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Deutsche Zusammenfassung

Massenspektrometrie ist eine Hochdurchsatztechnik um Proteine und Metabolite zu
analysieren. Um den ganzheitlichen Ansatz der Systembiologie verfolgen zu können,
braucht man solche Techniken, um die Gesamtheit aller Proteine oder Metabolite
in einer Probe zu bestimmen. Die manuelle Interpretation von Massenspektren ist
mühsam und man kann nicht mit dem hohen Durchsatz von Massenspektrometern
mithalten. Daher sind Methoden für eine computergestützte Analyse notwendig.
Diese Methoden können Datenbanken verwenden. In letzter Zeit wurden aber immer
mehr “de-novo”-Analyseansätze entwickelt, da für die meisten Anwendungen und
Organismen keine Datenbanken verfügbar sind.

Im Gegensatz zu Protein-Massenspektren wurden für die Analyse von Metabolit-
Spektren bisher nur wenige Ansätze entwickelt. Zur Analyse von Metabolit-Spektren
kann man Isotopenmuster verwenden. Um diese Muster mit hoher Genauigkeit
zu bestimmen ist ein teures Fouriertransformation-Ionenzyklotronresonanz-Massen-
spektrometer nötig. In dieser Arbeit werden Tandem-Massenspektren analysiert, die
mit einem Quadrupol-time-of-flight-Massenspektrometer gemessen wurden. In die-
sen Geräten wird der Analyt fragmentiert bevor die Spektren gemessen werden.
Deswegen werden auch Fragmentmassen bestimmt.

Wir berechnen nun die möglichen Summenformeln für alle Fragmente und kon-
struieren einen Graphen mithilfe dieser Formeln. Aus diesem Graph berechnen wir
den wahrscheinlichsten Fragmentierungsbaum. Wir zeigen, dass das zugrundeliegen-
de informatische Problem NP-schwer ist. Daher entwickeln wir einen festparameter-
handhabbaren Algorithmus und Heuristiken um das Problem zu lösen. Zusätzlich
werden Techniken zum Bewerten von möglichen Summenformeln und Fragmentie-
rungsschritten entwickelt. Diese orientieren sich an der Wahrscheinlichkeit, dass die-
ser Schritt stattgefunden hat. Dieser wahrscheinlichkeitsbasierte Ansatz ist strikten
Filtern, wie sie Kind und Fiehn [KF07] verwenden, vorzuziehen, da keine Schwell-
werte nötig sind.

Testläufe auf gemessenen Spektren ergaben, das der exakte Algorithmus schnell
ist und gute Ergebnisse liefert. Bei allen 31 Testmetaboliten wurde die richtige Lö-
sung unter den ersten fünf Vorschlägen gefunden, bei 25 Molekülen war sogar der
erste Vorschlag korrekt. Die Heuristiken produzierten ebenfalls gute Ergebnisse. Sie
sind vergleichbar mit dem ähnlichen Tool FFP, das von Zhang et al. [ZGC+05]
entwickelt wurde. Aber im Gegensatz zu diesem Tool haben wir noch keine Infor-
mationen aus Isotopenmustern einbezogen.

Am Ende der Arbeit werden Möglichkeiten vorgestellt, wie man den Ansatz
weiter verbessern und auf Spektren anderer biochemischer Stoffe anwenden könnte.





Abstract

Mass spectrometry is a high-throughput technology for the analysis of proteins and
metabolites. The integrative approach of systems biology depends on such a tech-
nology to be able to analyse the abundance of all proteins and metabolites in a
sample. Since the manual interpretation of mass spectra is tedious, methods for a
computer-based analysis are necessary. These methods may use databases. But be-
cause no databases are available for most applications and species, bioinformaticians
have developed “de-novo” interpretation methods recently.

In this work, we will analyse tandem mass spectra obtained from an quadrupole
time-of-flight mass spectrometer. In these devices the analyte is fragmented before
the spectra are measured, therefore the fragment masses are also detected.

We calculate the elemental decompositions for all fragments and construct a
graph using these decompositions. From this graph we will calculate the most likely
fragmentation tree. As the computer theoretical problem behind this is NP-hard,
we develop a fixed-parameter tractable algorithm as well as heuristics to solve the
problem. Additionally, we propose scoring concepts, which indicate the likelihood
that a certain decomposition or fragmentation step is real.

Tests on real spectra indicate that the proposed exact algorithm runs fast and
produces good results. For all 31 test compounds the correct solution was among
the top five suggestions, for 25 compounds the first suggestion was correct. The
heuristics also showed good results.

Finally, we give an outlook on the possibilities to further improve our tool and
propose other areas of application for the algorithms developed.
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Chapter 1

Introduction

Mass spectrometry (MS) is among the most widely used technologies to analyse
microbiological samples to date. In its simplest form a mass spectrometer is nothing
else than a very exact scale. Still, by different techniques for sample preparation
and various combinations of the parts of a mass spectrometer, it is often possible to
identify the molecules in the sample [Das01].

To achieve this identification, either a skilled biologist or chemist or a soft-
ware program has to analyse the measured spectra. As mass spectrometry is a
high-throughput technology, it can produce more data than any expert can anal-
yse. Thus software programs for mass spectrometry analysis are inevitable if mass
spectrometry shall develop its full potential.

For protein identification, one of the first ideas was to build reference mass
spectral databases or to calculate reference mass spectra from protein sequence
databases [PPCC99, EMY94]. The analysis then consists of comparing the measured
spectra to the references. Thus the task was and still is to develop a kind of distance
measure for mass spectra. These algorithms have to take the typical measurements
errors of mass spectra into account. Computer scientists also developed concepts to
efficiently calculate significance values [BK07, KNKA02].

Unfortunately, databases do not (and will probably never) contain all biological
molecules that are analysed. For proteins, at least the genome of the species under
investigation has to be known. Even then the analysis remains difficult due to RNA
splicing and post-translational modifications.

Therefore experimental pipelines and software for the de-novo-sequencing of pro-
teins have been developed in recent years. Mass spectrometrists avoid the use of
a database by fragmenting the analyte molecules and thus increasing the avail-
able information. This fragmentation is usually achieved by conducting the analyte
through an inert gas. The collisions with the gas fragment the analyte. This technol-
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ogy is therefore called collision induced dissociation (CID) [WM05]. A mass spectral
analysis unit afterwards measures the analyte fragments. Because two analysers are
used for measurement, the whole setup is called tandem mass spectrometry. A third
analysis unit is used as collision cell. For details, refer to Section 2.3.3 on page 24.
Chen, Fischer and many others developed software to analyse these tandem mass
spectra [CKT+01, FRR+05]. Although successful with proteins, nobody has trans-
ferred this concept to metabolites up to now, because in contrast to proteins the
fragmentation of metabolites is not completely predictable and metabolites have a
more complex, non-linear structure.

The database approach to identify metabolites is even more limited than the
one to identify proteins, because the genome is not of great help when analysing
metabolites [Fie02]. The metabolite itself has to be known to re-identify it. Whereas
the metabolites involved in growth, development and reproduction are well known,
only few of the metabolites not participating in these three areas are known [Ini00].
These secondary metabolites are important to understand, e.g., in plants, where
they serve as main signalling molecules [JCB+00].

Note that mass spectrometry is not able to find structures of unknown metabo-
lites, because the molecular weight measured by mass spectrometry only depends on
the sum formula. Therefore to identify a metabolite in this work means to identify
its sum formula.

This work develops a concept how to analyse tandem mass spectra of metabolites,
despite the fragmentation process being not completely understood and difficult to
predict [Wil02]. The concept of this work accounts for this missing comprehension
by rating no fragmentation step impossible. Of course some knowledge exists on the
typical fragments and the properties of typical metabolites are known. From this,
we derive a scoring as presented in Chapter 4 of this thesis.

We transform the problem instance into a weighted graph and calculate the best
scoring fragmentation tree from this graph. This calculation is a computationally
hard problem. Therefore, we use heuristics as well as fixed-parameter tractability to
solve this problem. We apply different algorithmic approaches to solve the problem
exactly. The reduction rules as well as the branch and bound approach can not
efficiently be applied to the graphs calculated from tandem mass spectra. The
dynamic programming algorithm can determine a solution for a compound of our
test set in a few seconds. But if certain conditions apply, it is outperformed by
a brute force approach. Thus, the final implementation uses a combination of the
dynamic programming and the brute force approaches.

We test this implementation by analysing metabolite tandem mass spectra. The
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results are satisfactory regarding the results as well as running times. For all 45
compounds tested the correct sum formula was among the top five suggestions. The
tool ranked the correct formula on first position for four of the eight compounds with
a mass between 300 and 500 Da. For compounds below 300 Da, that was the case
for twenty-two of twenty-four compounds. Our tool therefore performs as good as
the similar tool FFP (Fragment ion Formula Prediction) by Zhang et al. [ZGC+05].

The structure of this work as follows. We define the required graph theoretical
terms and describe the concept of fixed parameter tractability in the remainder of
this chapter. This provides the computational science background for this work.
Chapter 2 puts the research on metabolites into a greater biological context and
presents the experimental technologies to acquire the data analysed here. Chapter 3
describes the basic idea of the analysis and sketches the procedures necessary for
analysis. In Chapter 4 we develop a scoring scheme to assess the interpretations
found. The transformation of the analysis idea into a graph theoretical problem
is described in Chapter 5. We prove that this problem is NP-hard and develop
exact algorithms as well as heuristics to solve the problem. Chapter 6 presents
an implementation of these algorithms, and we use this implementation to analyse
a testbed of spectra in Chapter 7. The results and running times are given and
evaluated. Finally, in Chapter 8 we conclude this work by summing up the results
and we give many areas for improvement and further investigation. We also mention
other fields of application for our algorithms. As computer based data interpretation
in this field has only just begun, there are plenty of possibilities for further research.

1.1 Graph theoretical notation

Graphs are the basis of the computational problems studied in this work. On a more
application-based view graphs can be seen and are often referred to as networks. A
graph is a pair of a vertex set and an edge set, G = (V, E). As the graphs in
this work are directed, an edge e = (u, v) ∈ E with u, v ∈ V is an ordered pair
of vertices. We call u the tail and v the head of the edge e. For a given vertex v

the edges {(v, w) ∈ E|w ∈ V } are the outgoing edges of v, the incoming edges are
{(w, v) ∈ E|w ∈ V }, respectively. The union of these two edge sets are the incident
edges of v. Following the convention in graph theory, the number of vertices |V | is
denoted by n, the number of edges |E| is m.

A subgraph G′ = (V ′, E ′) of G = (V, E) is a graph for which it holds that V ′ ⊆ V

and E ′ ⊆ E∩V ′×V ′. The subgraph induced by V ′ ⊆ V is the graph G[V ′] = (V ′, E ′)

with E ′ = E ∩ V ′ × V ′.
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The graphs occurring in this work are directed acyclic graphs (DAGs) meaning
that they do not contain directed cycles. Vertices of the DAG that do not possess
incoming edges are source vertices or sources of the DAG.

A vertex-coloured graph is a graph with an additional colour function c : V 7→
C ⊆ N that assigns a colour from the set of colours C to every vertex. (Of course,
there are edge-coloured graphs, too, but these are not relevant to this work.) To
enable scoring of the results, it is also necessary to introduce edge-weighted graphs.
Those possess a weight function w : E 7→ R giving each edge a score or weight. In
this work, we look at edge-weighted vertex-coloured DAGs. We define the weight of
a graph G = (V, E) as w(G) =

∑
e∈E w(e).

Trees are defined as connected graphs containing no cycles at all, whereas DAGs
may contain cycles when disregarding the direction of the edges. We call directed
trees arborescences, if there exists a vertex (called root) from which exactly one
directed path to every other vertex exists. More intuitively speaking, it means that
all edges point away from the root. Any tree we consider here is also an arborescence,
so for the rest of this thesis whenever we write “tree” we in fact mean “arborescence
tree”.

In the algorithms developed and analysed in this work the Maximum Span-

ning Tree problem is often used. In literature it is commonly called Minimum

Spanning Tree: Whether the spanning tree with maximum or minimum weight is
calculated does not influence the general concept. Because a score is maximised here,
the maximisation problem is more relevant. First we need to define the spanning
trees of a graph:

Definition 1 (Spanning tree). A spanning tree S of a connected graph G is a
subtree of G that connects all vertices of G.

Now the the Maximum Spanning Tree problem can be defined:

Definition 2 (Maximum Spanning Tree). Input: An edge-weighted connected
graph G. Task: Find a spanning tree of G with maximum weight.

