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Abstract

Motivation: The determination of the molecular formula is one of the earliest
and most important steps when investigating the chemical nature of an unknown com-
pound. Common approaches use the isotopic pattern of a compound measured using
mass spectrometry. Computational methods to determine the molecular formula from
this isotopic pattern require a �xed set of elements. Considering all possible elements

1



severely increases running times and more importantly the chance for false positive
identi�cations as the number of candidate formulas for a given target mass rises sig-
ni�cantly if the constituting elements are not pre-�ltered. This negative e�ect grows
stronger for compounds of higher molecular mass as the e�ect of a single atom on the
overall isotopic pattern grows smaller. On the other hand, hand-selected restrictions
on this set of elements may prevent the identi�cation of the correct molecular formula.
Thus, it is a crucial step to determine the set of elements most likely comprising the
compound prior to the assignment of an elemental formula to an exact mass.
Results: In this paper, we present a method to determine the presence of certain ele-
ments (sulfur, chlorine, bromine, boron and selenium) in the compound from its (high
mass accuracy) isotopic pattern. We limit ourselves to biomolecules, in the sense of
products from nature or synthetic products with potential bioactivity. The classi�ers
developed here predict the presence of an element with a very high sensitivity and
high speci�city. We evaluate classi�ers on three real-world datasets with 663 isotope
patterns in total: 184 isotope patterns containing sulfur, 187 containing chlorine, 14
containing bromine, one containing boron, one containing selenium. In no case do we
make a false negative prediction; for chlorine, bromine, boron, and selenium, we make
ten false positive predictions in total. We also demonstrate the impact of our method
on the identi�cation of molecular formulas, in particular the number of considered can-
didates and running time.
Availability: The element prediction will be part of the next SIRIUS release, avail-
able from https://bio.informatik.uni-jena.de/software/sirius/. The 86 mass
spectra from the myxo dataset will be made available upon publication.

Introduction

Hyphenated high-resolution mass spectrometry, mostly coupled to liquid chromatography
(LC-MS) or gas chromatography (GC-MS), is the predominant experimental platform for
untargeted metabolomics and also plays an important role in other analytical �elds requir-
ing high information content and increased sample throughput, such as natural products
research. Due to the underlying study designs these applications regularly bring about high
numbers of unidenti�ed mass spectral features, leading to the analytical challenge to identify
as many as possible of the corresponding unknown compounds. One of the decisive steps
investigating unknown compounds is to determine its molecular formula, which can serve as
a starting point for the structural elucidation. High-throughput molecular formula annota-
tion work�ows are required for the analysis of complex biological samples. The vast numbers
of unknowns detected in mass spectral datasets acquired from these samples necessitate ef-
�cient methods for formula generation, since the process is computationally expensive and
error-prone. As an example, a bacterial extract could contain 600-700 unknown substances1,
and studies of the metabolomes of higher organisms exceed these numbers: the Human serum
metabolome contains more than 4000 metabolites visible by LC-MS analysis2. Especially for
non-model organisms, an astounding number of metabolites to date remain uncharacterized
with respect to their structure and function. Contrary to proteins and other bio-polymers,
which are constructed from a well-de�ned set of building blocks, the structure of metabolites
is much less de�ned and thus the structure elucidation process is labor-intensive and usually
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requires additional techniques like NMR spectroscopy. The capability to e�ciently compute
high-con�dence molecular formulas facilitates this objective.
In the following, we will limit ourselves to biomolecules, that is, molecules that are products
of nature, or synthetic products with potential bioactivity. Many biomolecules, among them
an overwhelming number of substances found ubiquitously across the domains of life, are
composed of six elements, i.e. carbon, hydrogen, nitrogen, oxygen, phosphorus, and sulfur3.
In contrast, secondary metabolites and other biomolecules, such as drugs or pesticides, occa-
sionally contain less frequently occurring elements, which we refer to as uncommon elements

