
SEQUENCING FROM COMPOMERS: THE PUZZLE

SEBASTIAN BÖCKER

Abstract. The board game Fragmind� poses the following question: The player has to reconstruct an (unknown)
string s over the alphabet Σ. To this end, the game reports the following information to the player, for every character
x ∈ Σ: First, the string s is cleaved wherever the character x is found in s. Second, every resulting fragment y is
scrambled by a random permutation so that the only information left is how many times y contains each character
σ ∈ Σ. These scrambled fragments are then reported to the player.

Clearly, distinct strings can show identical cleavage patterns for all cleavage characters. In fact, even short strings
of length 30+ usually have non-unique cleavage patterns. To this end, we introduce a generalization of the game
setup called Sequencing From Compomers: We also generate those fragments of s that contain up to k uncleaved
characters x, for some small and fixed threshold k. This modification dramatically increases the length of strings that
can be uniquely reconstructed. We show that it is NP-hard to decide whether there exists some string compatible
with the input data, but we also present a branch-and-bound runtime heuristic to find all such strings: The input data
are transformed into subgraphs of the de Bruijn graph, and we search for walks in these subgraphs simultaneously.

The above problem stems from the analysis of mass spectrometry data from base-specific cleavage of DNA se-
quences, and gives rise to a completely new approach to DNA de-novo sequencing.

This is a reprint of: S. Böcker. Sequencing from compomers: The puzzle.
Theory Comput Syst, 39(3):455–471, 2006. https://doi.org/10.1007/s00224-005-1238-y
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Figure 1. Modified Fragmind puzzle with solution on the right.

1. Introduction

The task of the solitaire board game Fragmind� (see www.fragmind.com/game) is to reconstruct a color sequence
from scrambled fragment information. With slight modifications, a typical instance of this puzzle looks like Fig. 1
on the left.1 Here, every row corresponds to a unique cleavage character x ∈ Σ over the alphabet Σ := {B,G,R,Y}.
For every such character x we are given a collection of (X-shaped) fragments, plus some (O-shaped) cleavage sites.
All fragments contain characters from Σ − {x} while the cleavage sites consist of exactly one character x. The
task of the game is to reorder the fragments/cleavage sites, as well as the characters inside the fragments in such
a way that every column consists of exactly one character, see Fig. 1 on the right. To do so, there are two types
of permissible moves:

• First, for every row we are allowed to arbitrarily reorder the fragments and cleavage sites, with the exception
that two fragments must not touch each other — they must be separated by at least one cleavage site.
Note that we are not allowed to swap fragments between rows.
• Second, for every fragment we can arbitrarily reorder all characters in this fragment.

1We slightly modify the definition of the puzzle, to be closer to the biochemical problem Fragmind was derived from. Fragmind
puzzles ignore the rightmost fragment in every row, for the sake of simplicity.
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For the puzzle presented in Fig. 1 on the left, we show how to reorder the first line, corresponding to cleavage
character B: First, we reorder fragments and cleavage characters to RRY,B,B,GR,B,Y where no two fragments
touch each other. Next, we reorder the characters in the first fragment from RRY to RYR. The resulting string
RYRBBGRBY is a solution of this puzzle, because all columns agree on the right side of Fig. 1.

Where do problems of this type occur? The puzzle directly stems from the analysis of DNA sequences using
mass spectrometry and base-specific cleavage. Our alphabet is the DNA alphabet Σ := {A, C, G, T}, and we are
given a sample string over Σ (the target DNA molecule). We amplify the sample string using polymerase chain
reaction. Next, we cleave the sample string with a base-specific biochemical cleavage reaction: That is, we cleave
wherever a certain character (specific to the used cleavage reaction) appears in the string. Finally, we measure
the masses of the resulting fragments using mass spectrometry. From a fragment’s mass we can determine its
(unordered) base compositions. See [1] for more details on the experimental setup of base-specific cleavage and
mass spectrometry.

Combining base-specific cleavage and mass spectrometry has been successfully applied to a variety of problems
such as SNP and mutation discovery [5], pathogen identification [8], or methylation analysis. These tasks are
comparatively simple to answer computationally, because we just have to find a “best fit” of a measured mass
spectrum with a rather small number of reference mass spectra. But for DNA de-novo sequencing, almost nothing
is known about the underlying DNA sequence except its approximate length. In fact, only a small fraction of
sequences show unique mass fingerprints even for short sequence lengths of 30 characters, see Section 8. It was
therefore believed that base-specific cleavage and mass spectrometry cannot be used for de-novo sequencing of
DNA.

Unexpectedly, a slight modification to the experimental setup heavily increases its resolving power. If we do
not cleave every copy of the sample string at a certain position where the cleavage character x is present, but only
a certain percentage of copies (say, 50%) then we generate a much larger set of fragments and, hence, simplify the
problem of reconstructing the sequence. This setup is comparable to the Partial Digestion Problem (PDP) [6, 7].
Accordingly, we call such cleavage reactions partial while the original cleavage reactions are called complete.

But there is a fundamental difference between PDP and our “experimental setup:” Using mass spectrometry,
the intensity of a peak corresponds to the number of copies of the biomolecule generating the peak. Since this
number drops exponentially in the number of uncleaved characters x in a fragment, it is likely that we can detect
only those fragments that contain up to k uncleaved characters x, for some small threshold k. Unlike PDP where
long fragments are likely to be detected, such long fragments cannot be detected in our setting, so we cannot
adapt algorithms developed for PDP.

