einer Kante hervorgeht. Zeichnen Sie den Nachbarschaftsgraphen² der Bäume.
- Aufgabe 3 (3 Punkte): Wie viele phylogenetische Bäume (nicht-gewurzelt) gibt es? Beachten Sie, dass auch hier die Bäume nicht notwendig binär (voll aufgelöst) sein müssen. Was fällt Ihnen im Vergleich zur Aufgabe 2 (auch strukturell) auf?

¹Kontraktion (Zusammenziehen) einer Kante $\{u,v\}$ bedeutet, dass u und v zu einem Knoten verschmolzen werden, wobei die Kante $\{u,v\}$ verschwindet. Alle Kanten, die vorher inzident zu u oder v waren, sind dann inzident zum neuen Knoten.

²Jeder Knoten steht für einen der phylogenetischen Bäume. Zwei Knoten werden verbunden, wenn die beiden entsprechenden Bäume benachbart sind. *Achtung:* Die Beschriftung der Blätter muss beachtet werden.