throughout this paper. To name a few examples, marine organisms and some terrestrial
bacteria produce halogenated compounds incorporating bromine or chlorine4,5; antibiotics
containing boron have been reported6; metabolites of higher plants can contain selenium7,8;
�nally, �uorine and iodine have been detected in the metabolism of certain organisms9,10.
Microbial secondary metabolites are the subject of natural product screening work�ows form-
ing the basis for the discovery of novel drug candidates, thus strengthening our motivation
to improve computational tools for their identi�cation11�13. However, it is understood that
methods developed for biomolecule identi�cation are likely to �nd application in other ana-
lytical areas too, since the underlying fundamental challenge of unknown characterization is
common to many varieties of small-molecule investigations using mass spectrometry, ranging
from in-vitro drug metabolism studies to pesticide screening.
Mass spectrometric instrumentation has seen signi�cant improvement in terms of resolution
and mass accuracy over the last two decades, however exact (monoisotopic) mass alone is
insu�cient to determine the molecular formula of a compound even for sub-ppm mass accu-
racy14. To this end, several approaches use the natural isotopic distributions of elements to
improve molecular formula determination15, assuming a mass accuracy of about 10 ppm or
better. Certain approaches limit computation to molecular formulas present in a database16;
but since many natural compounds are absent from any database, this restriction is unac-
ceptable. Other approaches compute all candidate molecular formulas (considering a �xed
set of elements) that are su�ciently close to the measured peak mass17�19, simulate an iso-
tope pattern for each candidate molecular formula20�23, and compare it to the measured
one24�27. Here, the isotope pattern may also contain accurate masses of isotope peaks. Some
approaches additionally take the fragmentation pattern of compounds into account28�31. All
of these approaches require the researcher to specify the set of elements to be considered.
For compounds above 400Da, the number of molecular formulas increases rapidly14,24,31, in
particular when considering a set of elements beyond CHNOPS. This severely increases not
only running time, but also chances for false identi�cations. On the other hand, manually
adjusted restrictions on elements, or the maximum allowed number of atoms of a particular
element, could exclude the correct molecular formula from the candidate set32 and hence
prevent the discovery of an interesting compound featuring an uncommon element. The
presence of certain uncommon elements can be inferred by manual inspection of the isotope
pattern in mass spectra, see Fig. 1 in ref.23 for an instructive example. Transforming such
observations into robust classi�ers is nevertheless a challenging problem, as both masses
and intensities are perturbed in real-world measurements. Previous e�orts along these lines
have, for example, been related to estimating the number of chlorine and bromine atoms
from Electron Ionization mass spectra as part of the NIST Mass Spectral Search Program33.
Here, we present a fully automated method to robustly determine the elements for the com-
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pound under study from the isotope pattern. The set of elements determined by our method
then serves as input for the next step of the analysis, where accurate masses, isotope pattern
(and potentially other information) are used to determine the molecular formula of a com-
pound under investigation. The four most abundant elements in living organisms � carbon,
hydrogen, nitrogen, and oxygen � form our basic set of elements. We add phosphorus to this
set, as it is relatively common in bio-compounds (e.g. nucleotides, ATP) and, in addition,
has only a single stable isotope, thus cannot be predicted on the basis of isotope pattern
(the latter applies also to iodine and �uorine). We present a method to predict the presence
of the elements sulfur (S), chlorine (Cl), bromine (Br), boron (B) and selenium (Se) from
isotope patterns.
Our method uses Machine Learning, that is, algorithms that can learn from data, and make
predictions based on data. We employ Supervised Machine Learning where the computer
is presented with example inputs and desired outputs (the training data), and the goal is
to learn rules that map inputs to outputs. For each element, we use a binary classi�er that
classi�es the data into two groups (contains the element vs. does not contain the element).
For classi�cation, we use random forests34. For each element, we present three classi�ers
based on the number of observed isotope peaks (three, four, and �ve or more peaks). We
�nd that the more unique the isotopic distribution of an element is, the more precise our
predictions are. Furthermore, availability of more isotopic peaks from the mass spectrum
also improves prediction quality. Evaluating the classi�ers on three real-world datasets of
a total of 663 isotope patterns measured on three di�erent instruments results in no false
negative predictions, and few false positive predictions for all elements but sulfur. We show
that our method signi�cantly decreases the number of molecular formulas that have to be
considered by subsequent analysis steps, resulting in a massive decrease of running time,
while at the same time also slightly improving identi�cation rates. The method presented
here will be integrated in an upcoming release of the SIRIUS 3 software package24,31.

Background

The most common method to determine a molecular formula is to simulate an isotope pat-
tern for each candidate molecular formula, and compare it to the measured one24�27. This
requires a �xed set of elements to be considered for the generation of candidate molecular
formulas. Obviously, the number of candidates increases considerably with the size of the set
of elements. For example, consider rifampicin with monoisotopic mass 822.405Da and mass
accuracy 6 ppm: we reach 2,358 candidates for the set of elements CHNOP, and 117,029
candidates for CHNOPSClBr, an almost 50-fold increase caused by only three uncommon
elements. (The above numbers ignore molecular formula �lters such as the �Senior rules� 35,
but the e�ect is comparable.) On the theoretical side, the number of decompositions of a
certain mass can be approximated with high accuracy using a polynomial24: Assuming a
relative error, this polynomial has degree k for k elements.
Isotopes are variants of an element with di�erent numbers of neutrons. Di�erent isotopes of
the same element have nearly identical chemical properties but di�erent mass. Most elements
in nature have more than one stable isotope, and each of these isotopes occurs in nature with
a certain abundance36�38. The totality of isotopes is the isotopic distribution of an element.
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Figure 1: E�ect of the uncommon elements S (yellow), Cl (green), Br (red), B (magenta),
and Se (blue) on the isotope pattern. [M +H]+ ionization is assumed. Individual isotopic
distributions of the corresponding uncommon elements are shown in the colored boxes. All
molecular formulas come from the molecular structure databases.

The mass di�erence of successive isotopes di�ers from element to element, despite the fact
that in all cases, one or more neutrons are added: For example, the mass di�erence of 12C and
13C is 1.00335Da (Dalton), whereas the mass di�erence of 10B and 11B is 0.99637Da. The
di�erent isotope abundances and masses of the isotopes that are contained in a compound
generate a characteristic set of peaks, called an isotope pattern. In comparison to C, H, N,
O, and P (referred to as �CHNOP� in the following), the elements S, Cl, Br, B, and Se lead
to more �distinctive� isotope patterns, as the most abundant isotope of these elements has
relative abundance less than 95%.
In this paper, we will not consider the isotopic �ne structure (isotopologues) of a compound;
instead, we limit ourselves to the mean peak masses 22 (or accurate masses 21) of isotopic
peaks, combining all isotopologues with identical nominal mass. Throughout this paper, the
isotopologue where each atom is the isotope with the lowest nominal mass is referred to as
monoisotopic, see for example ref.39. For certain elements such as boron or selenium, this
is not the most abundant isotope. We refer to the peak at the monoisotopic mass as the
monoisotopic peak or +0 peak, which is followed by the +1, +2, . . . peaks. Referring to a
peak �before� (�after�) another peak, means it has a smaller (higher, respectively) mass.
The isotopic distribution of elements in�uences the isotope pattern of the compound in
both mass di�erences and intensities of peaks. Small compounds containing only CHNOP
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have an intense monoisotopic peak; the +1 peak has much lower intensity, and intensity of
subsequent peaks decreases further. The more �distinctive� isotopic distributions of S, Cl,
Br, B, and Se are re�ected in the shape of the isotope pattern of a compound, see Figure 1
and Supplementary Section S.1.