Several questions arise naturally in the context of (generalized) Fragmind puzzles: Given an instance of the
problem, is there at least one solution? Given one solution s, is this solution unique? Ultimately, one wants to
find all solutions of the problem in applications.

2. Formal representation of the problem

Mostly we will follow the notation of [1] and refer the reader there for a more detailed discussion.
Let s and y be strings over the alphabet Σ. We denote the maximal number of non-overlapping occurrences of

y in s by ordy(s).
For a string s and a character x, we define the string spectrum S(s, x) of s, x by:

(1) S(s, x) := {y ∈ Σ∗ : xyx is a substring of xsx}
The string spectrum S(s, x) consists of those substrings of s that are bounded by x or by the ends of s. Here,
we call s sample string and x cleavage character, while the elements y ∈ S(s, x) will be called fragments of s
(under x).

We use special characters 0, 1 to uniquely identify start and end of the sample string, what reduces the symmetry
of the problem. The set of all strings in Σ∗ with attached prefix 0 and suffix 1 is denoted 0Σ∗1 := {0s1 : s ∈ Σ∗}.
The use of special characters 0, 1 is motivated by characteristics of the underlying biochemistry: using base-specific
cleavage, terminal fragments in general differ in mass from inner fragments with otherwise identical sequence.2

For k ∈ N ∪ {∞}, we define the k-string spectrum of s, x by:

(2) Sk(s, x) := {y ∈ S(s, x) : ordx(y) ≤ k}
The integer k is called (spectrum) order.

2The mass of a fragment is the summed mass of its characters, plus a correction factor that depends on the molecule’s terminals:
For example, RNAse A cleavage produces 5’ hydroxyl and 3’ phosphate terminals. Inner fragments have been cleaved by RNAse A on
both sides, and we have to correct their mass by adding 18 Dalton (H2O). This correction is different for the first and last fragment
that have been cleaved on one side only.
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Example 1. For the string s = 0RYRBBGRBY1 over Σ = {B, G, R, Y} from Fig. 1, we have:

S0(s,B) = {0RYR, ϵ,GR,Y1} S0(s,G) = {0RYRBB,RBY1}
S0(s,R) = {0,Y,BBG,BY1} S0(s,Y) = {0R,RBBGRB,1}

For spectrum order k = 0 the string spectrum resembles the Fragmind puzzle. Higher orders give us more fragment
information: for example,

S1(s,B) = {0RYR, ϵ,GR,Y1,0RYRB,BGR,GRBY1}.

As mentioned above, we cannot recover the order of characters inside a fragment from its mass, what is
represented by the second rule of the Fragmind puzzle. To this end, we define a compomer c to be a “string
without order:” Formally, c is a map from the alphabet Σ to the set of natural numbers including 0. To simplify
notation, we use subindices for the number of characters in a compomer, omitting those characters with subindex 0:
For example, c = A2G1 denotes the compomer c(A) = 2, c(C) = 0, c(G) = 1, and c(T) = 0. Finally, we write 0
for the empty compomer.

Clearly, we can map a string s to a compomer by counting the number of characters of each type in s. Let
comp be this function: for example, comp(ACCTA) = A2C2T1. Finally, given two compomers c and c′ over the
alphabet Σ, we write c ⪯ c′ if and only if c(σ) ≤ c′(σ) holds for all σ ∈ Σ. So, ⪯ is a partial order on the set of
compomers.

The k-compomer spectrum Ck(s, x) of s consists of the compomers of all fragments in the string spectrum
Sk(s, x):
(3) Ck(s, x) := comp

(
Sk(s, x)

)
=

{
comp(y) : y ∈ S(s, x), ordx(y) ≤ k

}
Example 2. For s from Example 1 and spectrum order k = 0 we calculate:

(4)
C0(s,B) = {0R2Y1, 0,G1R1,Y11} C0(s,G) = {0B2R2Y1,B1R1Y11}
C0(s,R) = {0,Y1,B2G1,B1Y11} C0(s,Y) = {0R1,B3G1R2,1}

Finally, we note that for Fragmind puzzles we do not only know the compomers of all fragments but also their
multiplicities! To this end, letMk(s, x) be the multiset compomer spectrum of s, x of spectrum order k, where we
modify equations (1–3) to be multisets instead of “simple” sets. For a set X and j ∈ N we denote by j ·X the
multiset containing every element x ∈ X exactly j times. As an example, for s := 0GRGRGRGRG1 and x = R
the multiset compomer spectrum of order k = 0 isM0(s,R) = {0G1,G1,G1,G1,G11} = {0G1}∪ 3 ·{G1}∪{G11}.

3. The Sequencing From Compomers Problem

Let k ∈ N ∪ {∞} be the fixed spectrum order, and let S ⊆ 0Σ∗1 (or S ⊆ Σ∗) be the set of sample string
candidates.3 Now, the question is: Can we uniquely recover a string s ∈ 0Σ∗1 from its (multiset) compomer
spectra? To this end, we define the Sequencing From Compomers (SFC) Problem in four different flavors:

SFCme: Find all s ∈ S withMk(s, x) =Mx for given multisetsMx, x ∈ Σ.
SFCmi: Find all s ∈ S withMk(s, x) ⊆Mx for given multisetsMx, x ∈ Σ.
SFCse: Find all s ∈ S such that Ck(s, x) = Cx holds for given sets Cx, x ∈ Σ.
SFCsi: Find all s ∈ S such that Ck(s, x) ⊆ Cx holds for given sets Cx, x ∈ Σ.

