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Abstract. With the advent of novel mass spectrometry techniques such as Orbitrap MS, it is possible
to determine the exact molecular formula of an unknown molecule solely from its isotope pattern. But
for protein mass spectrometry, one is facing the problem that many peptides have exactly the same
molecular formula even when ignoring the order of amino acids. In this work, we present an efficient
method to determine the amino acid composition of an unknown peptide solely from its molecular
formula. Our solution is based on efficiently enumerating all solutions of the multi-dimensional equality
constrained integer knapsack problem.

1 Introduction

Novel mass spectrometry techniques allow us to determine the mass of a sample molecule with
very high accuracy of 5 ppm (parts-per-million), and sometimes below 1 ppm [9, 10]. These
techniques are increasingly coupled with high throughput separation techniques such as (Ultra)
High Performance Liquid Chromatography, and have become one preferred method for the analysis
of peptides [8] and metabolites [14]. In proteomics, this is of particular interest to detect post-
translational modifications [13], or non-ribosomal peptides that are not directly encoded in the
genome [2]. With the advent of new MS instruments such as Orbitraps, mass spectra with very
high mass accuracy will be routinely acquired for protein identification and quantification in the
near future.

It has been known for almost two decades that one can infer the molecular formula of a
sample molecule solely from its isotope pattern [7,12]. But only recently, measurement accuracy has
increased to a point where this analysis is feasible for sample molecules with mass of 1000 Dalton
and above [5]. In addition, efficient methods had to be developed to carry out the computational
analysis for larger molecules in reasonable running time [5, 6]. The upper mass limit of molecules
that allow for this interpretation, is ever increasing due to improvements in existing MS techniques
as well as the development of new ones.

Given an isotope pattern of an unknown peptide, one can decompose its monoisotopic
mass [6] and then score amino acid decompositions with regards to their theoretical isotope
pattern [5]. Clearly, this is a non-trivial problem since there exist about 3.96 · 1011 amino acid
decompositions with mass up to 2500 Dalton. Unfortunately, many peptides have exactly the same
molecular formula even when ignoring the order of amino acids: Besides leucine and isoleucine,
the smallest non-trivial example are peptides consisting of two glycine vs. a single asparagine,
both with molecular formula C4H8N2O3. Using the above technique, we repeatedly score amino
acid decompositions with identical molecular formula and, hence, identical isotope pattern. On
the other hand, the sample may be contaminated by metabolite molecules that have a molecular
formula which cannot be explained by any peptide. By determining the molecular formula for the
isotope pattern, we can effectively sort out such contaminants. So, it is much more efficient to first
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determine the molecular formula of a sample from its isotope pattern, and then to compute all
amino acid compositions that match the molecular formula.

Our contributions. Our input is the molecular formula of an unknown peptide. Our goal then
is to find all amino acid compositions that match the given molecular formula. We formulate the
problem as a joint decomposition of a set of queries or, equivalently, as a multi-dimensional equality
constrained integer knapsack problem [1]. Our queries are the number of carbon, hydrogen, and
other atoms that make up the molecule. We present the dimension reduction method that reduces
a multi-dimensional problem to a one-dimensional decomposition problem, which in turn can be
efficiently solved using methods presented in [6]. We also provide an experimental evaluation of the
algorithm’s running time, both on simulated data and peptides from experimental mass spectra.
We find that our mixed matrix approach is the fastest method for enumerating solutions, and is
one to two orders of magnitude faster than the runner-up algorithm.

2 Preliminaries

Proteins and peptides are made up from the six elements hydrogen (symbol H), carbon (C), nitrogen
(N), oxygen (O), and sulfur (S). The unusual amino acid selenocysteine also contains the element
selenium (Se). For each amino acid we know its exact molecular formula, such as C3H7N1O2 for
alanine. When an amino acid is added to a peptide chain, it looses a water molecule. In the following,
we concentrate on amino acid residues that are missing a water molecule H2O. See Table 1 for the
molecular formulas of amino acid residues. Note that leucine and isoleucine have identical molecular
formula and cannot be told apart by mass spectrometry. In the following, we treat these two amino
acids as one, and talk about 19 standard amino acids.