Methods

We use a set of binary classi�ers to predict the presence of uncommon elements from isotope
patterns of compounds using supervised machine learning. We create one classi�er for the
presence of each of the uncommon elements Cl, Br, B, S and Se. Further, we create a
classi�er �CHNOPS� for compounds that contain only the elements C, H, N, O, P, and S;
we use this classi�er to demonstrate the discriminative power of the isotope pattern for
identifying uncommon elements. The classi�er cannot rule out the presence of �uorine or
iodine in a compound, or any other element that has only a single stable isotope.
To learn and predict the presence of uncommon elements from isotope patterns, the patterns
need to be transformed to a set of numerical features characterizing the data. Those features
are based on the masses and intensities of the peaks. Measured isotope patterns vary in
the number of detected peaks. In particular for small compounds, we get very short isotope
patterns, as only a few peaks are intense enough to be detected as signal. Using classi�ers for
arbitrary peak number would result in missing (peak) features for smaller isotope patterns,
making the training more complicated. Hence, we construct di�erent classi�ers for isotope
patterns of size three, four and �ve. In total, we train 18 classi�ers (�ve uncommon elements
plus CHNOPS times three isotope pattern sizes).
Isotope patterns with less than three peaks do not contain enough information for uncommon
element prediction. However, for isotope patterns with less than three peaks, the presence of
an uncommon element is very unlikely since the +2 should be intense enough for detection
if an uncommon element is present (see Figure 1). For isotope patterns with more than �ve
peaks, we consider only the �rst �ve peaks. Classi�ers for isotope patterns with more than
�ve peaks did not improve the results signi�cantly (data not shown).

Features

We use features based on the intensity and mass of the isotope peaks. The full list of features
can be found in Supplementary Table S.1. The number of features varies according to the
number of peaks in the isotope pattern: There are 21 (38, 39) intensity features and 4 (7,
11) mass features for three (four, �ve, respectively) isotope peaks.

Intensity features. We use the intensity of each peak, as well as the minimal, maximal
and median peak intensity. Since the presence of some elements results in zigzag shaped
isotope patterns, we further use the sums, minima and maxima of intensities for even and
odd peaks, respectively. Furthermore, we use the index of the most intense, second most
intense and third most intense peak. We use quotients and di�erences of all pairs of peak
intensities for the �rst four peaks. Finally, we use all combinations of sums of peak intensities.
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Mass features. We use monoisotopic mass, and all pairwise mass di�erences between
isotope peaks as features. Mass is included, since the in�uence of uncommon elements on the
shape of the isotope pattern is stronger for small compounds than for large ones. The mass
di�erence between consecutive peaks of the isotope pattern is in�uenced by elements with
more than one stable isotope: For example, if Cl is present, the mass di�erence between the
monoisotopic peak and +2 peak decreases due to the mass di�erence of 1.99705Da between
35Cl and 37Cl.

Random forests

For classi�cation we use random forests, a supervised machine learning method34. A ran-
dom forest consists of a set of unpruned decision trees. Each tree is trained on a random
sample (with replacement) of the training data. This technique is called bagging40. For the
determination of a split (a node in a decision tree), we use a subset of m ≈

√
M features,

where M is the total number of features41. We use the random forest implementation of the
Mahout library* (version 0.9) for training.
We setm = 5 for isotope patterns of size three, andm = 7 for isotope patterns of size four and
�ve. For each classi�er, we generate a random forest consisting of 100 trees. For all other pa-
rameters we use the default values of the Mahout library. The classes DecisionTreeBuilder
and Bagging are used to construct the trees. By default, the minimum set size for a split is
2 and the minimum variance proportion is 0.001. We use the OptIgSplit class to compute
the best split.
For classi�cation, the input is run through all of the decision trees in the random forest,
and the �nal classi�cation is done by voting: every decision tree votes for true or false. A
threshold for the ratio of positive votes is used to determine the classi�cation of the forest.

Datasets

For the training and evaluation of the classi�ers, we want to use a very large set of isotope
patterns. Unfortunately, there is only limited experimental data available for isotope patterns
of biomolecules. In this paper, we use three measured datasets from di�erent instruments
for evaluation; in addition, we use simulated isotope patterns of molecular formulas from
several compound databases (see Table 1).
The myxo dataset consists of 88 isotope patterns measured on a Bruker MaXis 2G qTOF
spectrometer (Bremen, Germany). The corresponding compounds are secondary metabolites
from Myxobacteria, with several exceptions mentioned below. Compounds range in mass
from 192.009 to 2213.962Da, with average mass 623.277Da and median mass 591.307Da.
From these compounds, 24 contain sulfur (20 contain a single sulfur atom, 2 contain two,
and 2 contain three sulfur atoms), 8 contain chlorine (6 with one chlorine atom, 2 with two
chlorine atoms), and one compound contains a single boron atom. We added selenomethion-
ine to this dataset as a positive example for a selenium-containing compound. 9 compounds
have a measured isotope pattern of length three, 47 of length four, and 32 of length �ve or
more (3 of length six, 5 of length seven, 1 of length nine).