Indices “me, mi, se, si” stand for multiset/set equality/inequality, respectively. SFCme for k = 0 corresponds to
the Fragmind puzzle described in the introduction, where multiplicities of all compomers are known. SFCsi and
SFCmi correspond to the more realistic setting of sequencing DNA using mass spectrometry data, where a detected
peak will potentially be interpreted as many different compomers even though only one of these interpretations
is correct. In addition, mass spectra contain false positive peaks (so-called “noise” peaks). So, it seems favorable
to include all compomer interpretations of detected peaks, and to search for strings that satisfy the inclusion
condition only. Furthermore, it is currently not viable to deduce the multiplicity of a fragment from the intensity
of the corresponding peak in a measured mass spectrum. Hence, SFCsi is best suited for modeling experimental
mass spectrometry data.

The corresponding SFCm decision problem is as follows, for m ∈ {me,mi, se, si}: Given sets of compomers Cx,
or multisets of compomersMx, for x ∈ Σ, is there at least one string s ∈ S that satisfies the conditions of SFCm?
In [1] we show that the SFCsi decision problem is NP-hard. But below we will see that the — seemingly less
complex — SFCme and SFCmi decision problems are also NP-hard.

3A straightforward choice for the set of sample string candidates is the set of all strings with length in some interval, because we
can often determine the correct sample string length up-front, and take into account the measurement inaccuracy.
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Finally, we define the SFCm reconstruction problem: Given a set of sample string candidates S ⊆ 0Σ∗1 and
some sample string s ∈ S, set Cx := Ck(s, x) andMx :=Mk(s, x). Find the subset of sample strings S′ ⊆ S such
that every s′ ∈ S′ satisfies the conditions of SFCm. Clearly, s ∈ S′ holds. In particular, we are interested in those
strings s ∈ S that can be uniquely recovered, that is S′ = {s}.

Even though experimental mass spectrometry data cannot be modeled by an instance of SFCme, it is reasonable
to study SFCme because this problem is better suited for a combinatorial analysis. Also note that a string s that
does not have “unique” multiset compomer spectraM(s, x) also has non-unique (“simple” set) compomer spectra
C(s, x), for x ∈ Σ.

In this context, the following question arises: Given sample strings that can be uniquely recovered using equality
of multisets (SFCme), can those sample strings also be recovered in the more realistic SFCsi model? How much
discriminative power do we gain by adding information about compomer multiplicities and restricting the search
by demanding set equality? We will address these questions in Section 8 below.

Remark. Given a string s ∈ S, let Sm ⊆ S be the set of solutions for the SFCm reconstruction problem, for
m ∈ {me,mi, se, si}. Then, Sme ⊆ Smi ⊆ Ssi and Sme ⊆ Sse ⊆ Ssi.

Example 3. For the string s = 0RYRBBGRBY1 from Example 2 we set Cx := C0(s, x) as shown in (4). Can we
uniquely recover s from this information?

Regarding SFCse, we can show that s is the unique string in 0Σ∗1 such that C0(s, x) = Cx holds for all x ∈ Σ:
Let s′ be such a string. We know that its first character is 0, and we can iteratively deduce longer prefixes of s′.
Regarding the second character, we infer that 0R is a prefix: Otherwise, 0 /∈ C0(s′,R) holds since the character
0 cannot appear somewhere else in s′. This is a contradiction to 0 ∈ CR. Next, 0R1 ∈ CY implies that 0RY is a
prefix of s′. For the third character, Y1 ∈ CR allow us to append an R, but is not a sufficient condition: We can
also “generate” this compomer further upstream in s′. But 0R1Y1 /∈ CB, 0R1Y1 /∈ CG, and 0 /∈ CY prohibits to
append characters B, G, or Y, so 0RYR is a prefix of s′. Continuing in this way, we see that 0RYRBBGRB is a
prefix of s′.

At this point, 0 ∈ CB allows us to append a “wrong” character B. So, assume that 0RYRBBGRBB is a prefix:
At some point, we will append either Y or 1 to s′, so there exists c ∈ C0(s′,Y) with B4G1R2 ⪯ c. But no such
compomer is an element of CY, a contradiction. Hence, we cannot append B, and by the above reasoning we
conclude that 0RYRBBGRBY is a prefix of s′ and, finally, that s′ = s.

In Section 7 we will formalize the reasoning of Example 3, leading to a recursive algorithm with two branch-
and-bound conditions.

4. Transformations that do not change multiset compomer spectra

We now focus on the SFCme reconstruction problem: Given a sample string s, we want to find (all) transfor-
mations of s that do not change the multiset compomer spectra of s. Clearly, if s is a solution of an instance of
SFCm then the transformed string is also a solution of this instance, for m ∈ {me,mi, se, si}. In finding all such
transformations, we can solve the SFCme reconstruction problem.
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Figure 2. Puzzle with two solutions for k = 0. We added special characters 0, 1 to the game
setup in accordance with the definitions.