This problem has been known for nearly one hundred years, [Bor26, Kru56, Pri57]
present algorithms to solve it.

The last graph theoretical concept relevant in this work is the transitivity of
graphs. A graph is transitive if the following holds: (u, v) ∈ E ∧ (v, w) ∈ E =⇒
(u, w) ∈ E. That is, every vertex has edges to the children of its children, its
great-grandchildren and so on.

This concludes the introduction of graph types and terms, and we now have a
look at the main algorithm design concept applied in this work.
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1.2 Fixed-parameter tractability

The problem studied in this thesis, determining the most likely fragmentation pro-
cess, is formally defined in Section 5.1 and proven to be NP-hard in Section 5.2.
That means it is very unlikely that a polynomial time algorithm exists to solve this
problem. Thus the running time of any algorithm for this problem will increase
exponentially with input size, rendering even the fastest computers useless for large
inputs.

A possibility to tackle NP-hard problems is accepting non-optimal solutions.
We can then use heuristics, randomised or approximation algorithms. They might
perform well in practice, but only rarely guarantees can be given about how well
the solution approximates the optimum or how long the calculation will run.

Due to these drawbacks, we apply another strategy in this work, named “fixed-
parameter algorithms”. This technique delivers exact solutions in acceptable time
for NP-hard problems with a special problem structure. For this technique it is
necessary to derive a parameter from the input. This parameter is usually a non-
negative integer, but that is not a requirement of the underlying theory. In coloured
graphs, a typical parameter is the number of colours. The algorithm developer tries
to restrict the unavoidable combinatorial explosion, that is, the exponential growth
to this parameter. If the parameter is small, calculating an exact solution for the
problem can be done in acceptable running time, regardless of the problem size. To
formulate it more exact from a theoretical point of view: If the parameter is fixed,
and we consider it as a constant, the algorithm computes the solution in polynomial
time. Hence this technique is called “fixed-parameter tractability”.

1.2.1 Formal definition of fixed-parameter tractability

We formally define the basic concepts of fixed-parameter tractability here, beginning
with the special problem structure necessary for fixed-parameter tractability to be
applied.

Definition 3 (Parametrized language). A parametrised language (or problem) L is
a language L ⊂ Σ∗ × Σ∗, with Σ as finite alphabet. We call the second component
of an instance of Σ∗ × Σ∗ the parameter.

In which cases can we consider a parametrised problem fixed-parameter tractable?
We define this property by the running time of the algorithm that solves the corre-
sponding decision problem:
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Definition 4 (Fixed-parameter tractability). A parametrised language L is fixed-
parameter tractable if the question “Is (x, k) contained in L?” can be decided in
f(k) · |x|O(1) time with f being a computable function only depending on k. The
corresponding complexity class containing all problems that are fixed-parameter
tractable is called FPT.

It is now possible to define a concept of parametrised reducibility to compare
the hardness of two parametrised problems, and a class of all problems parametrised
reducible to the k-Step Halting problem. We call this class W[1]. Problems in
this class are most likely not fixed-parameter tractable. As the problem covered in
this work is in FPT, the details of W[1]-hardness are not discussed. The interested
reader is referred to [Nie06, DF99].

It is important to keep in mind that FPT is a theoretical concept. Although most
FPT algorithms are useful in practice, that is not always the case. As the function
f(k) may be extraordinary fast growing, an algorithm still including the input size
in the exponential part can be faster for practical instances of the problem, albeit
the worse asymptotic running time.

1.2.2 Design approaches for fixed-parameter algorithms

According to [Nie04] three major concepts are typically applied to design fixed-
parameter algorithms:

• Reduction of the input to a small problem kernel

• Constructing a depth-bounded search tree

• Using dynamic programming

Reduction rules and problem kernels. This is probably the most widely used
concept in parametrised algorithmics. The idea is to find rules that reduce the
problem instance, e.g., for a graph they decrease the number of nodes or edges either
by merging them together, or simply deleting them. Of course, the modifications
must preserve the optimal solution. For some problems, it can be shown that these
reduction rules always reduce the problem to a size only dependent on the parameter
k. The remaining, irreducible problem is in that case called the problem kernel. If
the reduction rules can be applied in polynomial time, an algorithm with exponential
running time can then be applied to the problem kernel. This procedure yields a
fixed-parameter algorithm with running time f(k) · |x|O(1).
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Depth-bounded search trees. This approach is often applied if the parameter
is the size of the expected output. The parameter then is a bound for the depth of
the search tree, as every decision made increases the output by at least one unit.
Thus it remains for the algorithms engineer to reduce the width of the search tree
by intelligent decision rules. The width of the tree needs to be independent from
the input size, except for the parameter, otherwise the approach will not yield an
FPT-algorithm.

Dynamic programming. Well known for speeding up algorithms for some polynomial-
time solvable problems, we can of course apply dynamic programming also to NP-
hard problems. It will yield an FPT-algorithm if the parameter is the size of a set
of elements, that may or may not be included in the solution, e.g., the set of colours
in the algorithm that is presented in this work. The major disadvantage of this
approach is that not only its running time, but also its memory consumption will
grow exponentially in the parameter. Note that the last two concepts do not exclude
the first one: on the contrary, there exist efficient combinations of these approaches.

This concludes the computer science introduction, presenting the theoretical con-
cepts behind the major technique applied here. Let us now have a look at the
biological application, again beginning with some background.





Chapter 2

Biological and experimental
background

The aim of this work is to analyse data obtained from measurements of metabolites.
Section 2.1 of this chapter describes what metabolites are and why they are a focus of
research. The concept of systems biology and the need for high throughput methods
in this field is explained in Section 2.2.

Afterwards in Section 2.3 we present the technologies to measure the data anal-
ysed in this thesis, namely high performance liquid chromatography and tandem
mass spectrometry. We introduce the terms commonly used in mass spectrome-
try analysis in Section 2.3.4 and present some previous work on mass spectrometry
analysis in Section 2.3.5.

2.1 Metabolites

Metabolites are the substrates and products of chemical reactions taking place in
living cells. Although this definition includes all compounds found in a cell, biologists
and biochemists usually restrict the term to small molecules, but small is not exactly
defined. As a rule of thumb the products of polymerisations are no longer considered
metabolites: Thus proteins and DNA are not metabolites, but amino acids and
nucleotides are. Metabolites rarely have masses of more than 1000 Da, the majority
has a mass below 400 Da (KEGG database [KGH+06]).

Metabolites are commonly divided into two groups: Primary metabolites and
secondary metabolites. The former are molecules directly involved in growth, devel-
opment and reproduction. All others are classified as secondary metabolites. Sec-
ondary metabolites have various functions, e.g., serving as signalling molecules, de-
fending against pathogens, facilitating reproduction as “attractive smells” or colour-
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ing agents or protecting against abiotic stress, such as UV light or high salt concen-
trations in plants [JCB+00].

Whereas the primary metabolites are well investigated and are completely cov-
ered by databases such as the Kyoto Encyclopedia of Genes and Genomes (KEGG)
[KGH+06], the Wiley Registry, or the NIST 2005 Mass Spectral Library [Joh06],
a huge portion of secondary metabolites is completely unknown. There exists a
huge diversity of secondary metabolites in living organisms. As far as we currently
know, no two species possess the same set of secondary metabolites [PG00]. Some are
shared between species, e.g., species of the same family; others are unique to a single
species. Secondary metabolites are especially abundant in plant signal transduction.
Even in the model plant Arabidopsis thaliana where 200 secondary metabolites are
already known [DG05] the number of genes coding for enzymes of the secondary
metabolism suggests that there are a lot more metabolites to be found [Ini00]. The
whole field of bio-prospection searches the rain forest and other unexplored and bi-
ologically diverse areas for molecules, often secondary metabolites, that might serve
as pharmaceuticals. This illustrates the need of “de-novo”-identification of metabo-
lites from mass spectrometry data as it is insufficient to rely on databases in this
matter.

2.2 Systems biology and metabolomics

In systems biology, scientists consider the cell or even larger structures like tissue
or organisms as systems, that is, as a set of components and their interactions. If
looking at all components at once, it might be possible to find out how function
and behaviour emerge from this system. Some biologists describe this as a complete
change of philosophy, as in classical biology the concept was to dissect systems to
gain insight into their structures. In research, the systems biology concept can only
be used because high throughput methods became available.

The genome was the first subsystem available for analysis due to fast sequencing
methods. But it is static in most cases and does not describe the state of a cell.
For capturing this as well, it is necessary to take the variable components of a cell
into account, too: the transscriptome, the collection of all mRNA transcripts in the
cell, the proteome, the collection of all proteins, and the metabolome, the collection
of all metabolites. For all four types high throughput methods are available and
constantly improved. For the studies of the latter two mass spectrometry plays an
important role.

In proteomics, experimentators can separate proteins using 2D-gel electrophore-
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sis, dividing them by their iso-electric point and their mass. Afterwards they are
digested by an enzyme or otherwise dissociated, then the fragments are detected
by a mass spectrometer. An alternative is the separation by liquid chromatogra-
phy (LC) and the fragmentation using “collision induced dissociation” (CID) in the
mass spectrometer. For more details on mass spectrometry in proteomics, see the
references in Section 2.3.5. For metabolomics, gas or liquid chromatography in com-
bination with mass spectrometry is used. We will describe these methods in detail
in the next section. In a systems biology approach, researchers have to study the
metabolome since it represents the most direct view onto the state of a cell. They
can, for example, deduce the nutritional status from the ATP level of a cell. The
control function of metabolites is also not to be missed; metabolites often ensure
that their own level is kept constant by a feedback interaction to enzymes, tran-
scripts, or genes. Another very important point is that organisms usually interact
with their environment via metabolites. So, a reaction of an organism to adjust to
a changed environment often starts by sensing metabolites. The methods applied
to measure metabolites are presented in the following section.

2.3 Methods

2.3.1 Chromatography

As mentioned in Section 2.2, chromatographic methods are widespread to separate
metabolites. The idea is to separate a mixture of analytes by first solving it into a
so-called mobile phase, increasing its mobility. It is then pressed along a stationary
phase, which can bind to some molecules in the sample: For example, the stationary
phase can have hydrophobic tails to ease the binding of hydrophobic molecules.
The experimentator then changes the properties of the mobile phase gradually to
be more hydrophobic. Thus first the slightly hydrophobic molecules are washed off
and exit the apparatus and afterwards the more hydrophobic ones until all analyte
molecules have left the device. To separate metabolites, gas chromatography (GC)
and high performance liquid chromatography (HPLC) are commonly used. They
differ in the state of the mobile phase. For historical reasons, the device in which
the stationary phase is contained is called column although nowadays metal tubes
are in use. Biologists usually use capillaries, that is, microscopically small columns,
e.g., with 150 µm diameter. This small diameter ensures a high velocity of the mobile
phase enabling longer columns. In such a way the experimentator can achieve better
separation resulting in a higher resolution.
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2.3.2 Mass spectrometry

Mass spectrometry is a technology to analyse chemical compounds. Essentially,
a mass spectrometer is a very exact scale, determining the molecular weight of a
chemical species. To achieve this, the ion source ionises the sample molecules and
then accelerates them in an electromagnetic field. The mass analyser separates the
ions according to their mass-to-charge ratio m/z before they are measured by a
detector. This technology can analyse the contents of the sample both qualitatively
and quantitatively. This section only introduces the main concepts, for details on
mass spectrometry we refer to [Das01, HS01].

A mass spectrometer therefore consists of at least three parts: The ion source,
the mass analyser, and the detector. Different variants of all these parts are in use.
These variants of course change the properties of the spectra produced, so that the
interpretation approaches differ for different mass spectrometer types.

There are three ionisation methods that are commonly used with biological sam-
ples: When using Electro Spray Ionisation (ESI), the sample is atomised into the
vacuum and then ionised by an electric field. This leaves most of the molecules
intact. Alternatively, the mass spectrometrist can use Matrix Assisted Laser Des-
orption/Ionisation (MALDI). In this case the sample is crystallised together with
a matrix substance. A laser pulse then evaporates the matrix without damaging
the embedded sample molecules. This ionises the molecules. The third ionisation
method is Electron ionisation (EI). Here, electrons are accelerated towards the sam-
ple by an electric field. The collision with the electrons in this case fragments the
sample molecules. The degree of fragmentation can be adjusted by the strength of
the electric field. In this work we analyse spectra measured using Electro Spray
Ionisation.