symb. TLC a.a. residue molecular formula symb. TLC a.a. residue molecular formula

A Ala alanine C3H5N1O1 M Met methionine C5H9N1O1S1

C Cys cysteine C3H5N1O1S1 N Asn asparagine C4H6N2O2

D Asp aspartic acid C4H5N1O3 P Pro proline C5H7N1O1

E Glu glutamic acid C5H7N1O3 Q Gln glutamine C5H8N2O2

F Phe phenylalanine C9H9N1O1 R Arg arginine C6H12N4O1

G Gly glycine C2H3N1O1 S Ser serine C3H5N1O2

H His histidine C6H7N3O1 T Thr threonine C4H7N1O2

I Ile isoleucine C6H11N1O1 V Val valine C5H9N1O1

K Lys lysine C6H12N2O1 W Trp tryptophan C11H10N2O1

L Leu leucine C6H11N1O1 Y Tyr tyrosine C9H9N1O2

U Sec selenocysteine C3H5N1O1Se1

Table 1. Amino acid residues with 3-letter-code (TLC), symbol, and molecular formula.

In this paper, we want to find all amino acid compositions that match a given molecular formula.
To approach this problem, we can use branch-and-bound search by adding amino acids as long as
for each element, the resulting molecule contains at most as many atoms as the input molecule,
and output exact hits. Alternatively, we can compute the molecular formulas of all amino acid
compositions up to a certain mass during preprocessing, and use hashing to efficiently search this
list. Particularly the latter approach suffers from the large number of amino acid decompositions,
see above.
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We want to approach the problem of decomposing a molecular formula over the amino acid
alphabet, as a multi-dimensional equality constrained integer knapsack problem. Recall that we
ignore isoleucine in our presentation. Now, we can formulate our problem as a matrix multiplication
Ax = b where A is a matrix containing multiplicities of all elements in amino acids, x is the 19-
dimensional vector we search for, and b is the input molecular formula over the elements CHNOS.
But one can use one more trick to further simplify the problem: only amino acids methionine and
cysteine contain sulfur. So, if our input molecular formula contains k sulfur atoms, we first try to
distribute these between methionine and cysteine, iterating over all possibilities M0Ck, M1Ck−1, . . . ,
MkC0. In each case, we reduce the input molecular formula accordingly, and we try to decompose the
resulting formulas over the remaining 17 amino acids A,D,E, F,G,H,K, L,N, P,Q,R, S, T,V,W,Y:

A :=


3 4 5 9 2 6 6 6 4 5 5 6 3 4 5 11 9
5 5 7 9 3 7 12 11 6 7 8 12 5 7 9 10 9
1 1 1 1 1 3 2 1 2 1 2 4 1 1 1 2 1
1 3 3 1 1 1 1 1 2 1 2 1 2 2 1 1 2

 , b =


# C
# H
# N
# O

 , Ax = b (1)

Here, x is a 17-dimensional vector representing the remaining amino acid residues.

3 Single-dimensional Integer Knapsack

We first consider the single-dimensional equality constrained integer knapsack [1]

a1x1 + a2x2 + · · ·+ anxn = b (2)

where aj are integer-valued coefficients usually satisfying aj ≥ 0, and b ≥ 0. We search for all
solution vectors x = (x1, . . . , xn) such that all xj are non-negative integers. We start with an
important observation: if there exist indices i, j with ai > 0 and aj < 0, and if (2) has at least one
solution, then there is an infinite number of solutions. In the following, we assume aj ≥ 0 for all j.

One can use dynamic programming to efficiently compute all solutions of (2) [6]: We choose
a maximal integer B that we want to decompose, and construct a bit table of size n × B during
preprocessing. Using this table, we can efficiently find all solutions (2) for all queries b ≤ B. An
alternative method for finding all solutions uses a Extended Residue Table of size n · a1, see [6] for
details. Here, every decomposition is constructed in time O(na1) independent of the input b. In
addition, we do not have to choose a maximal integer B during preprocessing. This latter method
also appears to be faster in practice. Finally, we can count the exact number of decompositions γ(b)
of the integer b using a dynamic recurrence similar to the bit table mentioned above, see again [6].