Consider Fig. 2: For Σ = {G,R} we define the multisetsMG := {0R1, 0,R1,R11} andMR := {0,G1,G2,1}.
Then there exist two strings s, s′ ∈ 0Σ∗1 satisfying M0(s, x) = M0(s

′, x) = Mx for x ∈ Σ: namely, s =
0RGRGGR1 and s′ = 0RGGRGR1. This example can easily be generalized for an arbitrary threshold k: We
define s := 0(RG)k+1RG(GR)k+11 and set Mx := Mk(s, x) for x ∈ Σ. One can easily check that the string
s′ := 0(RG)k+1GR(GR)k+11 also satisfiesMk(s

′, x) =Mx for both x ∈ Σ.
For a string s = s1 . . . sn, let s−1 := sn . . . s1 denote the inverse string. The following proposition follows

directly from comp(s) = comp(s−1):

Proposition 1. For a sample string s ∈ Σ∗, a cleavage character x ∈ Σ, and k ∈ N ∪ {∞}, we haveMk(s, x) =
Mk(s

−1, x).
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We will now present two simple transformations that do not change the multiset compomer spectra of a string.
For s ∈ Σ∗ let Σk(s) := {σ ∈ Σ : ordσ(s) ≥ k} be the set of characters in s that appear at least k times.
Lemma 2 generalizes the construction of Fig. 2, its proof is based on the observation (yzy−1)−1 = yz−1y−1 and
on Proposition 1.

Lemma 2 (Flip transformation). Let y ∈ Σ∗ be a string, and let z ∈ (Σk+1(y))
∗ be a non-empty string using

only those characters that appear at least k + 1 times in y.
If yzy−1 is a substring of s, we can write s = azb with strings a, b where y is a suffix of a, and y−1 is a prefix

of b. Then, s′ := az−1b has the same multiset compomer spectrum as s, that isMk(s, x) =Mk(s
′, x) for x ∈ Σ.

z y−1

ACAGG GGACAGAAACAGG GGACAAAG

y y y−1z−1

Figure 3. Example of a Flip transformation for k = 1.

The second transformation allows us to swap substrings that are enclosed by suitable strings y, y′ as in the
previous transformation:

Lemma 3 (Swap transformation). Let y, y′ ∈ Σ∗ be strings, set Σ′ := Σk+1(y)∩Σk+1(y
′), and let z1, z2 ∈ (Σ′)∗ be

non-empty strings using only those characters that appear at least k+1 times in y and y′, and satisfy comp(z1) =
comp(z2).

Let a, b, c ∈ Σ∗ be strings with s = az1bz2c such that y is a suffix of a and of b, while y′ is a prefix of b and of c.
Then, s′ := az2bz1c has the same multiset compomer spectrum as s, that isMk(s, x) =Mk(s

′, x) for x ∈ Σ.

ACAGG AAG
y

ACAGG
yz1 z2

AGAAGTAGT
y’

AGTAGT
y’

Figure 4. Example of a Swap transformation for k = 1.

The strings y, y−1 and y, y′ act as boundaries so that for x ∈ Σk+1(y) (or x ∈ Σ′, respectively) no fragment
w ∈ Sk(s, x) stretches over, say, y: that is, no fragment w contains y as a substring.

We omit the formal proofs of these lemmata for the sake of brevity. There exist transformations preserving
the multiset compomer spectra that cannot be composed of a sequence of Flip and Swap transformations:
Regarding Lemma 3, if y, y′ are tight boundaries with Σ′ = Σ1(s), then we can do a Swap transformation even
when comp(z1) ̸= comp(z2). Here, the task is to find a minimal set of transformations with the property of
generating all preserving transformations. Work on this question is in progress.

5. Complexity of SFCme and SFCmi

Let Σ be an arbitrary finite alphabet, and let k ≥ 0 be an arbitrary but fixed spectrum order. We show below
that it is computationally hard to decide whether there exists at least one (non-trivial) solution of SFCme or
SFCmi. Here we define the problem order of the SFC Problem to be the number of bits needed to represent all
compomer sets Cx or Mx, for x ∈ Σ — not to be confused with the spectrum order k. Note that the length of
strings solving some instance of SFC, can be exponential in the problem order, as we need only log n bits to store
the compomer σn corresponding to a string of length n. In [1] we show that SFCsi is NP-hard — so it is likely
that the same holds for SFCse.

Theorem 1. For |Σ| ≥ 3 and spectrum order k ≥ 0, we are given a set of candidate strings S ⊆ 0Σ∗1. Then it
is NP-hard to decide whether the SFCmi Problem with spectrum order k has at least one solution s ∈ S satisfying
Mk(s, x) ⊆Mx for all x ∈ Σ.

Theorem 2. For |Σ| ≥ 3 and spectrum order k ≥ 0, it is NP-hard to decide whether the SFCme Problem with
spectrum order k has at least one solution s ∈ S := 0Σ∗1 such that equality Mk(s, x) = Mx for all x ∈ Σ is
achieved.

We will prove the latter theorem only, but one can prove Theorem 1 analogously by limiting the set S to strings
of length nb+ 4n(k + 1) + (n− 1)(k + 1). As we cannot check whether a string of exponential size is a solution,
SFCmi and SFCme are not in NP.

For our complexity result, we make use of the 3-PARTITION Problem known to be NP-complete [4]:
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3-PARTITION. Given a set M of 3n elements, a bound b ∈ N, and a size φ(m) ∈ N for each m ∈ M with
b/4 < φ(m) < b/2 and

∑
m∈M φ(m) = nb, can M be partitioned into n disjoint sets M1, . . . ,Mn such that, for

1 ≤ i ≤ n,
∑

m∈Mi
φ(m) = b holds?