As a wide variety of mass analysers is in use, this paragraph will focus on the
two types relevant for this work: Time-of-flight analysers make use of the fact that
molecules of different weights gain different velocities, if accelerated by the same
force (~a =

~F
m

). Because the acceleration is in practice carried out by an electric
field the force acting upon the ion is proportional to its charge (~F = z · ~E). We
obtain m

z
=

~E
~a
. Since mass and charge are both unknown in this equation, mass

spectrometry can only measure mass-to-charge ratios.
The other analysing technology relevant here is the quadrupole mass analyser.

It consists of four parallel rods connected to an AC power source. The induced
alternating electrical field forces the ions into a spiral trajectory. For a fixed fre-
quency of the power source only ions with a distinct mass-to-charge ratio can pass
without colliding with a rod. Therefore a quadrupole is a filter adjustable by the
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Figure 2.1: Schematic drawing of a quadrupole mass analyser. Picture by Paul J.
Gates, University of Bristol.

AC frequency. Figure 2.1 shows a schematic drawing of a quadrupole analyser.

After passing the mass analyser unit a detector records the ions. Commonly used
are the secondary electron multiplier and the Faraday cup. In the electron multiplier,
the ions hit a series of metal plates. By a physical process called secondary emission,
each ion or electron hitting a plate forces the emission of two or three electrons.
Each plate hence doubles the amount of electrons, leading to a strong amplification.
Alternatively a Faraday cup can be used. In its simplest form it is a metal cup, which
is charged when hit by ions. This small change in charge can then be measured.
Faraday cups lack sensitivity but are more accurate than electron multipliers, as the
ions are directly measured.

Peak picking The raw data received from the detector is filtered to reduce noise.
Afterwards the so called “baseline”, the base activity of the detector, is subtracted.
In tandem mass spectra, the technology relevant for this thesis, the maxima of
the remaining data function are defined to be peaks. The environment of these
maxima is then centroided, that is, the intensity-weighted mass average is calculated.
These calculations result in peaklists containing mass, intensity and perhaps other
properties of the peak, e.g., the width of the peak in the raw data. Software to
perform these calculations is usually provided by the mass spectrometer vendor.
Alternatively, open source software can be used for this task [SWO+06, LGR+06].
Common mass spectrometry analysis tools and the algorithms presented in this work
use these peaklists as input.
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Figure 2.2: Basic layout of a QqTOF tandem mass spectrometer. Picture by the
Protein Analysis Unit of the William Harvey Research Institute, London.

2.3.3 Tandem mass spectrometry and fragmentation

A mass spectrometer is not limited to having only one mass analyser. The data
analysed in this work was acquired using as many as three coupled mass analy-
sers. The first one is a quadrupole analyser used as mass filter to select one specific
metabolite. The second one is again a quadrupole, but filled with nitrogen or argon.
By this way, it can be used as a collision cell in which collision-induced dissocia-
tion occurs which fragments the analyte into smaller molecules [WM05]. Note that
typically only one part of the analyst ion remains charged, the rest of the molecule
is not detectable and therefore called neutral loss. Depending on the acceleration
voltage applied before the collision cell, (the collision energy,) large fragments result
from weak collisions or small ones from heavy colliding. A time-of-flight analyser
separates the fragments produced and they finally reach the detector. This combina-
tion (in short QqTOF-MS) is a type of tandem mass spectrometry (MS-MS), as the
second quadrupole is not used for analysis [CLT01]. Figure 2.2 shows the layout of
such a tandem mass spectrometer and Figure 2.3 depicts an example set of spectra
using different collision energies. The advantage of the technology is that one gets
information not only about the mass of the molecule, but also masses of different
fragments. This fragment information limits the explanations of the parent peak,
because only explanations that can fragment into the ions found in the spectra are
candidates for the real metabolite. Unfortunately, the fragmentation process is not
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Figure 2.3: Tandem mass spectra of tryptophane at different collision energies (CE).
The parent mass of tryptophane is appr. 205 Da.

too well understood.

2.3.4 Mass spectrometry terms

The following terms are commonly used when analysing mass spectra. Recall that
in this work, we want to discover the sum formula of the metabolite only, and we
ignore its structure. Note that in graph theory, the term parent is used differently
than in mass spectrometry. We will retain the meaning of parent as used in mass
spectrometry, and use the expression predecessor whenever meaning parent in its
graph-theoretical sense. This leads to the following definitions:

The parent ion is the unfragmented ion which can pass the first quadrupole



26 CHAPTER 2. BIOLOGICAL AND EXPERIMENTAL BACKGROUND

analyser. The parent peak is the peak created by this ion and the parent mass anal-
ogously its mass. Usually, the peak with the highest mass in the spectra is the parent
peak. It only occurs in spectra with a low collision energy, at higher energies it will
be completely fragmented. All other peaks in the spectra are consequently fragment
peaks. We calculate decompositions for the peak masses, that is sum formulas which
have approximately the mass of the peak. Those decompositions then explain the
peak. For a certain decomposition of a fragment peak, we call the decompositions
of which this decomposition can be a fragment of its predecessors. The correspond-
ing peaks are then predecessor peaks. These predecessors become important for the
collision energy scoring in Section 4.4.2. Note that in graph theory, one usually calls
them parents, but this term is occupied in mass spectrometry.

2.3.5 Previous work on mass spectrometry analysis

For the analysis of protein mass spectrometry data, many programs exist. MAS-
COT and SEQUEST are commercial tools widespread among biologists [PPCC99,
EMY94]. VEMS poses a freely available alternative to these programs [MBS+04].
Whereas all these programs depend on a database for analysis, algorithms for pro-
tein de-novo sequencing from tandem MS data have been developed some years ago.
Chen et al. proposed a concept that calculated the linear combinations of the amino
acid masses that matched a mass difference between two peaks [CKT+01]. Bafna
and Edwards improved this idea by finding a concept to assign confidence values
to the peak explanations [BE03]. The most successful approach though was made
by Fischer et al. They used hidden Markov models (HMM) to produce an amino
acid-spectra mapping, which turned out to work well [FRR+05].

Up to now, significantly less effort has been spent on analysing metabolite mass
spectrometry data. The classical approach is to use an extensive database, such as
the Wiley or the KEGG database [Joh06, KGH+06], and compare the peaks with the
masses of the molecules contained in this database. The tools for the comparison of
protein spectra (MASCOT, SEQUEST and VEMS) also work for metabolite spectra.
If analysing small molecules, there are usually only few matches [Fie02].

Unfortunately, this method is insufficient if larger metabolites have to be iden-
tified. The approach used in this case is to measure a tandem MS spectrum and to
compare the fragment spectra with the ones in the database. Because spectra can
differ a lot depending on the experimental conditions, this is rather inexact. There is
another major drawback: As mentioned in Section 2.1 many secondary metabolites,
especially in plants, are unknown. To depend on a database for identification is
therefore not an option. De novo identification approaches are an alternative here,
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as the software for proteomics analysis developed in the last years shows. Some
of the approaches used to analyse peptides can be transferred to metabolites. For
example, the approach of Zhang et al. exploits the isotopic patterns of the fragment
ions [ZGC+05].

Finding all sum formula for a given mass leads to the long known Money

Changing Problem [Wil78]. Interpreting the atom masses as coin values and the
given mass as payable amount, the sum formula tells which combination of coins
you may use. Böcker and Lipták present an efficient algorithm to solve this problem
[BL07]. Unfortunately the number of combinations increases rapidly with mass. For
k different atom types, it is in O(mk−1). If high resolution mass spectrometry data
is available, analysis software can use the isotopic pattern of the molecule to rank
the possible solutions according to their ability to explain the pattern [BLLP06].
Unfortunately this only works well for spectra with less than 2 ppm mass deviation.
Only expensive and complex spectrometers, such as Fourier-transform ion-cyclotron-
resonance (FT-ICR-MS) or OrbiTrap spectrometers can measure spectra with this
accuracy. Another possibility is to exploit the fragment spectra obtained by tandem
MS, which is the aim of this work.





Chapter 3

Concept of the Analysis

As stated in the introduction, “de-novo”-identification of metabolites using mass
spectrometry can only reveal sum formulas, since mass spectrometry only measures
molecular weights. These masses do not give information about the structure, but
identifying the sum formula is a first step preparing further investigation.

The idea for finding these sum formulas is to calculate all possible formulas for
any peak present in the spectra. These formulas are connected, if one can be a
fragment of the other. We score these connections with the likelihood that this
fragmentation occurs. Chapter 4 describes the scoring scheme. In Section 3.3 we
explain the transformation of the biological data into a graph in detail. From this
graph the algorithm calculates the most probable fragmentation tree. The root of
this tree is therefore our best explanation for the parent peak. We briefly describe
concept of the algorithm in Section 3.4; the details follow in Chapter 5.

We perform two steps before calculating the input graph. First, we merge peaks
of different spectra that have the same mass. Section 3.1 presents the details of
this peak preprocessing. Afterwards we apply some filters to reduce the number of
possible decompositions. These filters are described in Section 3.2.

3.1 Peak preprocessing

In this work series of spectra with different collision energies are analysed, but we
shall treat the data as if it were only a single spectrum. Hence it is necessary to
merge the peaks into one spectrum before the main analysis can take place. This step
is done by simply applying a threshold, merging peaks from different spectra whose
mass difference is smaller than the threshold. Another restriction is that the peaks
have to be in adjacent spectra. For example, if peaks with similar mass occurred
in the spectrum with 15 eV and with 35 eV, but not in the spectrum with 25 eV,
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the program would not merge them, as they most likely have different explanations
with incidentally the same mass: otherwise, a peak at 25 eV should also exist. The
peaklists in Table 3.1 on page 31 illustrate the merging process. Peaks in the same
row are merged, resulting in six peaks with distinct masses.

If peaks are to be merged, the intensity of the merged peak is the highest intensity
of the original peak. There are two possibilities for the mass of the resulting peak:
The standard is to calculate the intensity-weighted mean of the original masses,
another possibility is to just keep the most intense peak. If peaks are merged it is
stored in which spectra this peak occurred. Thus after merging, every peak has a
range of collision energies (of the corresponding spectra) assigned, which becomes
relevant for the scoring using collision energies in Section 4.4.2.

The next step is to calculate the decompositions of all these peaks. The software
uses the Round Robin algorithm for this task [BL07]. We then need to filter these
decompositions.

3.2 Filters

We apply only a few strict filters as long as the problem instance and hardware
resources permit this. Not using filters avoids the necessity for thresholds and allows
finding a solution even if it has an unexpected property. This property could prevent
the solution from passing a strict filter. With scoring functions, as mainly used here,
solutions with unexpected properties will just receive a lower score, which can be
compensated by earning a higher score for other properties. There are only two
strict filters used in this work, one of them is intrinsic in the algorithm for sum
formula calculation. The other strict filter allows only decompositions passing the
Senior rule filter (Section 3.2.2) to be analysed.

3.2.1 Mass deviation filter

Although it is not applied explicitly, this is one of the two strict filters being enforced,
simply because the mass decomposition algorithm requires a mass range for which
to calculate the decompositions. The mass deviation is usually given as parts-per-
million (ppm) of the peak mass. The threshold here has to be set by the user, as
it highly differs between mass spectrometers. Current Q-TOF-spectrometers can
obtain a precision of 3 ppm, whereas old devices only manage between 10 and 20
ppm. The parent masses of the molecules measured also influence precision, as not
only relative, but also absolute mass errors may occur, making it necessary to choose
a higher relative deviation.
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Energy 15 eV 25 eV 40 eV 55 eV
Mass Int. Mass Int. Mass Int. Mass Int.

Peaks 144.02 3.07 144.02 54.66
176.05 6.82 176.05 66.28

205.05 11.27
220.08 5.21 220.08 100.00 220.08 100.00 220.08 100.00
441.21 100.00 441.21 39.29

Table 3.1: Peaklist obtained by measuring hexosylferuloyl choline. The given inten-
sities are raw intensities as described in Section 4.1.1. An input graph derived from
these spectra is shown in Figure 3.1.

3.2.2 Senior rule filter

The second strict filter being applied is a Filter based on Senior’s third theorem,
that the sum of valences has to be greater than or equal to twice the number of
atoms minus one [Sen51]. This rule is equivalent to restricting the RDBE (defined in
Section 4.3.3) to non-negative values. Molecules violating Senior’s third theorem are
rare, especially in natural compounds. Kind and Fiehn find 64 substances violating
the rule in the 45.000 entries of the Wiley mass spectral database [KF07]. Thus
the filter has a sensitivity of 99.86 %. There are two examples with negative RDBE
given by Kind and Fiehn, C12H36F6N6O4P4Si2 and CH2F10S2. The high amount of
fluorine in both examples is not likely to occur in natural compounds.