The number of decompositions over coprime integers a1, . . . , an asymptotically behaves like a
polynomial of degree n− 1 in b [15]:

γ(b) ∼ 1
(n−1)! a1···an bn−1. (3)

We can use this formula or the more precise version from [3], to approximate the number of amino
acid decompositions γ̂(M, ϵ) with real mass in the interval [M,M + ϵ], over the 19 standard amino
acids:

γ̂(M, ϵ) ≈ 1.12687 · 10−55 ϵM18 + 2.29513 · 10−51 ϵM17 + 2.16611 · 10−47 ϵM16 (4)
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Unfortunately, approximation (4) is very inaccurate for masses below 10 000 Da. To this end, we
use an improved version of (4) with eight leading coefficients, see the Appendix. Note also that
the true number of molecules is oscillating with high intensity. In Fig. 1, we plot the number of
decompositions with mass up to M , and the true and approximate number of decompositions with
mass M for bin width ϵ = 0.001Da, for masses 0 ≤M ≤ 2500 Da.
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Fig. 1. Number of amino acid decompositions with mass up to M (cumulative), true and approximate (approx )
number of decompositions with mass M to M + ϵ for ϵ = 0.001Da. Maxima (max ), mean and minima (min) of the
true number calculated using bin width 1Da.

4 Multi-dimensional Integer Knapsack

We now generalize (2) to the multi-dimensional equality constrained integer knapsack problem: We
want to find all solutions of the equation Ax = b for A = (ai,j)1≤i≤d,1≤j≤n where ai,j are integer-
valued coefficients satisfying ai,j ≥ 0, and bi ≥ 0. We search for all solution vectors x = (x1, . . . , xn)
such that all xj are non-negative integers. This corresponds to d one-dimensional knapsack equations
(2) that we want to solve simultaneously, and it is a special case of a Diophantine equation, where
all entries are non-negative.

A simple algorithm to compute all solutions of Ax = b, is to choose one row i ≤ d as the master
row, then to find all solutions of the one-dimensional integer knapsack ai,1x1+ · · ·+ai,nxn = bi and,
finally, to test for each solution of the master equation if the solution also satisfies the other rows of
matrix A. We call this the näıve decomposition algorithm. However, this involves generating many
decompositions unnecessarily. Decompositions of the master equation can be found by recursing
through the Extended Residue table, see [4]. Böcker et al. [4] also present a method that can be
seen as an intermediate between the näıve decomposition algorithm, and the method presented
below: The multiple decomposition algorithm also chooses a master equation to decompose, but
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tests during recursion if all other equations of Ax = b besides the master equation can still be
satisfied using the current partial solution. If this is no longer possible, then it stops and discards
the current partial solution.

Equation (3) tells us that the number of solutions increases with a polynomial of degree n− 1.
So, it seems advisable to lower n as much as possible, if we can do so. In fact, the multi-dimensional
knapsack gives us an opportunity to lower n: To this end, we apply a Gaussian elimination to matrix
A to find a lower triangular matrix L ∈ Rd×d and an upper triangular matrix R = (ri,j) ∈ Rd×n

such that A = LR. Then, Ax = b if and only if Rx = L−1b =: b′ where L−1 is known. Every
solution of Ax = b must hence satisfy the bottom equation of R,

0 · x1 + · · ·+ 0 · xd−1 + rd,dxd + · · ·+ rd,nxn = b′d (5)

that has at most n − d + 1 non-zero coefficients. We now search for all solutions of the bottom
equation, and we test for each one if it is also a solution of Ax = b.

If all entries in A are integers, we can easily guarantee the same to be true for the output
matrix R. But it should be understood that even if ai,j ≥ 0 holds for all coefficients, we cannot
guarantee ri,j ≥ 0 for all coefficients after Gaussian elimination. In particular, there may be negative
coefficients in the bottom equation. But as we have learned in Sec. 3, this implies that there is
an infinite number of solutions for the bottom equation, provided that there exists at least one
solution. Hence, we have to avoid that negative coefficients appear in the bottom equation. Can we
find Gaussian eliminations schemes where all coefficients of the bottom equation are non-negative?
To do so, we may have to permute the columns and rows of A: We choose a permutation π of the
rows of A, and a permutation σ of the columns of A that brings d columns to the front but ignores
the remaining n− d columns. We have d! possibilities to choose π, and (n− d+1) · · ·n possibilities
to choose d front rows of A in σ.