Given a solution of 3-PARTITION, then the constraints on φ(m) imply that every set Mi ⊆M contains exactly
three elements.

The formal proof of Theorem 2 can be found in the Appendix.

6. Sequencing graphs

Sequencing graphs were introduced in [1] and can be used to solve the SFC Problem. These directed graphs
are subgraphs of the well-known de Bruijn graph, but the interesting twist here is that the alphabet underlying
the de Bruijn graph is not the usual DNA alphabet, but instead a set of compomers over the DNA alphabet. We
have slightly modified the definitions of [1] to allow a simpler incorporation of a source vertex in these graphs,
see [2] for details.

A directed graph consists of a set V of vertices and a set E ⊆ V 2 = V × V of edges. An edge (v, v) for v ∈ V
is called a loop. We limit our attention to finite directed graphs with finite vertex sets. A walk in G is a finite
sequence p = (p0, p1, . . . , pn) of elements from V with (pi−1, pi) ∈ E for all i = 1, . . . , n, and |p| := n is the length
of p.

We start this section by an example, and show below how to formalize the construction.

Example 4. Let

s = 0ACAATCAGCTATGGGCATACTACTCGCATCCGGAGT1 ∈ 0Σ∗1

be our sample string over the DNA alphabet Σ. We set Cx := C1(s, x) for x ∈ Σ; for example,

CT = {0A3C1, 0A4C3G1T1, A1C2G1, . . . , A1C2G3, A1C2G3T11, 1}.

Next, we set Σx := {c ∈ Cx : c(x) = 0} ∪ {∗} for all x ∈ Σ as the set of compomers with no uncleaved cut
character, see (5) below; for example,

ΣT = {0A3C1, A1C2G1, A1, A1C1G3, A1C1, A1C2G3, 1, ∗}.

For every x ∈ Σ, we define the directed graph Gx = (Vx, Ex) by Vx := Σx, and (u, v) ∈ Ex holds for u, v ̸= ∗ if
and only if u + comp(x) + v ∈ Cx. Note that if (u, v) is an edge of Gx then (v, u) is an edge, too: In fact, these
edges can be viewed as undirected. Furthermore, we include directed edges (∗, v) for all vertices v ̸= ∗ that satisfy
v(0) = 1. We have displayed the four graphs resulting from this construction in Fig. 5. As an example, the graph
GT contains edges (A1C2G1,A1) and (A1,A1C2G1) since A1C2G1 + T1 + A1 = A2C2G1T1 ∈ CT holds; and it
contains the loop (A1C1,A1C1) because A1C1 +T1 +A1C1 = A2C2T1 ∈ CT holds

What can we do with the graphs of Example 4? Consider cleavage character x = T, where ∗ is the source
vertex of GT. The first fragment of s under T is 0ACAA with compomer 0A3C1, and (∗,0A3C1) is an edge of
GT. The second fragment of s under T is CAGC with compomer A1C2G1, and (0A3C1,A1C2G1) is an edge of
GT, and so on. So, the fragments of s under x correspond to a walk in Gx — and if we cannot find such a walk,
then s cannot be a solution of our problem. Note that there exist edges in these graphs that do not correspond
to subsequent fragments of the sample string, such as (A1C2G3,A1) in GT.

We will now formalize the graph construction of Example 4, but first we have to introduce some more definitions:
The de Bruijn graph of order k ≥ 1 over the alphabet Σ′ is a directed graph whose vertex set consists of all

k-tuples over Σ′, and (u, v) is an edge of the de Bruijn graph if the last k − 1 elements of u agree with the first
k − 1 elements of v, that is, uj+1 = vj for j = 1, . . . , k − 1 [3]. We denote the de Bruijn graph of order k over Σ′

by Bk(Σ
′), and we denote an edge

(
(e1, . . . , ek), (e2, . . . , ek+1)

)
by (e1, . . . , ek+1) for short.

In the following, we assume that we are given an instance of the Sequencing From Compomers Problem for
set inclusion, SFCsi. In particular, for every cleavage character x we are given a set of compomers Cx as input.
The compomer alphabet Σx consists of those compomers in Cx that do not contain the character x, plus a special
source character ∗:

(5) Σx := {c ∈ Cx : c(x) = 0} ∪ {∗}

Note that we can componentwise add compomer “characters” c, c′ ∈ Σx: For ∗ ∈ Σx we formally define c + ∗ =
∗ + c = ∗ for every compomer c. In the following, Σx will be the alphabet underlying the de Bruijn graph
construction.
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Figure 5. The four sequencing graphs of Example 4: the graph Gx for x = A (top left), x = C
(top right), x = G (bottom left), and x = T (bottom right). Undirected edges represent directed
edges in both directions.

Strings s0, . . . , sl form an x-partitioning of a string s if none of the strings s0, . . . , sl contains the character x,
and s = s0xs1xs2x . . . xsl holds. Clearly, there exists exactly one x-partitioning for every string s. For example,
(0RYR, ϵ,GR,Y1) is the unique B-partitioning of s = 0RYRBBGRBY1.

Finally, a string s is called compatible with a walk p = p0 . . . p|p| in the de Bruijn graph Bk(Σx) if the
x-partitioning s0, . . . , sl of s satisfies l = |p| and

(6) pj =
(
cj−k+1, cj−k+2, . . . , cj

)
for j = 0, . . . , l ,

where cj := comp(sj) for j = 0, . . . , l, and c−j := ∗ for all integers j > 0. By definition, (∗, . . . , ∗) is the first
vertex of such p.