3.3 Construction of the input graph

We construct the input graph from the remaining decompositions as follows: For
every sum formula that passed through the filters we create a vertex representing
it. We colour vertices that represent sum formulas explaining the same peak in
the same colour. Thus the number of colours k is equal to the number of peaks.
Now, we build a directed graph by applying the relation “can be fragment of”. If
sum formula a can be a fragment of sum formula b, we create the edge b → a.1

We now score those formulas with the intensity of the peak they explain, and the
complementary error function of the mass difference to the peak. Then, we assign
the scores of the formulas to all incoming edges of the corresponding vertex. It is
possible to apply further scores on the edges, such as the likelihood that the neutral
loss this edge implies occurs. This way, we build an edge-weighted, vertex-coloured
directed acyclic graph (DAG). An example graph is shown in Figure 3.1.

1The direction is chosen arbitrarily, it only needs to be consistent during construction. In this
work, we choose the direction in a way that the resulting fragmentation tree is an arborescence.
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3.4 Concept of the algorithm

For the graph constructed above, the algorithm calculates the tree that does not
use any colour twice and has maximum sum of edge weights. The root of this tree
is claimed to be the most likely explanation for the analysed molecule, if the root is
indeed a decomposition of the parent mass. The tree itself is a fragmentation graph.
Whereas fragmentation graphs are not necessarily trees, this restriction is made to
simplify computations as it avoids counting a score twice. The demand for the tree
not to use a colour twice ensures that the algorithm selects only one explanation
per peak. It is possible that a peak represents more than one ion, but this occurs
so rarely, that it is ignored. If we allowed more than one explanation per peak, the
algorithm would simply choose all explanations of a peak, which would certainly not
represent reality.

The algorithm now chooses the explanation which allows for the highest scoring
overall subtree. As the scores are chosen proportional to the probabilities that the
corresponding fragmentation takes place, the parent peak explanation belonging to
this subtree has a high probability to be the decomposition that generated this spec-
trum. Note that this tree does not necessarily represent the correct fragmentation
tree, it is optimised to calculate a likely explanation of the parent peak.
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Mass: 144.022 Intensity: 54.657 CE: 40, 55 eV
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Figure 3.1: Extract of the graph derived from the spectra of hexosylferuloyl choline.
For the sake of clarity, only one decomposition of the parent mass and its descendants
are shown and the transitive edges have been removed. Each box represents a peak,
thus vertices in the same box have the same colour. All peaks in the spectra of
hexosylferuloyl choline are given in Table 3.1. Note that C13H31N9O6S is not the
correct decomposition. “CE”: collision energy





Chapter 4

Scoring

As stated in the previous chapter, the score assigned to an edge roughly repre-
sents the likelihood that the corresponding fragmentation step is real. The simplest
scheme would be to use a peak counting score, that is, to count every peak the sug-
gested decomposition explains. This idea is too simple, since many decompositions
manage to find an explanation for every peak in the spectra analysed. For example,
take the wrong explanation C13H31N9O6S for hexosylferuloyl choline in Figure 3.1.
We can easily find a tree, that explains every peak exactly once. Thus, this ex-
planation would, together with many others, receive the maximum peak counting
score of 6. We need to use some properties of the peak, the decomposition, and the
fragmentation step to score explanations.

The basis of these scores are peak intensities as Section 4.1 describes. The
difference between the mass of the candidate formula and the peak is also taken into
account. Afterwards, certain properties of the sum formula are exploited, but this
has to be done with care, as we describe in Section 4.3. Finally, properties of the
fragmentation step itself are used as Section 4.4 describes.

Because all scores represent likelihoods, we would multiply them with each other.
Since multiplications are time-consuming and may produce underruns, we logarith-
mise the scores calculated in the following sections. This allows to add the scores,
rather than multiplying them. The score of an edge consists of the following parts:
The intensity score, the mass deviation score, the decomposition properties score
and the fragmentation score. Peak and decomposition attributes are taken from the
head of the edge, that is the vertex the edge points to.
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4.1 Peak intensities for scoring

The first value we use for scoring is the peak intensity. It is easy to understand
that a solution explaining stronger peaks should receive a higher score, thus, the
intensity of the peak has to influence scoring. There is one problem in this concept,
however: Peak intensities are usually normalised within a single spectrum. The
strongest peak is set to a defined value and the other peaks are scaled relatively to
this value. Therefore the intensities of two spectra are not comparable. There are
two possibilities to overcome this restriction. We describe the possibilities in the
following two sections.

4.1.1 Raw intensities

The idea here is to undo the previous scaling. To achieve this, it would be necessary
to know the intensity of the most intense peak before scaling. Unfortunately, this is
usually not stored, mass spectrometrists store the total ion current (TIC) instead.
This is the total current measured by the spectrometer over the whole spectrum.
We can derive pseudo raw intensities for the peak p in a spectrum S represented as
set of peaks from this value by the following calculation:

rawIntensity(p) =
TIC(S)∑

q∈S

intensity(q)
· intensity(p)

These raw intensities are then logarithmised and used as score for all decompositions
of this peak.

4.1.2 Smoothed intensities

Another possibility is to loosely adopt a concept by Wan et al. [WYC06]. They
rank the peaks of a spectrum according to their intensities in descending order.
Afterwards they divide the ranks by the highest rank in the spectrum, thus normal-
ising them between 0 and 1. They find that the meaningful peaks are exponentially
distributed on this scale. Therefore they can use the value of the corresponding
probability density function as a score. This procedure requires annotated training
data to confirm that the assumptions also hold for metabolite spectra and to derive
the distribution parameters from. Unfortunately, no annotated data was available.
Therefore in contrast to Wan et al., we sort the intensities in ascending order and
normalise in the same way. These relative ranks are then used as score for the de-
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compositions of the peak. Thus we avoid the scaling problem and deriving the score
from the rank flattens large differences in the intensities. This effect and the advan-
tages are similar to the Spearman rank order correlation. We believe the ranking of
the intensities to be correct, although the actual intensities are random to a certain
extent. It will be even better to fully adopt the idea as described above, if annotated
data becomes available.

4.2 Scoring of decompositions

After scoring the peak intensities the decompositions are scored separately. How
are decompositions represented as weighted vertices scored, when our algorithms
are restricted to edge-weighted graphs? As we will see below, we also will score the
fragmentation steps that are represented as edges. We then add the vertex scores
to all incoming edges of the corresponding vertex, and discard the vertex scores.
As we only allow one incoming edge per vertex, every vertex included in the tree is
therefore scored exactly once. Decompositions of the parent peak have to be handled
separately, though, because they do not have incoming edges; we omit the simple
details.

4.2.1 Mass deviation

The most common approach in mass spectrometry analysis is to score the deviation
between the mass of the calculated decomposition and the measured peak. Since
mass spectrometrists assume that the measuring error of a device roughly is normally
distributed, we add the evaluation of the logarithmised Gaussian probability density
function at the value of the measuring error to the score. As standard deviation 1

3
or

1
2

of the relative mass error is used, assuming that 99.8% resp. 95% of all measured
peaks have a mass error smaller than the given value. Mass spectrometry analysis
software typically uses the complementary error function, but using the probability
density function increased the sensitivity of the resulting scoring term. So, we
measure the probability that a peak has a mass error of at least ∆m instead of the
probability that a mass error of exactly ∆m occurs.
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4.3 Scoring decomposition properties relative to the

preceding decomposition

The following four scoring procedures share the problem that the properties scored
are hereditary: As an example, assume that we want to penalise decompositions with
unusually high hydrogen-to-carbon ratio. A decomposition with high hydrogen-to-
carbon ratio will likely have fragments with a high ratio, too. Thus, the high ratio
will be penalised in every fragmentation step, which is not desirable. Therefore the
following scores are applied in a special manner: The scores of the decompositions are
transferred to the edges as mentioned in Section 4.2. Then the scoring values of both
decompositions connected to the edge are calculated. If the score of the fragment
is better than the score of its predecessor, the score is not changed. Otherwise the
logarithmised score of the fragment is added, but the log-score of the predecessor
is subtracted from the score determined so far. Thus we decrease the score of the
edge.

The following four concepts highly dependent on the parameters chosen and
subsequently on the data these are derived from. The user has to make sure, whether
the assumptions hold for the metabolite class of interest and only then enable the
corresponding scoring. For example, for the test data presented in Section 7.1 the
H/C-ratios (Section 4.3.1) were lower than usual, probably due to aromatic rings.
Thus the H/C-ratio scoring was not helpful, in contrast to the C/Hetero-ratio scoring
(Section 4.3.2) which improved the results.

4.3.1 Hydrogen to carbon ratio

Furthermore we improve a concept introduced by Kind and Fiehn [KF07]. They use
a strict filter on the hydrogen/carbon ratio of the calculated sum formulas. Once
again it is more suitable for the analysis to just derive a scoring scheme. We find
that the hydrogen/carbon ratio of the 5100 molecules in the KEGG database to
be normal distributed as Figure 4.1 shows. The parameters estimated from these
molecules are µ̂ = 1.44 and σ̂ = 0.50. The corresponding density function is also
shown in Figure 4.1. Kind and Fiehn do not consider the use hydrogen/carbon ratio
to be normally distributed. They use the more extensive Wiley mass spectral library
[Joh06] for their studies, but this library is not restricted to biological compounds.
Therefore data based on a purely biological database is more reliable if only biological
substances are of interest.
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Figure 4.1: Frequency distribution of the H/C ratio of all molecules in the KEGG
database and the corresponding scoring function.

4.3.2 Hetero atom to carbon ratio

In organic chemistry, all atoms not being carbon and hydrogen are called hetero
atoms. The hetero to carbon ratio is as well a good measure for the likelihood of a
sum formula to represent a really existing molecule as this ratio is typically between
0.25 and 1 in biologically relevant molecules. This scoring is again similar to Kind
and Fiehn, but in contrast to their approach all hetero atoms are added together
here.1 We find the hetero to carbon ratio again to be normally distributed (see
Figure 4.2). The parameter determined in this case are µ̂ = 0.59 and σ̂ = 0.56.
Statistics on the KNApSAcK database [SNAUA+06] focusing on plant metabolites
and the AraCyc database [MZR03] containing data only from Arabidopsis thaliana
yielded roughly the same results. Thus the density function of this distribution is
used for scoring. The parameter determined for this and the previous distribution
of course depend on the molecule set used to calculate them.

1Kind and Fiehn consider the element to carbon ratios of eight frequent elements separately
from each other. They examine nitrogen, oxygen, phosphorous, sulphur, three halogens and silicon.
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Figure 4.2: Frequency distribution of the Hetero/C-Atom ratio values of the
molecules extracted from the KEGG database and the derived normal distribution.

4.3.3 Scoring using the RDBE distribution

The so called rings-plus-double-bonds equivalent (RDBE) measures the number of
rings and double bonds in the molecule. We calculate it as follows:

nv = Number of atoms with valence v in the molecule

RDBE = 1 +
6∑

v=0

(
1

2
v − 1)nv

It is not possible to use this formula to calculate the number of rings and double
bonds from a given sum formula, as the valences of nitrogen, phosphorous and sul-
phur and other elements may vary. But the RDBE values calculated using the most
common valences for these elements remain within a certain range for biologically
relevant molecules.

By visual inspection of Figure 4.3 we assume that the RDBE values of molecules
in the KEGG database [KGH+06] are gamma distributed. The parameters of the
distribution shown are the shape parameter k = 2.6 and the scale parameter θ =

3.39. As the values between -1 and 2 are not well approximated by the distribution,
we use counting statistics to assign the scores in this interval.
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Figure 4.3: Frequency distribution of the RDBE values of 5100 molecules extracted
from the KEGG database and the estimated gamma distribution used for scoring.