We use the following simple version of the Gaussian elimination algorithm in our computations:
Assume that rows and columns have been swapped in matrix A. Set L̃ := L−1, we will compute
L̃ instead of L. We initialize L̃ = (li,j) ← I as the identity matrix and R ← A. We iterate the
following for i = 1, . . . , d− 1. For rows i′ = i+ 1, . . . , d and columns j = i, . . . , n we define the new
submatrix r′i′,j = ri′,iri,j − ri,iri′,j . Then, r

′
i′,i = 0 must hold. Similarly, for rows i′ = i + 1, . . . , d

and columns j′ = 1, . . . , n we compute the new submatrix l′i′,j′ = ri′,ili,j′ − ri,ili′,j′ . But if ri,i = 0
this operation reduces the rank of our matrix R, and the resulting matrix is no longer equivalent
to our input matrix. In consequence, we Stop if we encounter the case ri,i = 0.

In case we do not drop out off the elimination algorithm, we test if all entries of the bottom
equation are non-positive: In this case, we negate the bottom equation. Finally, we check if rd,j ≥ 0
holds for all j = d, . . . , n: Otherwise, we have to discard R,L−1. Different permutations π might
lead to the same bottom equation if σ is kept constant, so we finally have to sort out duplicate
bottom equations. We end up with a list of elimination matrix pairs R,L−1 that all allow us to
compute decompositions for the multi-dimensional problem using their bottom equations: Assume
that for one such pair R,L−1 we are given a input vector b. First, we apply the row permutation π
to b, that was used to generate A. Then, we find all solutions of the equation Rx = L−1b as follows:
We compute b′ ← L−1b, and we use one of the decomposition techniques for single-dimensional
integer knapsacks on the bottom equation of Rx = b′. For every decomposition (xd, . . . , xn), we
iterate i = d − 1, d − 2, . . . , 1 and compute entry xi using row i of Rx = b′. We test if xi ≥ 0
and if xi is integer; otherwise, we discard the decomposition. Finally, we apply the inverse column
permutation σ−1 to x. Doing so for all decompositions of the bottom equation, guarantees that we
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find all solutions of Ax = b. On the other hand, many decompositions can be generated “in vain”
because these are no solutions of Ax = b.

5 Mixed Matrix Approach

We have used Gaussian elimination for all row and column permutations, a total of 1 · 2 · 3 · 4 ·
14 · 15 · 16 · 17 = 1370880 possibilities. In 43176 cases, the reduction scheme generated a bottom
equation with non-negative entries. After discarding identical bottom equations, we ended up with
only 19 matrix pairs R,L−1, see Table 2 in the Appendix.

Now, one question remains: Which of these matrix pairs R,L−1 is “the best”? Different
matrix pairs usually differ in the number of decompositions that are generated in vain, and that
have to be discarded. If we use efficient decomposition techniques from [6] for single-dimensional
decomposition, then we can guarantee that running time for generating decompositions is actually
linear in the number of decompositions. Then, the number of discarded decompositions is an
excellent indicator for the quality of a matrix pair.

In our evaluations we use the notion of competitive ratio: the ratio between the number of true
decompositions, over the number of decompositions generated by a particular matrix pair. Using a
training set of molecular formulas to decompose, we can filter out matrices that generate too many
additional candidates. To find the exact number of decompositions of a particular matrix, we can
use the dynamic programming techniques mentioned in Sec. 3.