For every string s that is a solution of the SFCsi Problem, there exists a unique walk p in the de Bruijn graph
that is compatible with s, see [1, Lemma 3]. For s = 0RYRBBGRBY1 from Example 1, the unique compatible
walk in B1(ΣB) is (∗), (0R2Y1), (0), (G1R1), (Y11). We now “thin out” the de Bruijn graph so that the resulting
graph still contains all walks compatible with any solution of SFCsi, but we remove those edges that cannot be
part of any such walk.

For an edge e = (e1, . . . , ek+1) of the de Bruijn graph Bk(Σx), we use the notation

(7) e[i,j] := ei + comp(x) + ei+1 + comp(x) + · · ·+ ej−1 + comp(x) + ej

for 1 ≤ i ≤ j ≤ k + 1; recall that the alphabet underlying the de Bruijn graph is a set of compomers.4

Now, we define the sequencing graph Gk(Cx, x) of order k ≥ 1 as follows: This is an edge-induced sub-graph of
Bk(Σx) where Σx = {c ∈ Cx : c(x) = 0} ∪ {∗}. An edge e = (e1, . . . , ek+1) of Bk(Σx) belongs to the sequencing
graph if and only if

• e[i,j] ∈ Cx ∪ {∗} holds for all 1 ≤ i ≤ j ≤ k + 1, and
• ej = ∗ for some j implies ei = ∗ for all 1 ≤ i ≤ j.

The first condition assures that we keep only those edges that might be needed for some compatible walk, whereas
the second condition only prevents us from using the source character “in the middle” of some vertex. In Example 4,

4Note that e[i,j] = ∗ holds if and only if there exists an index i′ ∈ [i, j] such that ei′ = ∗.
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we have in fact constructed the four sequencing graphs G1(Cx, x) for x ∈ {A,C,G,T}, omitting superfluous edges
(∗, v) for those vertices v that do not contain the initial character 0.

Lemma 3 in [1] guarantees that s satisfies Ck(s, x) ⊆ Cx if and only if there exists a walk p in the sequencing
graph Gk(Cx, x) such that s is compatible with p. Hence, we can find all solutions to the SFCsi Problem by
constructing walks in the sequencing graphs.

But what about the initial Fragmind problem with spectrum order k = 0? Here, we define the sequencing graph
G0(Cx, x) to be the complete directed graph with vertex set Σx := {c ∈ Cx : c(x) = 0} ∪ {∗}, minus superfluous
edges (v, ∗) for v ∈ Σx. The high density of this graph indicates why the resolving power of SFCme for k = 0 is
extremely limited.

7. Walking the sequencing graphs

Suppose we are given an instance of the SFCsi Problem: the spectrum order k and sets of compomers Cx for
x ∈ Σ. Our task is to find all sample strings s ∈ 0Σ∗1 satisfying Ck(s, x) ⊆ Cx for all x ∈ Σ. We limit our search
to those strings s with length in a given interval.

We sketch a runtime-heuristic for this problem, see [1] for a detailed description. This depth-first search
backtracks through string space, and implicitly builds walks in the directed sequencing graphs that are compatible
with the constructed strings: To this end, suppose that strings ŝ and s̄ are compatible with walks in the sequencing
graph Gx := Gk(Cx, x), and that ŝ, s̄ share a common prefix s. Then, the walks compatible to ŝ, s̄ also share a
“prefix:” Let (s1, . . . , sl) be the x-partitioning of the prefix s, then both walks must start with the vertex sequence

(∗, . . . , ∗), (∗, . . . , ∗, c1), (∗, . . . , ∗, c1, c2), . . . , (cl−k, . . . , cl−1)

where cj := comp(sj) are the compomers of the partitioning. In our algorithm, we mark the last vertex
(cl−k, . . . , cl−1) of the common prefix walk with a token. In case sx is also a prefix of the strings, we can
elongate this prefix walk and move our token from (cl−k, . . . , cl−1) to (cl−k+1, . . . , cl), because (s1, . . . , sl, ϵ) is the
x-partitioning of sx.

Assume that we have built the sequencing graphs Gx := Gk(Cx, x) for x ∈ Σ. We initialize our algorithm by
putting a token onto the source vertex vx ← (∗, . . . , ∗) in every sequencing graph Gx for x ∈ Σ. We recursively
construct prefixes s of solutions, and we initialize s← 0.

Let s be the current prefix, and for all x ∈ Σ, a token is currently placed on vertex vx in the sequencing graph
Gx. Let sx be rightmost fragment of the x-partitioning of s, and set cx := comp(sx).

If we append a character x ∈ Σ to s, can the resulting string sx still be a prefix of a solution? In this case, the
following two conditions must be satisfied:

• By the above reasoning, we have to move our token in Gx from the current vertex vx = (v1, . . . , vk) to
(v2, . . . , vk, cx). If the latter is not a vertex of Gx, or if no such edge exists, we cannot append x to s.
• Second, we check the following for all characters σ ̸= x: Can we move our token in Gσ in the future? As
we continue to append characters to sx, we will at some point append either σ or the terminal character 1
for the first time. At that point, we have to move our token in Gσ from vσ = (v1, . . . , vk) to a new vertex
(v2, . . . , vk, c), and the above implies comp(sxx) ⪯ c.

So, we check if there exists at least one edge e = (v1, . . . , vk, c) inGσ leaving vσ such that cx+comp(x) ⪯ c
holds — if no such edge exists, we cannot move our token in Gσ in the future and, hence, we cannot append
x to s.