4.3.4 Bounds for element counts in the formula

Often researchers know which elements are likely or unlikely to appear in their
sample. Therefore, the user should have the possibility to limit the occurrence of
certain elements in the solutions to a certain range. Again we do not apply a strict
filter, but derive a scoring function from the values given by the user. This function
has a value of one in the given range and then decreases behind both boundaries.
We suggest the following formula, where Nµ,σ denotes the density function of the
normal distribution, [a, b] is the interval chosen by the user, and x is the abundance
of the element in question:

f(x) =


√

2πNa,1(x) for x < a

1 for a ≤ x ≤ b
√

2πNb,1(x) for x > b

The factor
√

2π is necessary for scaling. Again, we logarithmise the value of f(x).
Although this concept might override the users choice, it prevents good solutions to
be excluded only because they do not meet the requirements set by the user.
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4.4 Scoring of the fragmentation process

The last scoring term rates the fragmentation steps. Since a fragmentation step
is represented by an edge, these scores are of course applied to the edges. Often
we exploit properties of the so-called neutral loss for these scores. The neutral loss
is the fragment that is created during a fragmentation, but is not detected as it
is uncharged. We calculate the neutral loss of a potential fragmentation step by
determining the difference between the sum formula of the predecessor ion and the
fragment ion.

4.4.1 Mass of the neutral loss

We add the logarithm of the complement of the ratio between the mass of the
neutral loss represented by the current edge and the parent mass (In formula: 1 −
mass(neutral loss)

parent mass ) to the score. This scoring does not make sense chemically, because
large neutral losses are as likely to occur as smaller ones. Without this restriction
the calculated fragmentation tree would often be a star, that is a tree where every
vertex is connected directly to the root, because all fragments might as well be
explained as direct fragments of the parent mass decomposition. To avoid this effect
small neutral losses are favoured and therefore assigned a higher score.

4.4.2 Collision energies

Because the spectra are measured using different collision energies, we can deduce
that some peaks can not represent direct fragments of other peaks if they either
appeared at a lower energy or at a high energy where the predecessor peak has long
disappeared. The ideal situation would be that there is a collision energy where both
peaks appear. This will be given full score. It is highly unlikely that the fragment
peak appears before the predecessor peak, therefore log(0.1) is added to the score.
That effectively reduces the score by about 2.3. It is possible though, that the mass
spectrometer did not detect the predecessor peak in the relevant spectrum, thus
the score is not zero. Another possibility is that the predecessor peak ceases, there
is one spectrum where it can not be found, and then at the next higher collision
energy, the fragment peak starts to emerge. Then, the fragment did most likely
not directly emerge from the predecessor, this connection is as well given a small
score. If there is no spectrum in which both peaks can be found, but neither a
spectrum containing none of the peaks in question, it is possible that the molecules
are direct fragments, but there might as well exist another fragment between them.
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Name Condition Score
Overlap Highest energy of predecessor peak is larger than lowest energy of

fragment peak
100%

Sequence Highest energy of predecessor peak is directly followed by lowest
energy of fragment peak

80%

Break up Highest energy of predecessor peak is smaller than lowest energy
of fragment peak, but they are not directly adjacent.

10%

Precedence Lowest energy of fragment peak is smaller than lowest energy of
predecessor peak

10%

Table 4.1: The situations occurring when scoring according to collision energy ranges
and their corresponding unlogarithmised scores.

Therefore, in this situation log(0.8) is added to the score. Bear in mind that peaks
may appear in a range of spectra. A visualisation of the situations described here
can be found in Table 4.1. The values of log(0.1) and log(0.8) are initial guesses,
that appear reasonable to score the situation. These values, as well as others in the
next sections, should be optimised by a training process as soon as a larger training
set and an independent test data are available.

4.4.3 Integer RDBE scoring

In addition to the scoring according to the RDBE value (Section 4.3.3), we can use
the value to determine that a molecule is neither a radical nor an ion. For ions and
radicals the RDBE value is not integer. Unfortunately, a radical ion has again an
integer RDBE. Nevertheless, we can exploit the fact as follows: The neutral loss is
uncharged, as the name implies, since the parent ion has passed its charge to the
detected fragment. Therefore it needs to have an integer RDBE or be a radical.
Radicals are rare, thus we reduce the score of the corresponding edge heuristically
by log(4), if the RDBE of the neutral loss is not an integer.

4.4.4 Common neutral losses

Certain neutral losses occur often during fragmentation, especially in biological com-
pounds. Chemists even rely on those to classify analytes. A list of these fragments
can be found in Table 4.2. If a neutral loss is among this list, or is a combination of
the list entries, its score is increased by log(2). We could reward the combinations
a little less than the real entries, but because combinations are heavier than simple
entries, the combinations are already lower scored due to the mass of the neutral
loss scoring.
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Name Formula
Methyl CH3

Methane CH4

Oxy O
Hydroxyl H2O

Carbonmonooxide CO
Nitrogen N2

Ammonia NH3

Ethyl C2H4

Formaldehyde CH2O
Isobutene C4H8

Isopentene C5H8

Formic acid CH2O2

Malonic acid C3H2O3

Xylose C5H8O4

Rhamnose C6H10O4

Hexose C6H10O5

Glucuronic acid C6H8O6

Table 4.2: The common neutral losses used by the default scoring scheme.



Chapter 5

Algorithms for the Maximum

Colourful Tree problem

After constructing and scoring the input graph in the previous chapters, we need
calculate the most likely fragmentation process and thus the most likely explanation
of the parent mass. As already mentioned in Section 3.4, certain restrictions are
assumed for the fragmentation process: It must have a tree-structure and every
peak should only have one explanation assigned to it. In Section 5.1, the problem
is defined formally on vertex-coloured edge-weighted graphs. Section 5.2 shows that
this problem is NP-hard and therefore not efficiently computable.

The following sections then present concepts how to address this problem. Sec-
tion 5.6 presents the most successful concept with exact results. It is a fixed-
parameter algorithm, as introduced in Section 1.2. The algorithms described in
Section 5.8 do not solve the problem exactly, but have the advantage to run fast.
These heuristics nevertheless produce good identification results.

5.1 Formal problem definition

Based on the definitions given in Section 1.1, we define a colourful tree as follows:

Definition 5 (Colourful tree). A colourful tree T = (VT , ET ) of a vertex-coloured
DAG G is a subtree of G which uses every colour in C at most once:

for all d ∈ C : |{v ∈ VT |c(v) = d}| ≤ 1

This combines both restrictions postulated in the introduction. As we are in-
terested in the most probable fragmentation tree, it is necessary to look for the
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colourful tree with maximum weight. Therefore the computational problem can be
defined:

Definition 6 (Maximum Colourful Tree). Input: A vertex-coloured edge-
weighted directed acyclic graph G

Task: Find the colourful tree of G that has maximal weight.

As we shall see in the next section, this problem is NP-hard. Therefore it is very
unlikely that an polynomial-time algorithm exists to solve the problem.

5.2 Proof of NP-hardness

Theorem 1. Maximum Colourful Tree is NP-hard, even if G is a tree.

Proof. We prove NP-hardness by reduction from the SAT problem that is known
to be NP-complete [GJ79]. An algorithm solves the SAT problem if it can decide
whether a given Boolean expression in conjunctive normal form (CNF) is satisfiable.
This proof is analogous to the proof that the Graph Motif problem on vertex
coloured graphs is NP-hard [FFHV07].

Given an instance of SAT as a CNF formula Φ = c1 ∧ · · · ∧ cm over variables
x1, . . . , xn one can construct an instance of Maximum Colourful Tree as fol-
lows: We shall construct a tree which possesses m + n + 1 distinct colours namely
r′, x1, . . . , xn, c1, . . . , cm. We define a root-vertex r of a tree G coloured r′ and con-
nect 2n children to it. Then we assign the every colour xi, 1 ≤ i ≤ n, to two of
these children. The two vertices in the same colour xi each represent a different
truth assignment for xi. One vertex in the colour xi represents xi = true, the other
one xi = false. If a truth assignment to xi satisfies clause cj we connect a vertex
coloured cj to the vertex coloured xi, that corresponds to this truth assignment.
This assignment is done for all literals in all clauses. To complete the construction
we assign a score of 1 to every edge of G. An example for the construction can be
found in Figure 5.1.

r′

x1 x1 x2 x2 x3 x3

c2 c1 c3 c1 c3 c2 c1 c2 c3

Figure 5.1: Example for the construction of G. The Boolean expression consists of
the three clauses: c1 = (x1 ∨ x2 ∨ x3), c2 = (x1 ∨ x2 ∨ x3), c3 = (x1 ∨ x2 ∨ x3)
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As the constructed tree has as many leaves as there are literals in Φ, the con-
struction is polynomial. We now claim that Φ is satisfiable if and only if a maximum
colourful tree of G has a score equal to the number of clauses m plus the number
of variables n of Φ. To prove the forward direction, assume a truth assignment φ

that satisfies Φ. Define A ⊂ V (G) to be the subset of vertices in the colours xi that
correspond to the assignment φ. Then, there exists at least one vertex coloured cj in
the neighbourhood of A. Add an arbitrary representative of these vertices coloured
cj to the set B ⊂ V (G). A∪B ∪{r} form a colourful subtree T of G. It has a score
of m+n, as for each clause and for each variable there is one edge in T . As there are
only m+n+1 different colours in G, a colourful tree can contain at most m+n+1

vertices, thus consist of m + n edges. As every edge has score 1 the maximal score
is m + n. Therefore, T is a maximum colourful tree of G.

To prove the backward direction assume there is a maximum colourful tree T of
G with score m + n. T then contains all colours of G. Let A ⊂ V (T ) denote the set
of vertices coloured xi, 1 ≥ i ≥ n. φ is the truth assignment corresponding to A. We
constructed G in a way that a vertex coloured cj is connected to a vertex coloured
xi if and only if assigning the value corresponding to this vertex to xi satisfies clause
cj. As T contains all colours of G and vertices coloured cj, 1 ≤ j ≤ m in T are only
connected to vertices in A, every clause of Φ is satisfied by the assignment φ.

Note that it is possible to proof that Maximum Colourful Tree is NP-
complete even if G is a binary tree. we can restrict the expression, such that every
literal occurs at maximum in two clauses. Instead of linking all xi coloured vertices
to the root directly, we must construct a binary tree with 2n leaves. The proof
presented here uses arbitrary trees to emphasise the main idea. Also a binary tree
is unlikely to occur in any practical instance of the problem.

5.3 Splitting of the Input Graph

To produce a smaller input graph and therefore simplify the analysis, it is possible to
split up the graph constructed in Section 3.3. This splitting is done by selecting one
explanation of the parent peak and restricting the graph to all vertices reachable from
the vertex representing this explanation. This vertex then is the only source vertex
of the corresponding DAG. Through this restriction we can split up the graph into
one graph per explanation of the parent peak. Therefore we obtain several smaller
instances of the Maximum Colourful Tree problem, which can be feasible even
if there are not enough resources to process the complete graph.
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5.4 Reduction rules

As introduced in Section 1.2.2 reduction rules can be the base of efficient parametrised
algorithms. Although these rules are far from reducing the input graph to a problem
kernel, they make the input a bit smaller.

5.4.1 Minimal and maximal gain of a vertex

The minimal resp. the maximal gain of a vertex can be defined as the minimal or
maximal score a vertex can contribute to the score of the maximum colourful tree.
The contribution means the score lost if the vertex is not selected into the maximum
colourful tree. It highly depends on the other vertices selected, therefore only the
maximum and minimum gain may be determined based on local information. These
values are calculated as follows:

minGain(v) = min{score((u, v))|u ∈ V, (u, v) ∈ E}+∑
c∈C

min{score((v, u))|u ∈ V, colour(u) = c}

assuming score(e) = 0 if e /∈ E

maxGain(v) = max{score((u, v))|u ∈ V, (u, v) ∈ E}+∑
c∈C

max{score((v, u))|u ∈ V, colour(u) = c}

Now it is possible to define the domination of vertices: A vertex v dominates vertex
u, if u has the same colour as v and minGain(v) ≥ maxGain(u). If a vertex is
dominated by another vertex, we can remove this vertex, here u, from the graph,
as it will never be part of the solution, because a solution containing the dominat-
ing vertex v will always yield a better score. Recall that the graph is transitive.
Therefore children of u can still be part of the solution as they are also connected
to the parents of u. As the gains will change if a vertex is deleted, the rule has to
be applied iteratively until no more vertices can be deleted.
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5.4.2 The stronger predecessor rule

The following reduction rule can be applied to remove dispensable edges from the
graph: The edge (v, w) can be removed if

score((v, w)) ≤ score((u, w)) for all u : (u, v) ∈ incoming edges of v

The rule is not applicable to graphs constructed from tandem mass spectra, since
these graphs are transitive. Thus, a vertex v has usually many incoming edges, which
decreases the likelihood that all these edges have a larger score than (v, w). The
situation is further impaired by the scoring according to the mass of the neutral loss
as described in Section 4.4.1.