Although being an ideal indicator for evaluation purposes, in application one would like to
avoid the explicit calculation of the number of decompositions, because this can be very time
consuming. Therefore, the following question inevitably arises: Can we estimate the number of
discarded decompositions, without actually calculating decompositions? To this end, set b′d :=∑d

k=1 ld,kbk as the number we actually want to decompose in the bottom equation (5). Recall that
the number of decompositions of b over n coprime integers asymptotically behaves like a polynomial
of degree n− 1, see (3). So, we define

l̃(b) :=
1

(m− 1)! rn−m+1,d · · · rn,d

(∑d

k=1
ld,kbk

)m−1

(6)

as our indicator, where m is a number of non-zero values in the bottom row of R.
Our mixed matrix approach now works as follows: Given a vector b to decompose, we compute

the indicators l̃(b) for every matrix pair L−1, R and choose the matrix pair with the smallest
indicator. Then, we use the bottom equation of the corresponding matrix R to actually decompose
b, see the previous section.

6 Experimental Results

To evaluate our approach we proceed as follows: First, we calculate the competitive ratios of
all matrices and filter out those that generate too many candidates in vain. The number of
decompositions is not the only factor affecting the running time. In addition, the time required
to filter out incorrect solutions may vary for different matrix pairs. To better estimate the actual
running time for a particular matrix pair, we will apply a slight correction to our indicator. We
also compare running times of the mixed matrix approach to several other algorithms.
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Fig. 2. Competitive ratios of six matrices with the lowest competitive ratios. Average competitive ratio for mass bins
of width 100 Da.

Datasets. For our evaluations we use two datasets. The first dataset with 6000 peptides has been
simulated by in-silico digestion (trypsin) using the Swiss-Prot database (release 56.5), eliminating
duplicates. We select peptides with masses between 900 and 1500 Da, and for each mass range of
100 Da we randomly choose 1000 peptides. The second dataset consists of 99 peptides from de novo
interpretations of experimental mass spectra, acquired on quadrupole ion-trap mass spectrometer.
These peptides range in mass from about 900 to 2000 Da.

Choosing Good Matrix Pairs. For each matrix pair we calculate the competitive ratio for all peptides
in the simulated dataset, so that we can filter out matrix pairs that generate too many false positives.
We calculate the average competitive ratio over all peptides for bins of size 100 Da. In Fig. 2 we
have depicted the competitive ratios of the six best matrices. Matrices are labeled by the last row
of the matrix L−1, see Table 2 in the Appendix. One can see that three matrices show outstanding
competitive ratios. For the remaining 13 matrices, we find that the average competitive ratio never
drops below 3900 for any matrix and any mass bin of size 100 Da. See Fig. 6 in the Appendix for
the competitive ratios of seven more matrices.

We selected the three matrix pairs with the best competitive ratios for further evaluation.
These matrices can be found in Sec. 8.3 of the Appendix. For each matrix pair we calculate the
indicator l̃(b) and compare it with the actual running time for the input vector b. In Fig. 3 we have
plotted these values for all peptides from our first dataset with mass 1000–1100 Da. We observe an
almost linear correlation between indicators and running times. We also observe a slight shift of the
intercept of the linear fit over the y-axis for various matrices. This corresponds to the differences in
running times required for filtering false decompositions. We derive an affine indicator correction
from this experimental data, using a linear fit with the least squares criterion, see Fig. 3. Peptides
from other mass ranges show a similar behavior (data not shown).
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To find the matrix pair that we actually use in our mixed matrix approach to decompose b,
we apply the linear correction to the indicator l̃(b) and choose the matrix with the minimal value.
Clearly, this is not necessarily the matrix pair with minimal running times. We want to evaluate
how often we choose a suboptimal matrix pair from these three pairs, see Fig. 7 in the Appendix:
For the simulated dataset, we choose the correct matrix pair in more than 97.5% of the cases,
resulting in an overall running time increase of less than 0.4%. Results on the real data are similar:
in less than 5% of the cases a suboptimal matrix is chosen, resulting in a total running time increase
of 0.8%.

Comparison with other methods. Finally, we want to evaluate how good the mixed matrix method
works compared to branch-and-bound searching, the näıve decomposition algorithm [6], and the
multiple decomposition algorithm [4]. In all cases, we distribute sulfur atoms between methionine
and cysteine.