*https://mahout.apache.org/
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Table 1: Overview of the datasets used for training and evaluation. Total number of molec-
ular formulas and numbers of molecular formulas that are positive examples for the di�erent
classi�ers are given. In addition to the simulated evaluation set, the measured datasets are
used exclusively for evaluation.

simulated measured
training evaluation myxo pesticide CASMI

all 1 128 059 51 097 88 43 532
CHNOPS 604 506 42 713 78 15 370
sulfur S 502 529 9 892 24 14 146

chlorine Cl 345 799 5 502 8 27 152
bromine Br 171 596 3 015 0 1 13

boron B 56 808 141 1 0 0
selenium Se 16 680 98 1 0 0

The pesticide dataset is taken from Stravs et al. 30 . The dataset consists of isotope patterns
from di�erent pesticides measured on a LTQ Orbitrap XL from Thermo Fisher Scienti�c
(San José, USA) with electrospray ionization in positive and negative mode. Compounds
range in mass from 198.056 to 443.125Da, with average mass 275.353Da and median mass
260.016Da. From the 60 mass spectra, 43 show an isotope pattern with at least three peaks.
For the 18 shorter isotope patterns, none of the compounds contains any of the elements
SClBrBSe. For the remaining 43 isotope patterns, 14 isotope patterns contain a single sulfur
atom, 27 chlorine (22 with a single chlorine atom, 4 with two, and 1 with three chlorine
atoms), and one isotope pattern contains a single bromine atom. The dataset contains 18
isotope patterns with a measured isotope pattern of length three, 18 of length four, and 7 of
length �ve or more (1 of length six).
The CASMI dataset was measured by Martin Krauss (Helmholtz Centre for Environmen-
tal Research, Leipzig, Germany), and processed by Emma Schymanski (Eawag, Düben-
dorf, Switzerland) as part of the Critical Assessment of Small Molecule Identi�cation chal-
lenge 2016� using RMassBank30. Measurements were performed on a Q Exactive Plus Or-
bitrap (Thermo Scienti�c) with electrospray ionization in positive and negative mode. MS1
spectra were extracted for substances with [M+H]+ (positive) and [M-H]- (negative mode)
ions. We removed one compound containing silicon. The remaining dataset contains 628
independent mass spectra from 512 compounds. Compounds range in mass from 67.042 to
776.687Da, with average mass 259.500Da and median mass 246.071Da. From the 628 mass
spectra, 532 show an isotope pattern with at least three peaks. For the 96 shorter isotope
patterns, none of the compounds contain any of the elements SClBrBSe. For the remaining
532 isotope patterns, 146 patterns contain sulfur (128 with a single sulfur atom, 17 with two,
and 1 with four sulfur atoms), 152 chlorine (84 with a single chlorine atom, 42 with two,
19 with three, 3 with four and 3 with six chlorine atoms) and 13 bromine (11 with a single
bromine atom and 2 with two bromine atoms). The dataset contains 140 isotope patterns
with a measured isotope pattern of length three, 220 of length four, and 172 of length �ve

�http://www.casmi-contest.org/2016/
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or more (49 of length six, 2 of length seven and 1 of length 8).

For training and evaluation, we use simulated isotope patterns of molecular formulas of
compounds from eleven compound databases: ChEBI (Chemical Entities of Biological In-
terest)42, ChEMBL version 1943, DrugBank version 4.244, HMDB (Human Metabolome
Database) version 3.645, Indo�ne�, KEGG (Kyoto Encyclopedia of Genes and Genomes)46,
KNApSAcK47, MolMall�, PubChem48, UNPD (Universal Natural Product Database)49, and
ZINC (ZINC Is Not Commercial) version 1250, see Supplementary Section S.3 and Supple-
mentary Table S.2 for details.
Some of the databases, in particular PubChem, contain many records which are uncommon
for biomolecules. To remove such molecular formulas, we �ltered all datasets using the fol-
lowing ad hoc rules: (1) the compound has a monoisotopic mass between 100 and 1500Da;
(2) the compound contains only elements from CHNOPSClBBrSe and contains at least one
carbon and one hydrogen atom; (3) the compound contains at most �ve atoms of sulfur, chlo-
rine, boron or bromine. For the training data only, we also discarded (4) charged or generic
compounds or complexes. We stress that molecular formulas passing these restrictions do
not necessarily correspond to biomolecules, and that biomolecule molecular formulas may
fail one or more of these rules; these data are used to train and evaluate our method.
We split the databases into a large training set that is used to construct the classi�ers,
and a smaller evaluation set. As the training set, we use PubChem, ChEMBL and ZINC.
PubChem is the largest dataset and contains reasonably many compounds even for Se and
B. It is particularly useful to train cases such as compounds incorporating a high number of
uncommon elements, or an unlikely combinations of uncommon elements. We observe that
molecular formulas from ChEMBL and ZINC are almost completely covered by PubChem.
As the evaluation set, we use HMDB, ChEBI, DrugBank, Indo�ne, KEGG, KNApSAcK,
MolMall, and UNPD.
Several molecular formulas are contained in more than one database; clearly, we consider
only a single occurrence of each. Further, the training set should be independent from the
evaluation set. To this end, all molecular formulas from the evaluation set are removed from
the training set. In total, the training set contains 1,128,059 molecular formulas, and the
evaluation set contains 51,097 molecular formulas (see Table 1).