5.5 Branch and bound approach

To solve the Maximum Colourful Tree problem we can use the classical branch
and bound approach by testing all combinations of edges that could define a maxi-
mum colourful tree. Depth first search is applied to find a good solution early during
the search, which can then be used for bounding. To easily find an upper bound for
the branches, the following relaxation is applied: The selection of edges is restricted
by two constraints: First, two selected edges may not be incident to different vertices
of the same colour, since this renders the result not colourful. Second, they may not
be incoming edges for the same vertex, as it violates the tree properties. If a pair
of edges violates these constraints, these edges conflict. As a relaxation the edges
may conflict with each other during the search for an upper bound. Note that the
edges chosen to determine an upper bound may not conflict with the edges which
are part of our current solution at this point of the calculation.

As bounding cannot be applied in the worst case, this leads to a worst case
running time of O(

(
m
k

)
) = O(mk). Recall that n is the number of vertices, m the

number of edges and k the number of colours respectively peaks.

This approach is again not applicable to instances obtained from tandem mass
spectra. Bounding is not successful if many edges have similar weights, which is the
case in these instances. As the graphs obtained from spectra have many edges, the
branch and bound approach cannot be applied to these graphs.
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5.6 Dynamic programming

Although the branch and bound algorithm is sufficient for some instances of the
problem, it scales badly, as expected by its exponential running time. An alternative
is presented by Scott et al. [SIKS06]. They propose an algorithm to find colourful
trees in so called protein-protein-interaction networks which they coloured randomly.
The basis for this parametrised algorithm is dynamic programming over the vertices
and all possible subsets of the colour set C. W (v, S), where S ⊆ C denotes the
maximal score of a colourful tree with root v and using the colours in S. We derive
the following recurrence:

W (v, S) = max


max

u:c(u)∈S\{c(v)}
W (u, S \ {c(v)}) + w((v, u)) if (v, u) ∈ E,

max
(S1,S2):S1∩S2={c(v)},S1∪S2=S

W (v, S1) + W (v, S2)

with the initial condition W (v, {c(v)}) = 0. The first line extends a tree by just
introducing v as new root, and adding the score of the edge (v, u) to the score of
the tree. In the program, this is done by iterating over all outgoing edges of v. The
second line merges two trees, which have nothing in common but their root. This is
the expensive calculation, although in practice the implementation iterates over the
defined values only. Not all entries of W are defined, as there does not necessarily
exist a subtree of the input rooted in v using exactly the colours in S. The worst
case running time for this algorithm is O(3k ·k ·m) and the necessary space is O(2kn).
The factor of 3k is needed to calculate the second line of the recurrence, where the k

colours are divided into three groups: not contained in S, element of S1 or element
of S2. Then, 3k is the number of possibilities to perform this division. This yields
an fixed-parameter algorithm as the exponential growth is restricted to the number
of colours k, representing the number of peaks in the input spectra.

The major disadvantage of this method is its memory consumption. If the user
is not interested in the fragmentation tree, it is possible to implement the colour sets
S as bit strings, minimising the necessary space. To perform backtracking and thus
construct the fragmentation tree it is necessary to store the order the colours were
added to the sets. To retain the order of the colours it is necessary to store the colours
explicitly. Although this optimisation only decreases memory demands by a constant
factor, this often makes the difference between finding a solution and running out
of memory. If the user is only interested in the fragmentation trees of the best f

decompositions, we can optimise space demands as follows: First the best scoring
decompositions of the parent ion are determined using bit strings. Afterwards a
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graph is constructed containing only the best f parent mass decompositions and
their fragments or, more graph theoretically speaking, their children.

5.7 Brute force

The brute force approach iterates over all combinations of vertices that can form
a colourful tree. For every such combination the Maximum Spanning Tree (MST)
is calculated using Kruskal’s algorithm [Kru56] with some adaptions to ensure that
it results in an arborescence. The MST with the highest weight is then returned
as result. This leads to a worst case running time of O((n/k)km log m). For most
instances this is of course infeasible. But if n/k is smaller than 3 and log m ≤ k, this
yields a better running time than the dynamic programming algorithm. In practice
this difference is relevant, because of the memory consumption and overhead of the
dynamic programming. Therefore our implementation uses the brute force algorithm
if n/k is small.

5.8 Heuristics

This work focuses on exact algorithms, as they are necessary to asses the accuracy
of a heuristic. As a new problem was presented here, good heuristics can only be
developed if an exact algorithm is available. These heuristics are merely first guesses.
Although they work well as can be seen in Section 7.2, most likely smarter heuristics
could be designed. Since the exact fixed-parameter algorithm runs reasonably fast
(see Section 7.3 for running times), the need for improved heuristics is limited.

5.8.1 Maximum spanning tree

The simplest concept is to remove the restriction, that the resulting tree has to be
colourful. This simplification reduces the problem to finding the Maximum Spanning
Tree of the input graph. Kruskal’s algorithm is used [Kru56] like by the brute-force
approach. Tests (Section 7.2) showed that the results of this heuristic are worthless.
They depend only on the fact how many sum formulas with the given peak masses
are a subset of the parent mass decomposition in question, because every of these
formulas is scored.
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5.8.2 Greedy

The greedy algorithm is a simplification of the branch and bound approach. The
algorithm sorts the edges according to their weights resp. scores in descending order.
It then picks the first in this list. Afterwards the next edge from the list that does
not conflict with the previously picked edges is selected. The algorithm continues
until k − 1 edges have been selected. Recall that an edge conflicts with another if
they either are incoming edges to the same vertex or are incident edges to different
vertices of the same colour. Thus we receive the first guess of the branch and bound
approach as result here.

5.8.3 Top-down

This is another greedy concept, but this time the algorithm always tries to find
paths away from the root. The algorithm starts at the root and follows the best
scoring outgoing edge. To follow an edge means to add it to the solution set and
continue from the vertex at its end. At the next vertex, it again follows the best
scoring outgoing edge that does not conflict with already selected edges. If no such
edge exists, the algorithm moves back to the root. It terminates if no edge at the
root can be selected. This way, all colours are present in the resulting tree because
the input graph is transitive.
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Software

In this chapter we describe the implementation of our algorithms. The details of
input and output as well as the options offered are explained. The algorithms
developed in this work have been implemented in Java. It is planned to integrate
them into a framework for the analysis of metabolite mass spectra currently under
development. Although all the concepts in this work have been implemented for
testing, only those yielding the best results have been included in the final software
package.

No reduction rules are used, because they are not applied often enough to improve
the running time. Either the dynamic programming algorithm (Section 5.6) or the
splitting (Section 5.3) followed by the brute-force algorithm (Section 5.7) are used.
To decide which algorithm is used, a vertices-per-colour ratio (n/k) of four has
proven to be a good change-over point to optimise running times. If the ratio
is greater than four, dynamic programming is used. In this case the calculation
is first done on the complete graph without storing backtracking information and
afterwards the graph is reduced to the vertices connected to or being one of the high
scoring parent-mass decompositions, and the backtracking information is gathered
by analysing this reduced graph.

Concerning the scoring all concepts presented in Chapter 4 are included and can
be enabled or disabled via command-line switches.

6.1 Command-line switches

There are three types of switches: Those setting special input files, the ones speci-
fying output options and the majority changes scoring parameters. All switches can
be found in Table 6.1.



54 CHAPTER 6. SOFTWARE

Switch Value type Description Default
-et File name Read alphabet masses and valences from

specified file.
CHNOPS

-n File name Sets the file containing the common neu-
tral losses.

Table 4.2

-e Double Sets the mass deviation in ppm. 20 ppm
-p Double Determines the precision of the decompo-

sition.
10−5

-m Double Specify the merging distance 0.1
-mi None If two peaks are merged, keep the mass of

the most intense peak.
Average mass

-gh None Use the greedy heuristic for calculation. Disabled
-raw on or off Enable or disable calculation of raw in-

tensities as described in Section 4.1.1.
Enabled

-rel on or off Enable or disable calculation of smoothed
intensities as in Section 4.1.2.

Disabled

-md Double Sets how many multiples of standard de-
viation, are regarded to be within the
mass deviation error. See Section 4.2.1
for details.

3

-d Two doubles Enables scoring by DBE distribution,
as in Section 4.3.3. Optionally mean
and standard deviation of the underlying
Gaussian distribution may be given, oth-
erwise µ = 8.14 and σ = 5.53 are used.

Disabled

-hc Two doubles Enables scoring by hydrogen carbon ra-
tio. For details see Section 4.3.1. Mean
defaults to 1.43, the standard deviation
to 0.50

Disabled

-he Two doubles Enables scoring by hetero atom carbon
ratio, described in Section 4.3.2. If not
given, the mean is set to 0.59 and the de-
viation to 0.56.

Disabled

-nc Integer Combinations of how many likely neutral
losses are treated as likely neutral losses,
too.

3

-f Integer Number of fragment trees to be printed
in the output file.

10

-g File name Writes the fragment trees as dot-files. Disabled
-o File name Name of the output file. <Input file>.out

Table 6.1: The command-line switches available for the tool developed in this thesis.
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Keyword Value type Description
compound String The name of the compound, if known.
formula String The correct sum formula of the compound, if known. The

Program will then compare this formula to its own results.
charge Integer The charge you expect the parent ion to possess.

collision Integer Starts a new spectrum. The value gives the collision energy
used for that spectrum.

tic Number This gives the total ion current of the current spectrum. If
raw scoring is used (the default), a TIC has to be supplied
for every spectrum.

Table 6.2: The keywords that are recognised in the input file, their data types and
their effects.

6.2 Input and output

The input file is an ASCII-file containing the peaklists of the spectra to be analysed.
Keywords may be used to give further information. Keywords are followed by a
value. The allowed keywords can be found in Table 6.2. The keyword collision is
essential; it begins a new spectrum. All following peaks are added to that spectrum
until the next collision or the end of the file is reached.

Other optional input files are the element table and the neutral loss list. The
element table is given in a text file describing one element per line. Each line contains
three values: The letter code of the element, its mass and its typical valence state.
The values are separated by a space. The neutral loss list is as simple: It contains
just the sum formula of one neutral loss per line. Figure 6.1 shows examples for the
input files.

The output file is a simple text file, too. It will contain the best scoring inter-
pretations and the edges of their fragmentation trees, as well as a list of all parent
mass decompositions and their scores. Via the option -f the user can determine
how many trees are calculated and shown. If the option -g is specified, dot-files are
created containing the best scoring fragmentation trees. These files can be converted
to images by the graph visualisation tool Graphviz [GN00]. An example output
file is shown in Figure 6.2.
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compound 4-hexosylferuloyl choline C 12.0 4 CH3
formula C21H32NO9 H 1.007825 1 CH4
charge 1 N 14.003074 3 O

O 15.994915 0 H2O
collision CE 15 eV // DP1 50 V P 30.973762 3 CO
tic 105.21 S 31.972071 0 N2
221.085 520.651 C2H4
442.215 10000 CH2O

C4H8
collision CE 25 eV // DP1 50 V C5H8
tic 142.10 CH2O2
221.082 10000 C3H2O3
383.139 281.344 C5H8O4
442.213 3928.75 C6H10O4

C6H10O5
collision CE 40 eV // DP1 50 V C6H8O6
tic 109.89
145.029 307.048
177.057 682.162
221.082 10000

collision CE 55 eV // DP1 50 V
tic 232.21
145.029 5465.78
177.055 6628.4
206.059 1127.3
221.082 10000

File containing the spectrum of An example An example
hexosylferuloyl choline element file neutral loss file

Figure 6.1: Examples for the three types of input files possible. Only the spectrum
file is mandatory.
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Analysed spectra of 4-hexosylferuloyl choline
Parent Peak: 442.214 Da Intensity: 10000.0
Number of parent mass decompositions: 140
Vertices: 300 Colours: 6

Best Decomposition: C18H35NO9S Score: 100,750
Correct at position: 2 of 140
Correct decomposition: C21H31NO9 Score: 97,656
Decomposition time: 185.618ms Preprocessing time: 224.195ms
Algorithm time: 347.662ms Backtracking time: 61.27ms

2 best sum formulas with their fragmentation trees:
1) C18H35NO9S 100,750
C18H35NO9S -> C14H7NO 0,016
C18H35NO9S -> C15H26O9S 0,694
C7H12O3S -> C6H8O2S 14,426
C9H16O4S -> C7H12O3S 17,097
C18H35NO9S -> C9H16O4S 14,311

2) C21H31NO9 97,656
C21H31NO9 -> C14H7NO 0,016
C21H31NO9 -> C18H22O9 0,698
C10H8O3 -> C9H4O2 13,866
C12H12O4 -> C10H8O3 16,812
C21H31NO9 -> C12H12O4 13,650

10 best parent mass decompositions with scores:
1) C18H35NO9S 100,750
2) C21H31NO9 97,656
3) C19H31N5O5S 47,135
4) C17H37N3O4P2S 47,120
5) C17H36N3O6PS 47,109
6) C16H35N5O5S2 46,924
7) C19H39NO4S3 46,870
8) C22H36NO4PS 46,638
9) C22H35NO4S2 46,569
10) C17H35N3O8S 46,408

Figure 6.2: The output file of hexosylferuloyl choline. The two best scoring frag-
mentation trees are shown, as well as the ten best scoring decompositions.