To prevent infinite loops, we test whether the prefix length is below some upper bound before appending the
next character. In case the prefix length is above some lower bound, we also test if we can append the terminal
character 1: Doing so, we trigger an edge transition in all sequencing graphs simultaneously. If we can move our
tokens accordingly in all graphs, then we output s1 as a solution.

If there exists exactly one admissible character x ∈ Σ, we update the prefix, move the token in Gx, and continue.
If there exist two or more admissible characters, we have to recursively test all alternatives. If there is no admissible
character, we return to the previous level of recursion. Theorem 1 of [1] guarantees that this algorithm indeed
returns all strings s with Ck(s, x) ⊆ Cx for all x ∈ Σ.

Clearly, the algorithm is a runtime heuristic; but in view of the hardness of the decision problem, there is little
hope that a polynomial runtime algorithm exists. Also, the number of solutions can be quite large, for example
exponential in the fixed length of reconstructed strings [1, Example 3].

To solve SFCmi or SFCme Problems using this approach, we also store for every edge of a sequencing graphs,
what compomers were tested in (7) with j = k+1 during construction. We cannot attach counters directly to the
edges of a sequencing graph, because different edges may “use” the same compomers. In the recursion step, we
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Figure 6. Simulation results: Percentage of strings that are uniquely reconstructed (solid line)
or reconstructed with up to two ambiguous characters (dashed line) when varying string lengths
(x-axis). Results for SFCme (boxes) and SFCsi (crosses). Spectrum orders are k = 0, 1 (top, left
and right) and k = 2, 3 (bottom, left and right). Observe the different scalings of the axes in the
figures.

keep track how often every compomer has been generated by the current prefix, and stop as soon as appending a
character exceeds the given limit.

8. Simulation results

We performed simulations comparing the resolving power of SFCme and SFCsi. To this end, we generate random
strings s of varying length, compute the (multiset) compomer spectra Cx := Ck(s, x) andMx :=Mk(s, x) for all
x ∈ Σ, and finally search for all strings s′ ∈ 0Σ∗1 that are solutions to SFCme and SFCsi. Since we can deduce
the length of a solution string from the multiset compomer spectra, we search only for those solutions of SFCsi

that have exactly the same length as the input string s, to allow a “fair” comparison of the resolving powers.
For spectrum orders k = 0, 1, 2, 3 we report the results of our simulations in Fig. 6. As expected, the knowledge

of compomer multiplicities greatly enhances the chances of unique string reconstruction. Although it is unrealistic
to believe that the experimental settings will ever allow to exactly estimate fragment multiplicities, it should be
understood that even a rough estimate of these multiplicities increases the resolving power of our approach.

We do not only report the percentage of strings that were uniquely reconstructed from their (multiset) compomer
spectra: For 2+ solutions we align all solutions without gaps and count the number of columns where the strings
disagree. This is the number of ambiguous characters. In Fig. 6 we also report the percentage of strings that
allowed reconstruction with up to two ambiguous characters. There were no strings that allowed reconstruction
with a single ambiguous character.
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As one can see, the resolving power for k = 0 corresponding to the original Fragmind puzzle and to complete
cleavage, is very limited even if we take into account compomer multiplicities. But the resolving power increases
by an order of magnitude for every increment of the spectrum order k.

9. Discussion

The Sequencing From Compomers Problem is a formal representation as well as a generalization of the Fragmind
puzzle game. While SFC is computationally hard, we have introduced sequencing graphs that allow us to solve
SFC in practice using a runtime-heuristic. The Fragmind puzzle and SFC are derived from the analysis of mass
spectrometry data from base-specific cleavage experiments, and the presented approach might allow de-novo
sequencing of DNA molecules with several hundred nucleotides. Various combinatorial problems in the context of
SFC, at the same time challenging and relevant for applications, await their solution.
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Appendix

Proof of Theorem 2. Recall that k is the fixed spectrum order. We may assume that {A,B,C} ⊆ Σ holds. We
further assume that b/4 ≥ k + 1. Otherwise there exists a minimal constant k′ ∈ N satisfying k′ · b/4 ≥ k + 1 and
we can replace b by k′b and φ by k′ · φ.

Given an instance of 3-PARTITION, we define an instance of SFCme by representing the values φ(m) in the

string solution by substrings Aφ(m). These substrings are separated by substrings of the form Bk+1, see (12).
Finally, we use the character C to assure that all elements m ∈M are partitioned into sets Mi as desired, see (13).
We prove that the instance of 3-PARTITION has a solution if and only if our instance of SFCme has a solution.