The branch-and-bound search first tries all possibilities for alanine and branches, then does
the same for aspartic acid, and so on until we reach the last amino acid tyrosine. The näıve
decomposition algorithm simply uses one of the rows of matrix A to compute decompositions, and
then test if any such decomposition satisfies Ax = b. Both for this and the multiple decomposition
algorithm, we use Extended Residue Table to compute decompositions [6]. In fact, there exist four
different flavors of the latter two algorithms, as we can choose one of the rows of matrix A from (1)
as our master row. For these two methods, we only report the best results of the four possibilities.

Fig. 4 and 5 show running times of these approaches on simulated and real data. Running times
for the näıve decomposition algorithm are significantly worse than those of all other approaches
and, hence, omitted. For both datasets our mixed matrix approach significantly outperforms
the second best approach, branch-and-bound searching. We observe a 16-fold speedup over the
branch-and-bound algorithm, and a 35-fold speedup over the multiple decomposition algorithm on
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average. Running times of the mixed matrix approach range from 0.11 to 0.25 milliseconds per
decomposition, measured for the simulated dataset. On the real dataset, speedup of the mixed
matrix approach reaches 67-fold over the branch-and-bound algorithm. We also observe that the
mixed matrix approach significantly outperforms each individual matrix pairs, see Fig. 4.
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We have also evaluated matrix pairs with five rows, that include sulfur as a decomposable
element. Performance for these matrix pairs was in all cases significantly slower than what we have
presented above.

All algorithms were implemented in C++, and running times measured on an AMDOpteron-275
2.2 GHz with 6 GB of memory running Solaris 10.

7 Conclusion

We have presented an efficient method to enumerate all solutions of a multi-dimensional equality
constrained integer knapsack problem. We have applied our method to the problem of finding all
amino acid compositions with a given molecular formula. First results on both simulated and real
data show the outstanding performance of our mixed matrix approach which is one to two orders
of magnitude faster than the runner-up method. We are currently conducting further comparisons
of our algorithm with other related methods such as [11], that solve linear Diophantine systems
with negative coefficients.

We can easily include more matrix pairs for computing decomposition, what seems advisable
for molecular formulas with mass above 1400 Da. We can speed up the decomposition process
by eliminating duplicates in the bottom row of R, distributing the resulting number between the
“merged” amino acids. Finally, note that the first row of R contains only positive entries, resulting
in upper bounds for amino acids that can be dynamically updated during backtracking.

Clearly, our method can be used for any application where we have to enumerate all solutions of
a multi-dimensional equality constrained integer knapsack [1]. This is necessary whenever finding
an optimal solution of the knapsack cannot be modeled via a simple linear or quadratic objective
function. For example, the mixed matrix method can be used to speed up the search for a molecular
formula of an unknown sample molecule, as proposed in [4].

Acknowledgments. AP supported by Deutsche Forschungsgemeinschaft (BO 1910/1). We thank
Andreas Bertsch from the Division for Simulation of Biological Systems of the Tübingen University
for providing the peptide dataset.
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8 Appendix

8.1 Approximating the number of amino acid decompositions

As noted above, approximating the number of amino acid decompositions using (4) is rather
inaccurate. Here, we give a better approximation with eight leading coefficients [3]:

γ̂(M, ϵ) ≈ 1.12687 · 10−55 ϵM18 + 2.29513 · 10−51 ϵM17 + 2.16611 · 10−47 ϵM16

+ 1.25733 · 10−43 ϵM15 + 5.02375 · 10−40 ϵM14 + 1.46529 · 10−36 ϵM13

+ 3.22832 · 10−33 ϵM12 + 5.48395 · 10−30 ϵM11

(7)

8.2 Table of conversion matrix pairs

Last row (modified) of the matrix R lcm Last row of L−1

1 1 1 1 2 2 2 2 4 5 5 6 8 8 8 -4 12 -8
3 4 4 6 7 7 7 7 12 14 14 18 26 39 8 -8 4 84 -24