Chapter 7

Experimental results

In this chapter we perform some tests on real mass spectrometry data. Section 7.1
introduced the test data. In the Sections 7.2 and 7.3, the results and running times
of the proposed software are evaluated and compared to other approaches presented
in this work. Section 7.4 describes the results achieved with spectra obtained from
an online database and Section 7.5 discusses the calculation of fragmentation trees
by the software.

7.1 Test data set

To test the algorithms and scoring functions, the Leibniz Institute of Plant Bio-
chemistry in Halle provided 194 tandem mass spectra of 51 compounds with about
four spectra at different collision energies per compound. 45 of these compounds
were known beforehand or have been identified manually, so that the correct sum
formulas were available for comparison with the results of the program.

The compounds were either reference compounds or extracted from the seed of
Arabidopsis thaliana plants. Separation was done using a capillary HPLC system
with a GROM-SIL 120 Å ODS-4 HE 3 µm column, which separates the metabolites
depending on their hydrophobicity. The mass spectrometry measurement was per-
formed with an API QSTAR Pulsar Hybrid Quadrupole TOF instrument by Applied
Biosystems. The preprocessing of the raw data was performed using the AnalystQS
software supplied with the instrument.

The compounds with a mass of over 400 Da were most interesting, as they yield
more than 100 decompositions of the parent mass, assuming that a spectrum without
fragmentation and isotope pattern was measured at 20 ppm. There were six com-
pounds in the test bed fulfilling this criterion: Hexosyloxyphenyl-propanoyl choline,
hexosylferuloyl choline, hexosyloxybenzoyl choline, hexosyloxycinnamoyl choline,
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hexosylvanilloyl choline and an unknown compound identified as C23H31NO8.

7.2 Results of the analysis

The test bed was analysed with the following options: Masses were decomposed using
a relative mass error of 20 ppm, a precision of 10−5 and the standard CHNOPS-
Alphabet containing the six most abundant elements in living organisms. Raw
intensities have been calculated for the peaks, and afterwards peaks closer than 0.1
Da have been merged. Except for the H/C ratio and the DBE distribution scoring
(Sections 4.3.1 and 4.3.3), all scoring schemes mentioned in Chapter 4 have been
applied with their default values as given in Table 6.1.

The majority of the compounds available were aromatic natural compounds,
possessing a lower H/C ratio than the average. The aromatic structure containing
many double bonds also increases the DBE value of the compounds. Therefore
these two scoring techniques were disabled. We achieved good results without these
scoring concepts. Ideally the user restricts the compounds used for calculation of the
parameters to the metabolite class he is interested in and passes these parameters
to the program.

For nine compounds in the test bed the correct sum formula was not found
within a 20 ppm range around the parent peak. Eight of these nine molecules had
a parent mass below 200 Da. This inaccuracy arises because mass spectrometers
produce a small absolute mass error additional to the relative error, which is not
covered by small molecules. All these molecules can be analysed well when using a
50 ppm mass error, but were excluded from the following analysis as inexact data.
Four small compounds yielded only one parent mass decomposition. These were
excluded, too, as no analysis of the fragmentation spectra is necessary.

7.2.1 Results of the exact algorithm

The identification results of the exact algorithm can be found in Table 7.1. The
identification achieves good results. For the majority of the compounds the correct
sum formula is ranked first, even for such large compounds as 4-hexosylvanilloyl
choline (416 Da). All correct formulas can be found among the first five solutions
enabling researchers to restrict further analysis to the top five candidates.

The number of compounds in the data set of Section 7.1 was unfortunately too
small to perform a statistical analysis. Zhang et al. present performance values
for their Fragment ion Formula Prediction tool (FFP) in [ZGC+05]. Table 7.2
shows that the tool developed in this work performs as well as FFP. FFP uses the
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Compound Mass # dec. Rank of the correct formula
Exact Greedy Top-Down MST

Acetyl choline 146.12 2 1 1 1 1
Arginine 174.11 2 1 1 1 1
Asparagine 132.05 3 1 1 1 1
Aspartic acid 133.04 3 1 1 1 1
Benzoyl choline 208.13 6 1 1 1 1
Cafeoyl choline 266.14 15 1 1 1 2
Cinnamoyl choline 234.15 7 1 1 1 2
Citrulline 175.10 3 1 1 1 1
Coumaroyl choline 250.14 11 2 2 1 2
Cysteine 121.02 3 1 1 1 1
Cystine 240.02 35 1 1 1 2
Dopamine 153.08 5 1 1 1 1
Feruloyl choline 280.16 18 4 4 3 6
Glutamic acid 147.05 3 1 1 1 1
Glutamine 146.07 2 1 1 1 1
Hexosylferuloyl choline 442.21 140 2 2 1 35
Hexosyloxybenzoyl choline 386.18 87 1 1 1 10
Hexosyloxycinnamoyl choline 412.20 113 1 1 1 28
Hexosyloxyphenylpropan. choline 414.21 100 1 1 1 19
Hexosylvanilloyl choline 416.20 129 1 1 1 29
Hydroxybenzoyl choline 224.13 9 1 1 1 2
Histidine 155.07 4 1 1 1 1
Methionine 149.05 4 1 1 1 1
Phenylalanine 165.08 4 1 1 1 1
Sinapoyl choline 310.17 29 2 2 2 5
Syringoyl choline 284.15 27 3 3 2 5
Threonine 119.06 2 1 1 1 1
Tryptophane 204.09 8 1 1 1 1
Tyramine 137.18 2 1 1 1 1
Tyrosine 181.07 6 1 1 1 1
Vanilloyl choline 254.14 16 1 1 1 2
C23H31NO8 449.20 182 5 5 1 59

Table 7.1: The identification results of the exact algorithm and the three heuristics
applied. The third column gives the number of parent mass decompositions.
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Mass range rates using our tool rates using FFP
# ions Top 1 Top 5 Top 20 # ions Top 1 Top 5 Top 20

0–300 Da 24 92% 100% 100% 237 83% 97% 99%
300–500 Da 8 50% 100% 100% 135 50% 95% 96%

Table 7.2: The identification rates of our concept and the FFP tool by Zhang et al.
[ZGC+05]. Note that different spectra were used and Zhang et al. had more data
available.

isotope distribution of fragments, which we do not exploit. Including the analysis
of isotope patterns probably further improves our tool, as presented in the outlook
(Section 8.2.2).

Although the results here are satisfactory, they are sensitive to the scoring ap-
plied. If, for example, the H/C ratio and the DBE scoring are enabled, all correct
formulas can only be found among the top twenty, not the top five.

Examples for the calculated fragmentation trees are shown in Figure 7.1. One
problem of the technique presented here can be seen when comparing the two trees:
the three nodes at the lower right are identical. These remain identical in the graphs
of the 26 best scoring decompositions. Of course, parent mass decompositions that
do not allow for this interpretation of the three lightest peaks do not receive a high
rank. Thus for the remaining 26 decompositions, only three peaks remain to distin-
guish them. It is even more difficult to distinguish the two examples, as the neutral
loss C3H9N occurs in both fragmentation trees. The wrong decomposition can only
be ruled out here, because hexosyl (C6H10O5) is separated in a fragmentation step
of the correct formula, whereas an unknown loss occurs in the corresponding step
of the wrong decomposition. Therefore the scoring using the common neutral losses
of Table 4.2 improves the results significantly.

7.2.2 Results of the heuristics

The heuristics as described in Section 5.8 have also been applied to the test data.
The results can be found in Table 7.1. The same scoring scheme as with the exact
algorithms has been applied.

First, the need for the coloured approach is shown by the results of the MST
heuristic. Recall that this heuristic simply ignored the colours in the graph. The
accuracy degrades dramatically if the colours are not regarded. Therefore it is
necessary to force the analysis algorithm to select only one explanation per peak, as
it is done with the colours in this work.

The results of the two other heuristics are excellent. They do not determine the
optimal scores for the parent mass decompositions, but the ranks remain identical.
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C20H29NO8
Mass: 411.189

RDBE: 7.0
Dev: 0.003
CE: 25 eV

C10H19NO6
Mass: 249.121

RDBE: 2.0
Dev: 0.004
CE: 25 eV

C10H10O2
Mass: 162.068

RDBE: 6.0
Score: 0.169

C17H20O8
Mass: 352.116

RDBE: 8.0
Dev: 0.001
CE: 25 eV

C3H9N
Mass: 59.073
RDBE: 0.0

Score: 1.030

C9H6O2
Mass: 146.037

RDBE: 7.0
Dev: 0.002

CE: 40, 55 eV

C8H6O
Mass: 118.042

RDBE: 6.0
Dev: 0.001
CE: 55 eV

CO
Mass: 27.995
RDBE: 2.0

Score: 3.106

C11H10O3
Mass: 190.063

RDBE: 7.0
Dev: 0.001

CE: 25, 40, 55 eV

C2H4O
Mass: 44.026
RDBE: 1.0

Score: 24.804

C6H10O5
Mass: 162.053

RDBE: 2.0
Score: 16.086

(a) Fragmentation tree of the correct
sum formula ranked at first position.

C15H20N4O4S
Mass: 352.121

RDBE: 8.0
Dev: 0.006
CE: 25 eV

C13H19N3S
Mass: 249.130

RDBE: 6.0
Dev: 0.004
CE: 25 eV

C2HNO4
Mass: 102.991

RDBE: 3.0
Score: 0.195

C11H10O3
Mass: 190.063

RDBE: 7.0
Dev: 0.001

CE: 25, 40, 55 eV

C4H10N4OS
Mass: 162.058

RDBE: 2.0
Score: 7.944

C9H6O2
Mass: 146.037

RDBE: 7.0
Dev: 0.002

CE: 40, 55 eV

C8H6O
Mass: 118.042

RDBE: 6.0
Dev: 0.001
CE: 55 eV

CO
Mass: 27.995
RDBE: 2.0

Score: 3.106

C2H4O
Mass: 44.026
RDBE: 1.0

Score: 24.804

C18H29N5O4S
Mass: 411.194

RDBE: 7.0
Dev: 0.007
CE: 25 eV

C3H9N
Mass: 59.073
RDBE: 0.0

Score: 1.031

(b) Fragmentation tree of an incor-
rect sum formula ranked at seventh
position.

Figure 7.1: Two fragmentation trees calculated from the spectra of hexosyloxycin-
namoyl choline. Dev: Mass deviation between the sum formula and the peak it
explains. CE: Collision Energies during which the peak occurred.
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The difference in the score is systematic. The results of hexosylferuloyl choline
illustrate this fact: The best decomposition receives a score of 100.75 and the second
best and correct one receives a score of 97.66 with the exact algorithm. With the
greedy heuristic (Section 5.8.2), the same decompositions get a score of 54.21 and
52.62 respectively, but are still ranked at the same positions.

The greedy heuristic achieves the same results as the exact algorithm and the
top-down-heuristic even improves the results, although we consider this an effect
intrinsic to the test data for the following reason: The fewer vertices of the same
colour exist in the input graph the better the heuristic performs because there are
fewer possibilities to select from. For some reason with this test data the input
graphs containing the correct decompositions contain fewer vertices with the same
colour than the graphs of the wrong decompositions.

Therefore the heuristics must be more thoroughly tested if more data becomes
available. If a random effect can be ruled out, the heuristics should be used for
analysis in future, as they save time and memory. To perform these tests it is
nevertheless necessary to have a suitably fast exact algorithm available. In the next
section we compare the running times of the algorithms to identify which algorithms
are fast in practice.