Isotope pattern simulation

For the simulation of isotope patterns, we use SIRIUS24 to compute the exact isotope pattern.
For the training and evaluation set, we add noise to the peak intensities to simulate measured
isotope patterns. In Machine Learning, adding noise often improves classi�cation results, as
it forces the method to search for complex patterns and improves generalizability. It is not
necessary that the added noise has the same characteristics as noise observed in the real-world
data. For each peak, we calculate the simulated intensity I = Iexact · N (1, σIR) +N (0, σIA),
where N (1, σIR) is a normally distributed relative noise with mean one and N (0, σIA) is a
normally distributed absolute noise with mean zero. After adding noise to all peaks of an
isotope pattern, the peak intensities are normalized to 100%.

�http://indofinechemical.com/
�http://www.molmall.net/

9



In addition, we add noise to the peak masses. For each peak, we calculate the simulated
mass m = mexact +N (0, σM), where N (0, σM) is an additive, normally distributed absolute
noise with mean zero. We are aware that mass deviation is not constant throughout the
mass range, but rather depends on the mass of the compound. Nevertheless, we refrain
from using a multiplicative mass noise: The features for the classi�ers are build on mass

di�erences between the peaks instead of peak masses. To our knowledge, the distribution of
deviation of dependent mass di�erences has not been investigated. To make our classi�ers
robust, we prefer to consider the worst case scenario, which is an additive noise with the
highest mass deviation we have observed.

Noise parameters of the evaluation set. To �nd realistic noise parameters, we investi-
gate measured isotope patterns from a Bruker Maxis 2G qTOF mass spectrometer, measured
at di�erent concentration levels. Based on the accuracy of these patterns, we de�ne a stan-

dard noise pro�le with standard deviations σIA = 0.0015, σIR = 0.04, and σM = 0.0013Da.
In addition, we de�ne a high noise pro�le with standard deviations σIA = 0.006, σIR = 0.07,
and σM = 0.0018Da to generate particularly hard cases. The reader is reminded that we
measure mass di�erences between isotope peaks. Both noise pro�les are used for generating
isotope patterns for the evaluation set.

Noise parameters of the training set. Instead of using exact simulated isotope pat-
terns, we found that adding noise to the training data improves classi�cation results. We
found that using relatively high noise during training, improves classi�cation results even for
the standard noise pro�le. Thus, for simulating the training set, we choose noise parameters
that are higher than the standard noise pro�le of the evaluation set : namely, σIA = 0.005,
σIR = 0.05 and σM = 0.0015Da.

Learning phase

For most classi�ers, we have many more negative examples than positive examples in the
training set. Due to the optimization function of random forests, unbalanced data leads
to suboptimal classi�cation results for the smaller class51. For each classi�er, we generate
a training subset by randomly drawing without replacement to reach the same number of
positive and negative examples. The CHNOPS, S, Cl, Br and B classi�ers are trained using
a subset of 100,000 molecular formulas (50,000 positive and 50,000 negative examples), and
Se with 25,000 molecular formulas (12,500 positive and 12,500 negative examples).
There exist improved downsampling techniques to balance the data, such as distance based
methods52. Due to the large number of compounds and high dimensionality of the training
data, computation would be very time consuming. We found that random downsampling
delivers very good results, and refrained from testing improved techniques.

Results

For each element, we present three classi�ers based on the number of observed isotope peaks
(3, 4, and 5 or more peaks). Classi�ers are trained using simulated isotope patterns of more
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than a million compounds. The resulting classi�ers give excellent separation, with area under
curve (AUC) above 0.99 for all elements but sulfur. We then concentrate on classi�ers with
very high sensitivity, so that we almost never miss an occurrence of an uncommon element. In
contrast, we put less focus on the speci�city of our classi�ers, resulting in more false positive
predictions for certain elements. The reasoning for doing so, is that our classi�ers are meant
as a �rst step of an automated pipeline for isotope pattern analysis: After generating and
scoring candidates, the downstream method can sort out cases where our classi�ers made
a false positive prediction. In contrast, if our classi�ers make a false negative prediction,
wrongly stating that some uncommon element is absent from a compound, the downstream
analysis has no means to correct this.
Training of all 18 classi�ers required 3,5 h on two Intel Sandy Bridge processors at 2.3 GHz
with six cores and 64 GB RAM. We �nd that training requires more time and the decision
trees are larger, the less unique the isotopic distribution of the element is (see Supplementary
Table S.3 and S.4). For example, in the random forest of the four peaks sulfur classi�er, the
resulting trees have a median of 9,450 nodes (median tree depth 47). Construction of this
random forest required 23min. In contrast, for the four peaks boron classi�er, trees contain
only a median of 13 nodes (depth four) and learning required only 7min. For an example of
a decision tree, see Figure 2.