1 2 2 2 3 3 4 5 5 6 6 7 8 4 0 4 -8 -4
1 1 1 1 1 2 3 3 3 4 6 7 8 4 4 0 -4 -4

5 10 10 16 16 17 22 27 29 33 56 58 73 77 8 -80 108 -76 -48
3 5 6 8 10 10 11 12 14 16 23 29 36 39 40 -200 220 60 -120
1 1 1 3 4 4 5 7 7 8 9 18 18 19 10 20 -15 65 -20
1 1 1 1 2 2 3 4 6 7 7 8 15 19 10 0 -5 65 -10
2 4 7 9 12 13 16 19 27 28 31 32 45 49 90 -90 -135 315 1710

5 6 7 7 12 13 17 20 21 28 31 31 33 1 3 2 -10 -2
1 2 2 2 3 5 5 6 7 8 16 18 21 12 36 -6 -30 -24

18 25 29 31 32 34 35 62 62 63 76 77 116 117 12 -48 30 -150 528
1 1 3 4 5 6 7 8 8 9 24 27 29 43 3 21 -12 12 -6
2 5 6 11 15 18 24 33 42 43 48 49 73 79 12 -12 -30 30 372
1 5 6 8 9 10 11 13 14 26 45 78 84 113 1 19 -9 0 -6
1 1 1 1 1 2 2 2 2 4 8 12 13 18 6 18 -9 3 -6
5 9 17 25 27 41 53 81 94 101 106 113 171 183 1 -2 -5 0 72
4 7 7 8 11 12 12 16 19 21 28 32 51 66 2 -2 -3 0 45
6 7 9 9 10 10 13 14 14 16 17 19 27 36 2 -8 7 0 9

Table 2. 19 conversion matrix pairs R,L−1 with the number of rows d = 4. Here, the last row of the matrix R is
shown modified: Values have been divided on the least common multiplier (lcm) and sorted in the increasing order;
zero entries have been removed.

8.3 Best three matrix pairs

In the first row of each matrix, we give the permutation of amino acids (for R matrices) or elements
(for L−1 matrices) that have to be applied before or after using the matrices for decomposition.
Last rows of the matrices R2 and R3 are divided by the least common multipliers 12 and 2
correspondingly.
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R1 =


G H R F A D K L N P Q E S T V W Y

2 6 6 9 3 4 6 6 4 5 5 5 3 4 5 11 9
0 4 −6 9 −1 2 −4 −6 0 1 −1 1 −1 −2 −3 13 9
0 0 −2 7 1 2 4 2 0 3 1 3 1 2 3 7 7
0 0 0 33 7 6 28 20 0 17 7 13 5 12 21 31 31

 L−1
1 =


C H N O

1 0 0 0
3 −2 0 0
1 0 −2 0
3 2 −10 −2



R2 =


H R W F G A K L N P Q D S T V E Y

6 6 11 9 2 3 6 6 4 5 5 4 3 4 5 5 9
0 −30 17 9 −4 −9 −24 −30 −8 −7 −13 −2 −9 −14 −19 −7 9
0 0 −88 −96 −4 −24 −84 −60 −8 −52 −28 −32 −24 −44 −64 −52 −96
0 0 0 18 31 32 35 25 62 29 63 116 76 77 34 117 62



L−1
2 =


C H N O

1 0 0 0
7 −6 0 0
−8 −6 30 0
−48 30 −150 528



R3 =


F W Y A G H K L N P Q R S T V D E

9 11 9 3 2 6 6 6 4 5 5 6 3 4 5 4 5
0 1 0 −2 −1 −1 −5 −6 −2 −2 −3 −6 −2 −3 −4 −1 −2
0 0 9 2 5 1 −7 −9 10 0 7 −9 11 8 −4 21 18
0 0 0 10 7 14 19 27 14 9 17 36 10 13 16 6 9

 L−1
3 =


C H O N

1 0 0 0
1 −1 0 0
1 −2 9 0
−8 7 0 9


8.4 Additional figures
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Fig. 6. Competitive ratios of seven matrices with rather high competitive ratios compared to the matrices depicted
in Fig. 2. Values are calculated on average for mass bins of width 100 Da. Competitive ratios for the remaining six
matrices have comparable or higher values than the matrices shown here.
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