Recall that for a set X and j ∈ N, we denote by j ·X the multiset containing every element x ∈ X exactly j
times. We define multisetsMx for x ∈ Σ, where all unions over κ run κ = 0, . . . , k:

MA :=
⋃
κ

(2n(κ+ 1) + 2) · {AκBk+1} ∪
⋃
κ

(n− 1)(κ+ 1) · {AκB2(k+1)Ck+1}(8)

∪
⋃

m∈M,κ

(φ(m)− 1− κ) · {Aκ}

MB :=
⋃
κ

(κ+ 1) · {Aφ(m)Bκ : m ∈M} ∪
⋃
κ

(n− 1)(κ+ 1) · {BκCk+1}(9)

∪
⋃
κ

4n(k − κ) · {Bκ}

MC :=
⋃
κ

((n− 2)(κ+ 1) + 2) · {AbB4(k+1)Cκ} ∪
⋃
κ

(n− 1)(k − κ) · {Cκ}(10)

Mx := {AnbB4n(k+1)C(n−1)(k+1)} for x ∈ Σ \ {A,B,C}(11)
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First, we want to show that any solution M1, . . . ,Mn of 3-PARTITION yields a solution to the above instance
of SFCme: For i = 1, . . . , n we set Mi = {mi,m

′
i,m

′′
i }. We define the string

(12) si := Bk+1Aφ(mi)Bk+1Aφ(m′
i)Bk+1Aφ(m′′

i )Bk+1

and compute for cleavage character x = A:

Mk(si,A) = {AκBk+1 : κ = 0, . . . , k} ∪Mi
A ∪ {AκBk+1 : κ = 0, . . . , k}

with Mi
A :=

⋃
κ=0,...,k

2(κ+ 1) · {AκBk+1} ∪
⋃

m∈Mi
κ=0,...,k

(φ(m)− 1− κ) · {Aκ},

where the sets {AκBk+1 : κ = 0, . . . , k} correspond to the beginning and end of si. For cleavage character x = B
we compute

Mk(si,B) =
⋃

κ=0,...,k

(κ+ 1) · {Aφ(m)Bκ : m ∈Mi} ∪
⋃

κ=0,...,k

4(k − κ) · {Bκ}.

From
∑

m∈Mi
φ(m) = b, we infer comp(si) = AbB4(k+1). For the string

(13) s := s(M1, . . . ,Mn) := s1C
k+1s2C

k+1 · · ·Ck+1sn

we can now conclude:

Mk(s,A) = 2 · {AκBk+1 : κ = 0, . . . , k} ∪
⋃

i=1,...,n

Mi
A

∪
⋃

κ=0,...,k

(n− 1)(κ+ 1) · {AκB2(k+1)Ck+1} = MA

Mk(s,B) =
n⋃

i=1

Mk(si,B) ∪
⋃

κ=0,...,k

(n− 1)(κ+ 1) · {BκCk+1} = MB

Mk(s,C) = {AbB4(k+1)Cκ : κ = 0, . . . , k} ∪
⋃

κ=0,...,k

(n− 2)(κ+ 1) · {AbB4(k+1)Cκ}

∪
⋃

κ=0,...,k

(n− 1)(k − κ) · {Cκ} ∪ {AbB4(k+1)Cκ : κ = 0, . . . , k} = MC

Mk(s, x) = {AnbB4n(k+1)C(n−1)(k+1)} = Mx for x ∈ Σ \ {A,B,C}

So, Mk(s, x) = Mx holds for all x ∈ Σ as desired. This shows that given a solution M1, . . . ,Mn of 3-
PARTITION, then s(M1, . . . ,Mn) is a solution of the above instance of SFCme.

Now, let us suppose that s is an arbitrary solution to the instance of SFCme defined in Equations (8–11). Since

(14) {c ∈MC : c(C) = 0} = n · {AbB4(k+1)} ∪ (n− 1)k · {0}

we infer comp(s)(A) = nb and comp(s)(B) = 4n(k + 1). Analogously, we conclude from (9) that comp(s)(C) =
(n− 1)(k + 1), so |s| = nb+ 4n(k + 1) + (n− 1)(k + 1) is polynomial in b, n. We also derive from (14) that s has
the form

s = c0 s1 c1 s2 c2 . . . cn−2 sn−1 cn−1sn cn

where ci are strings from {C}∗, and s1, . . . , sn ∈ {A,B}∗ such that comp(si)(A) = b and comp(si)(B) = 4(k + 1)
for all i = 1, . . . , n holds.

Now, we derive from (9) that

{c ∈MB : c(B) = 0} = {Aφ(m) : m ∈M} ∪ (n− 1) · {Ck+1} ∪ 4nk · {0}

and, in particular, that BAφ(m)B is a substring of s for all m ∈ M — more precisely, for y = BAlB, we have
ordy(s) = |{m ∈M : φ(m) = l}|. For the sake of brevity, we ignore the case that A is a prefix or a suffix of s,
that we can solve analogously. Since

∑
m∈M φ(m) = nb = comp(s)(A) we conclude that substrings of A’s are

always bounded by B’s.
We iteratively define sets M1, . . . ,Mn that form a solution to 3-PARTITION. For i = 1, . . . , n let Li be the

multiset

Li := {l ∈ N : BAlB is a substring of si}
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where the multiplicity of l ∈ Li equals ordy(si) for y = BAlB. From comp(si)(A) = b we conclude
∑

l∈Li
l = b.

From

(15)
n∑

i=1

∑
l∈Li

l = n · b = comp(s)(A)

we infer that l ∈ Li implies l = φ(m) for some m ∈ M : Otherwise, the existence of l ∈ Li with l ̸= φ(m) for all
m ∈ M would contradict (15). So, we have b/4 < l < b/2 and, hence, |Li| = 3. Choose Mi ⊆ M with |Mi| = 3
such that φ(Mi) = {φ(m) : m ∈ Mi} = Li, and set M ← M \Mi. The existence of such set Mi ⊆ M can be
guaranteed due to the properties we derived above.

One can easily see that the resulting sets M1, . . . ,Mn form a solution of the instance of 3-PARTITION. This
concludes our proof that SFCme is NP-hard. □
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