Prediction quality on simulated data

There exist two types of wrong classi�cations: On the one hand, a classi�er may return false
(�element not present�) although the element is part of the compound (false negative); on
the other hand, a classi�er may return true (�element present�) when an element is not part
of the compound (false positive).
In Machine Learning, one is generally interested in classi�ers with high sensitivity (true
positive rate) and high speci�city (1−false positive rate), where:

sensitivity = true positive rate = 1− false negative rate

=
true positives

true positives+ false negatives

speci�city = true negative rate = 1− false positive rate

=
true negatives

true negatives+ false positives

It must be understood that reaching both high sensitivity and speci�city simultaneously is
usually not possible, and that we might have to trade in sensitivity for speci�city, or vice
versa. For the downstream analysis we have in mind (identi�cation of the molecular formula),
false negative predictions are much worse than false positive predictions. Once an element
that is actually part of the compound is not considered for molecular formula identi�cation,
it is di�cult or impossible to counteract this failure in the subsequent analysis steps. In
contrast, a false positive prediction will �only� increase the running time and the probability
of identifying a wrong molecular formula. Thus, sensitivity needs to be very high, even at
the cost of speci�city. For the CHNOPS classi�er, which is included to evaluate the overall
power of the approach, we treat sensitivity and speci�city as equally important.
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Figure 2: Example decision tree from the random forest of the boron classi�er for isotope
patterns with �ve peaks. This tree is combined with 99 other decision trees to reach the
�nal decision whether or not boron is present in the unknown compound.

Receiver Operating Characteristic (ROC) and the area under the ROC curve (AUC) can be
used to evaluate the ability of a classi�er to distinguish between true and false examples.
The ROC curve is created by plotting the true positive rate (TPR) against the false positive
rate (FPR) at all possible threshold settings of the classi�er. When decreasing the threshold,
both the true positive rate and the false positive rate increase. A perfect classi�er would
result in an area under curve of 1, that is, there is a threshold where the classi�er reaches
TPR of 1 without predicting any false positives. Random classi�ers have area under curve
of 0.5.
ROC curves for the classi�ers with three peaks are shown in Figure 3. Results for four and
�ve peaks can be found in Supplementary Figure S.1 in the Appendix. For all classi�ers,
we achieve area under curve above 0.97 even for the high noise pro�le, see Table 2. The
lowest area under curve was achieved for the S classi�er on three peaks. Compared to
the other elements to be detected, sulfur has the least distinctive isotopic distribution and
is hard to distinguish from isotope patterns containing only CHNOP. The more unique the
isotopic distribution of the elements get, the higher the area under curve of the corresponding
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Figure 3: (A) ROC curves for all classi�ers using three peaks at the standard noise pro�le.
(B)�(D) ROC curves for S (yellow), Cl (green), and Br (red) using three peaks at the
standard noise pro�le and the high noise pro�le. In comparison to (A), ROC curves (C)
and (D) are zoomed in to the top left corner. AUCs for all ROC curves can be found in
Table 2. The chosen tradeo�s between FPR and TPR for the analysis on the measured
datasets are marked (×).
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Table 2: AUCs for the standard noise pro�le and the high noise pro�le. If decimals are given,
the given values are rounded.

noise pro�le: standard high

# peaks: three four �ve three four �ve

CHNOPS 1.0 1.0 1.0 1.0 1.0 1.0
S 0.992 0.996 0.999 0.974 0.985 0.996
Cl 0.998 0.999 1.0 0.994 0.997 0.999
Br 0.997 0.997 1.0 0.994 0.997 1.0
B 1 1 1 1 1 1
Se 1 1 1 1 1 1

classi�er. For Se and B we get an area under curve of 1 in all cases.
We �nd that for all elements, area under curve increases for classi�ers using isotope patterns
with more peaks. This is not surprising, since isotope patterns with more peaks contain
more information. In particular for the high noise pro�le, using more peaks improves the
prediction.

Table 3: How many false positive predictions do we have to accept in order to reach a certain
sensitivity? We report false positive rates (FPR) for all 18 classi�ers at �xed true positive
rates (TPR). TPR 0.998 corresponds to two missed positive predictions in 1000 examples;
TPR 1 means missing not a single positive example. Results for the standard noise pro�le.
FPR and TPR used for the analysis on the measured datasets in bold. `N/A', classi�er
cannot reach the desired TPR.

three peaks four peaks �ve peaks
desired TPR 0.998 0.999 1 0.998 0.999 1 0.998 0.999 1

re
su
lt
in
g
F
P
R CHNOPS 0.0 0.0 0.005 0.0 0.0 0.001 0.0 0.0 0.001

S 0.265 0.313 N/A 0.162 0.173 0.332 0.055 0.072 0.160
Cl 0.056 0.057 0.063 0.054 0.055 0.060 0.004 0.008 0.027
Br 0.012 0.013 0.013 0.012 0.012 0.013 0.0 0.0 0.0

B 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Se 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

To further evaluate the tradeo� between sensitivity and speci�city, we analyze the FPRs for
all 18 classi�ers at �xed TPRs for the standard noise pro�le (see Table 3; results for the
high noise pro�le can be found in Supplementary Table S.5). For Cl, FPR is below 6.5%
in all cases, and for Br, FPR is below 1.5% in all cases. As expected, FPR improves when
using more isotope peaks. For S, we get higher FPRs than for the other classi�ers. For three
peaks, we do not reach a TPR of 100%.
We additionally evaluated the B classi�ers against isotope patterns with extremely high
noise level (σIA = 0.008, σIR = 0.1, and σM = 0.002Da) to account for the range of natural
variation in the isotopic distribution of B. The prediction quality remains the same.
For CHNOPS, we get a FPR 0.0 up to a TPR of 99.9%. Even for 100% true positives, the
FPR is below 1%.
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We manually chose the tradeo� between FPR and TPR used for the analysis on the measured
datasets, see Table 3. If several voting thresholds fall into the particular FPR/TPR tradeo�,
we choose a reasonable one (see Supplementary Table S.6).
We have also tested the training of di�erent classi�ers for di�erent mass ranges, since the
mass of a compound in�uences the shape of its isotope pattern. However, using two or three
classi�ers for di�erent mass ranges did not improve prediction quality (data not shown).