7.3 Running time comparisons

The algorithms were implemented in Java and compiled with the Sun Java Standard
Edition compiler version 1.5. They were run on an Intel Pentium4 running at
1.80 GHz with 512 KB cache and 512 MB main memory. The virtual machine
corresponding to the compiler was used. No special options were passed to the
virtual machine.

The task was to analyse the spectra of all 51 compounds described in Section 7.1.
The resulting running times can be found in Table 7.3. The times without overhead
are the core running times. Input and output, mass decomposition, graph construc-
tion and scoring are not included in these times.

As can be seen, the branch and bound approach is magnitudes slower than the
other algorithms and thus of no practical use. Interestingly, the brute force approach
is significantly faster than the dynamic programming concept in the current testbed.
The reason for this is the large number of small compounds with a small vertices-
per-colour ratio in the data set. Thus the brute force algorithm possesses a better
worst-case running time and even saves lot of additional work, e.g., by allocating less
memory. The combination of both strategies achieves the fastest running time as it
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Algorithm Total running time Running time w/o overhead
Branch and bound 26 h 26 h
Brute force 312 s 226 s
Dynamic programming 4358 s 4066 s
Combination of DP and BF 88 s 19 s
Reduction rules 94 s 24 s
Greedy heuristic 90 s 1 s

Table 7.3: The running times of the algorithms with and without overhead. Mass
decomposition, graph construction and scoring as well as I/O operation were con-
sidered as overhead.

selects the presumably faster algorithm based on graph size and number of colours.
If the testbed contained larger molecules such as the one described in Section 7.4,
the brute force algorithm would take a lot longer. The combination runs fast in
all cases and therefore is the best choice if the user is interested in exact results.
As expected, the heuristic provides results even faster, but has the disadvantage
of being inexact. If we applied the reduction rules presented in Section 5.4 to the
input graph, before executing the combination of dynamic programming and brute
force. This does not speed up running times. On the contrary, the application of the
rules takes more time than the main algorithm saves by only processing the reduced
graphs.

7.4 Tests with other spectra

To test the tool also with spectra obtained in another laboratory, as well as with
larger metabolites, the Q-TOF tandem mass spectra of Glycyrrhizate were down-
loaded from the mass spectrometry database MassBank [Mas06]. Glycyrrhizate was
chosen as it has the highest molecular weight, namely 822 Dalton. The spectra
contained much less intense peaks than the previously analysed spectra. As it was
not possible to find a proper explanation for these weak peaks, any peak which had
a relative intensity below 100 was removed from the spectrum. The relative inten-
sities in MassBank are determined by normalising the most intense peak to a value
of 999. As no total ion counts were available for these spectra, no raw intensities
were calculated.

There were 2277 parent mass decompositions for the molecule, the complete
graph contained appr. 4000 vertices, but had only four colours. Due to the small
number of colours the dynamic programming algorithm ran only four seconds. The
time consuming steps here were the decomposition, taking eight seconds and the
construction of the graph, which took 21 seconds, yielding a total time of about
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C18H27NO8
Mass: 385.174

RDBE: 6.0
Dev: 0.003

CE: 15, 25 eV

C15H18O8
Mass: 326.100

RDBE: 7.0
Dev: 0.001
CE: 15 eV

C3H9N
Mass: 59.073

RDBE: 0.0
Score: 0.721

C9H8O3
Mass: 164.047

RDBE: 6.0
Dev: 0.001

CE: 15, 25, 40 eV

C6H10O5
Mass: 162.053

RDBE: 2.0
Score: 15.719

C7H4O2
Mass: 120.021

RDBE: 6.0
Dev: 0.001

CE: 25, 40, 55 eV

C2H4O
Mass: 44.026

RDBE: 1.0
Score: 24.775

C6H4O
Mass: 92.026

RDBE: 5.0
Dev: 0.001
CE: 90 eV

CO
Mass: 27.995

RDBE: 2.0
Score: 3.359

C5H4
Mass: 64.031

RDBE: 4.0
Dev: 0.000
CE: 90 eV

CO
Mass: 27.995

RDBE: 2.0
Score: 3.567

Figure 7.2: The calculated and manually confirmed fragmentation tree of hexosy-
loxybenzoyl choline.

one minute. The correct formula was ranked at position 18. Considering the poor
quality of the spectra, this result is acceptable. It shows that the analysis concept is
not restricted to data of a single lab, although a certain quality standard concerning
the mass error and the noise reduction has to be met. It also shows that the dynamic
programming algorithm is suitably fast even for large metabolites, thanks to fixed-
parameter tractability.

7.5 Prediction of fragmentation

The scoring and the algorithms were designed to identify metabolites. The maxi-
mum colourful tree of the correct parent mass decomposition is also a prediction of
the fragmentation process. However, relying on these predictions is not suggested.
The fragmentation tree of one example, hexosyloxybenzoyl choline, was manually
constructed. In this case, the calculated fragmentation tree shown in Figure 7.2
exactly matched the manually constructed one. Unfortunately no more manually
constructed fragmentation trees were available for comparison.

The fragmentation tree is linear in case of the hexosyloxybenzoyl choline spectra.
First, a part of the choline separates, then hexose is lost. The compound then further
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dissolves, emitting an ethanol-like structure.
The approach to calculate fragmentation trees from the decompositions of the

fragment peak has the advantage that no prior knowledge about fragmentation
mechanisms is necessary. Common commercial tools such as Mass Frontier and
the ACD Fragmenter make use of this knowledge [Wil02], although the mechanism
is only little understood.

Heinonen et al. [HRM+06] also present an approach to determine the fragmenta-
tion tree without prior knowledge. As they focus on finding the fragmentation tree,
their concept and scoring is probably better suited for the task, especially because
they make use of the compound’s structure. Interestingly, their formalism can be
easily transformed into a weighted coloured DAG and their calculation is equivalent
to finding the maximum colourful tree of this graph. They solve the problem by
applying integer linear programming (ILP). Since ILP is a time-consuming process,
their program needs about twelve hours to solve the problem for the graph of gly-
cyrrhizate mentioned in Section 7.4. The algorithms presented here can probably
solve the problem more efficiently. Thus a combination of both techniques appears
to be promising.





Chapter 8

Conclusion

This chapter subsumes the main ideas and results presented in this work. Many
possibilities to improve and extend the concept are given in Section 8.2. Finally,
Section 8.3 presents other possible applications.

8.1 Summary

We have developed a concept for the analysis of metabolite tandem mass spectra.
It is based on how the spectra are generated by collision induced dissociation. We
do not restrict possible fragmentation steps by prior knowledge, but assign scores
that correspond to the likelihood that this fragmentation occurs. To generate the
scores, we use a small amount of prior knowledge. We apply statistics on metabolite
databases to derive scores from key properties of the fragment sum formulas.

To make the spectrum and its interpretations accessible to computer science
techniques, we transform them into a graph. We then define a formal problem that
includes all the restrictions necessary for our concept. This problem is NP-hard, but
different algorithms allow to compute a solution after an acceptable running time,
among them a fixed-parameter tractable algorithm and different heuristics.

We tested these algorithms using real-world data and successfully identified many
metabolites: For all 45 compounds, six of them with a mass over 400 Da, the correct
sum formula was among the first five of the suggested list. The quality of results
depends on the scoring scheme chosen. Improvements in scoring candidate will be
required to increase the robustness of results. The exact fixed-parameter algorithm
as well as the heuristics proved to be fast, they analysed all compounds in about
1.5 minutes total running time. The fragmentation trees calculated by the concept
are also acceptable first guesses. As identifying the correct fragmentation tree was
not the focus of this work, adapting our concept could to this task improve the
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fragmentation prediction.

8.2 Future Work

As the preceding paragraph indicates, there is plenty of room for improvements and
modifications in many areas of our approach. We briefly mentioned several ideas in
the previous chapters. All these open tasks are gathered in this section to provide
an overview over the potential of the technique.

8.2.1 More and improved training data

To derive statistics and perform a well-founded training and test of the identifi-
cation program, large amounts of data are needed. As performing mass spectral
measurements is still a tedious and resource consuming task, the required data can
not easily be obtained. Perhaps in future, the following requirements for more and
even annotated data can be met.

More training data is needed to optimise the scoring parameters and thus, to
improve the robustness of identification results. Unfortunately, the only publicly
available metabolite mass spectra, which can be obtained from the database Mass-
Bank [Mas06], are not of the required quality. Parameter estimations that would
benefit from more training data are: The standard deviation of mass deviation scor-
ing, the parameters of collision energy scoring, and the reward for known neutral
losses.

Of course, training data with annotations whether a peak is noise or not, would
further improve our technique, as annotated data allows us to take full advantage
of the concept developed by Wan et al. [WYC06], as sketched in Section 4.1.2.
This offers the advantage of using real probabilities as scores, not only some values
expected to be proportional to a probability.

More specific metabolite data sets can also help to tune parameters of decom-
position properties more exactly for the type of metabolites the user is interested
in. In particular, the ability to restrict data sets to secondary metabolites of a cer-
tain group of organisms would help, as there is no need for de-novo identification
of primary metabolites, and the organism that metabolites were extracted from is
usually known.

The list of common neutral losses should also be extended and improved. For
example, one can classify these neutral losses into three groups according to the
frequency they occur. Then, a more frequent neutral loss could receive a higher
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score than one which is more rare. Of course, all entries of this list will still receive
a better score than a neutral loss not present at all.

8.2.2 Change of experimental parameters

To improve results one can also change the experimental procedures. This might
lead to data that is difficult to interpret manually, but a computer might be able
to analyse it. To be more precise, the following ideas might provide such data: In
the mass spectrometry procedure used here, a quadrupole mass analyser is used as
a filter, ensuring that only ions of one specific parent mass reach the collision cell.
The properties of this filtering quadrupole might now be changed in two ways.

One is to enlarge the filtering range. This will allow not only the parent ion but
also the first isotope species to pass. This will create small isotope patterns following
fragment peaks. These patterns can then be analysed as described by Zhang et al.
[ZGC+05]. The combination of Zhang’s technique with the one presented in this
thesis seems promising. The only obvious disadvantage is that the isotope peaks
might overlap with other fragment peaks. This would lead to a wrong assessment
of the isotope pattern and the fragment peak would be lost, as all the isotope peaks
have to be removed before the main analysis. In reality, this situation will rarely
occur and, if so, can be detected easily by the program.

The second possibility to modify the filtering quadrupole is to select a differ-
ent ion. Typically, hydrogen adducts are measured, that is, the neutral metabolite
molecule has absorbed a proton to become charged. Additionally, sodium adducts
occur during ionisation. The spectra from sodium adducts are difficult to inter-
pret by manual inspection but might provide another source of information to the
identification program.

8.2.3 Further ideas

Another information available from the experiment is the retention time of the
molecule. The retention time is the time the molecule stayed on the column dur-
ing chromatography before measuring the mass spectra. Retention times can be
predicted for oligonucleotides [SQHK07]. Although the retention times highly de-
pend on molecular structure, it might be possible to roughly predict them from sum
formulas, too.

It might even be possible to elucidate the structure of a de-novo identified
molecule using molecular structure generators. Structure generators produce many
suggestions for a single sum formula. Because we can additionally provide the sum



formulas of fragments, the number of suggested structures will be reduced. In cer-
tain cases only a small number of suggestions remain that can be presented to the
user.

Whereas all the aforementioned ideas focus on biological aspects, the following
is a purely theoretical idea: Björklund et al. [BHKK07] present a technique called
“Fast Subset Convolution”. This would reduce the running time of the dynamic
programming algorithm from O(3kkm) to O(2kkm). It remains to be shown whether
its complex calculations improve running times in practice.

8.3 Other fields of application

In addition to to metabolite analysis, algorithms of this work could be applied to
tandem mass spectra of other molecule types. This of course will require completely
new scoring concepts and probably also some changes in the algorithms.

One could apply the technique to peptide mass spectra. These spectra would
need the same accuracy as the metabolite spectra discussed in this work. The
alphabet would then consist of the amino acids and the construction of the input
graph would need some modifications, too.

Another application would be to determine glycan structures from tandem mass
spectra. Glycans are trees of covalently bonded sugar molecules, which are often
attached to proteins. Here, it might be necessary to make major changes to the
concept. The maximum colourful tree could resemble the tree structure of the
glycan analysed instead of modelling the fragmentation process.

Thus the algorithms and basic ideas presented could be of use for a broader range
of tandem mass spectra based on molecule fragmentation.
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