Prediction quality on measured data

In the second part of our evaluation, we apply our classi�ers to three measured datasets. The
measured isotope patterns have di�erent numbers of peaks; for each pattern, we choose the
appropriate classi�er. For each classi�er, we use the voting threshold with the best tradeo�
between FPR and TPR (see Table 3 and Supplementary Table S.6). Note that there is only
one positive example each for B and Se.
See Table 4 for prediction results. In no case do we observe a false negative prediction for
elements S, Cl, Br, B, and Se. To this end, our classi�ers have perfect sensitivity for the
measured data. A false negative prediction would result in an element being excluded from
further analysis, despite being present in the compound.
Recall that false positive prediction, in contrast, can be corrected in the downstream analysis
of identifying the exact molecular formula. For Cl, we get seven false positive predictions: See
Supplementary Fig. S.2 for the isotope patterns of bromazil (C9H13BrN2O2) and pinensin A
(C96H139N27O30S2). We note that pinensin A with mass 2213.962 Da is much larger than the
mass range used for training our classi�ers. For both compounds, the CHNOPS classi�er
reports a con�icting prediction. For Br, we have three false positive predictions in the CASMI

dataset. For B and Se we do not get any false positive predictions.
For S, we get 40 false positive predictions and, thus, would use an unnecessary element for
the molecular formula computation. Of these, 18 compounds are from the myxo dataset.
Compounds in the myxo dataset are much larger than compounds in the other datasets; for
larger compounds, the presence of sulfur is more veiled, in particular if only a single sulfur
atom is contained. See Supplementary Fig. S.3 for an example.

Molecular Formula Identi�cation

To show the use of our predictors in a pipeline for molecular formula identi�cation, we
integrated it into the SIRIUS pipeline for molecular formula identi�cation using isotope
patterns24, see ref.32,53 for details. Since biomolecules in the three datasets may potentially
contain elements CHNOPSClBrBSe, we use this set of elements when running SIRIUS to
compare against. For our predictors, we use elements CHNOP plus those from SClBrBSe
that were predicted (including false positive predictions) to be present in the biomolecule.
We use a mass deviation of 10 ppm.
For the myxo dataset, we excluded pinensin A (C96H139N27O30S2, 2213.962Da). Processing
this compound using the alphabet CHNOPSClBrBSe, we ran into an out-of-memory excep-
tion. Processing it with the predictor-based version, 19 746 670 candidate molecular formulas
were evaluated in 15min, and the correct molecular formula was at rank 10414. For three
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Table 4: Classi�cation results on the three measured datasets. Number of real positives (P)
and negatives (N), as well as number of true positive (TP), true negative (TN), false positive
(FP), and false negative (FN) predictions. Recall that false positive predictions (orange)
can be corrected in the downstream analysis of molecular formula identi�cation; in contrast,
false negative prediction (red) cannot.

real predicted
P N TP TN FP FN

m
y
xo

CHNOPS 78 10 78 10 0 0
S 24 64 24 46 18 0
Cl 8 80 8 79 1 0
Br 0 88 0 88 0 0
B 1 87 1 87 0 0
Se 1 87 1 87 0 0

pe
st
ic
id
e

CHNOPS 15 28 15 28 0 0
S 14 29 14 27 2 0
Cl 27 16 27 15 1 0
Br 1 42 1 42 0 0
B 0 43 0 43 0 0
Se 0 43 0 43 0 0

C
A
S
M
I

CHNOPS 368 164 368 164 0 0
S 146 386 146 366 20 0
Cl 152 380 152 375 5 0
Br 13 519 13 516 3 0
B 0 532 0 532 0 0
Se 0 532 0 532 0 0

compounds in the myxo dataset, we had to extend the mass deviation to 30 ppm to include
the correct molecular formula.
For the CASMI dataset, we excluded four compounds and mass spectra, as these were sol-
vents and contain an exceptionally high number of �uorines. For the remaining compounds,
we used an upper bound of 6 �uorines (the remaining compound with the highest number
of �uorines was �ufenoxuron, C21H11ClF6N2O3, an insecticide). We assume for both ap-
proaches that we know whether iodine is present in the compound; as discussed below, the
presence of iodine can be determined using the fragmentation pattern of the compound.
All running time measurements were performed on an Intel Sandy Bridge processor at
2.3GHz with 128GB RAM.
We observe a massive decrease in the number of candidate molecular formulas we have to
consider (see Table 5): We observe a 32-fold to 261-fold decrease in candidate molecular
formulas �ltered with SENIOR rules35, compared to the default method. As expected, this
results in a similar decrease in running times: The total running time for processing all
three datasets decreased from 18.6min to 9.5 sec. We also observe a slight improvement in
identi�cation performance.
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Table 5: Results of the molecular formula identi�cation using SIRIUS. We use CHNOP-
SClBrBSe when running the identi�cation without element prediction (top). For our predic-
tors, we use CHNOP plus those elements from SClBrBSe that were predicted to be present
(bottom). For CASMI, we also added I to the set of elements for all compounds that contain
iodine, and allow up to six �uorines for all compounds. We report correct identi�cations (top
1, top 3, top 10), average number of decompositions (before and after SENIOR �ltering) and
average running time for all three datasets.

Dataset myxo pesticide CASMI

No. spectra 87 43 528
Median mass (Da) 592.315 260.016 281.484

w
it
h
ou
t

el
em

en
t
p
re
d
ic
ti
on Correct identi�cations 12 13 287

Top 3 identi�cations 20 36 360
Top 10 identi�cations 30 42 433
Average #decompositions
. . . before SENIOR �ltering 2737085 2242.0 44007.4
. . . after SENIOR �ltering 571072.4 836.2 13052.5
Average running time in ms 11277.2 20.1 256.9

w
it
h

el
em

en
t
p
re
d
ic
ti
on Correct identi�cations 13 13 287

Top 3 identi�cations 21 37 364
Top 10 identi�cations 32 42 435
Average #decompositions
. . . before SENIOR �ltering 12708.8 73.4 597.6
. . . after SENIOR �ltering 2181.0 26.1 174.9
Average running time in ms 64.5 1.0 7.2

Conclusion

We have presented classi�ers to predict the presence of uncommon elements, based on the
isotope pattern of the biomolecule. The thresholds have been chosen with regards to the
setting discussed in the introduction, where an extremely high sensitivity is more important
than a low false positive rate. Evaluating the classi�ers on a real-world dataset, we found
no false negative predictions and would, thus, never miss an element for molecular formula
identi�cation. Depending on the application, it is also possible to select thresholds based on
other criteria, e.g. keeping the false positive rate low.
We have shown how our classi�ers improve the subsequent steps of analyzing isotope patterns,
in particular by signi�cantly reducing the number of candidate molecular formulas we have
to consider. Molecular formula identi�cation based on isotope patterns alone is not adequate
in practice (see Table 5), but results can be much improved by accompanying the isotope
pattern data by fragmentation data: For example, for 56 of 60 compounds in the complete
pesticide dataset, Böcker and Dührkop 31 inferred the correct molecular formula using both
data types combined; in all cases, the correct answer was ranked in the top 5. Running
time di�erences will be much larger if we also analyze tandem mass spectra, as processing

17



a single candidate may require several seconds: Böcker and Dührkop 31 report an instance
where 3106 candidates were considered, requiring a total of 12.5 h for this compound.
We have used random forests for the prediction as they deliver high quality predictions and
are not susceptible to noise, as has been shown in the noise parameter evaluation. Classi�ers
have been trained on simulated data with relatively high noise, and have not been tailored
toward any particular instrumental platform. Training on instrument-speci�c data may
further increase prediction quality.
From the uncommon elements we have considered in this paper, sulfur is the most abundant
one (Table 1). It is also the element which is hardest to predict, since the e�ect of a single
sulfur atom on the isotope pattern is less pronounced than for other uncommon elements.
We have not taken into account the presence of the characteristic peak at +1.995796Da from
the monoisotopic peak in the isotopic �ne structure, as detection of this peak is dependent
on the resolution of the MS instrument, which is not covered in this paper. Assuming
adequate resolution, combining the classi�ers presented here with a classi�er based on the
+1.995796Da peak will result in improved classi�cation performance for sulfur.
Using the isotope pattern alone, it is not possible to predict the presence of iodine and
�uorine. To a certain degree, it is possible to predict iodine using tandem mass spectral
data, based on characteristic common losses and fragments31. In contrast, the presence of
�uorine is hard to predict using tandem MS data, too; hence, it might be advisable to allow
for a few �uorine atoms in the molecular formula candidates, if there is any reason to believe
that �uorine might be present in the sample compounds4,9. Predicting the presence of other
elements that have characteristic isotope distributions, such as silicon, is also possible by the
methods presented here if required by the application.
Selenium-containing compounds result in a monoisotopic peak with small intensity, which
may not be detected in the mass spectrum. In this case, we cannot proceed by decomposing
the monoisotopic peak. Instead, we can decompose the average mass (that is, the molecular
mass) of the compound22; the average mass can be estimated from the experimental spectrum
by taking the weighted average of isotope peak masses.
Until now, the selection of elements to include for the calculation of molecular formulas has
been a manual decision. This has not been seen as a critical bottleneck in the past, as molec-
ular formula determination was mainly performed as a manual �low throughput� procedure
in the course of structural elucidation. Today, methods for small molecule analysis are being
applied at a large scale in numerous research �elds, including diverse applications such as
the investigation of industrially relevant plants and microbes, clinical pharmacology stud-
ies, and natural products discovery. The underlying mass spectrometry applications share a
tendency to produce datasets from which hundreds to thousands of unknown molecules have
to be analyzed. Generation of molecular formulas is among the most commonly performed
�rst-pass analyses in unknown identi�cation work�ows, and several advanced methods rely
on this upfront evaluation step31,54. Whereas e�orts have been made to evaluate the �t
of a measured isotope pattern against the theoretical isotope pattern of a molecular for-
mula, as well as evaluation of the corresponding statistical signi�cance and robustness of
the method55, the issue of predicting the presence or absence of elements has been widely
disregarded. To this end, we believe that our method is an important step in the automated
annotation of novel biomolecules from mass spectrometry data.
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